Condition-aware operation and scheduling

ABB Corporate Research Germany, Accai Speciali Terni, BASF, Equinor, Norwegian University of Science and Technology, Technical University Dortmund

Condition-aware operation and scheduling

Motivation and Objective: Taking equipment condition and performance into account in scheduling and operations allows for more accurate optimization affecting safety, reliability, and profit.

Integrated Prognosis and Operation

- Novel Condition-based maintenance formulation accounting for degradation uncertainty
- Integration prognosis and operation optimization
- Stochastic programming and endogenous uncertainty
- Dynamic interaction between the scenario tree and the health of the equipment via prognostic models

Optimization of energy consumption in the EAF process

The first step in the stainless-steel production process from recycled material, the melting process, is the most energy intensive. Its efficiency changes according to the properties of the raw materials.

- A novel optimal control problem that calculates the setpoint of the melting furnace was explored in this work.
- Novel models of the process were developed and validated

Combined Maintenance Scheduling and Planning

- Perform maintenance because of degradation, not just because of approaching asset failure
- Discrete-time model based on Resource-Task Network approach (MILP)
- Consider various types of maintenance
- Novel enumerator formulation
- Applicable to large asset fleets (e.g., compressors)
- Improvement of operational profit

Demand-Side Management and Equipment Condition

- The goal of steel plant scheduling is to balance the complex trade-offs between electricity usage (and the associated time-based price), electrode degradation, and task timings
- Discrete-time approach based on the Resource-Task Network (MILP) with the goal of minimizing total production cost

Short-term scheduling of multi-product batch plant

The aim is to improve batch scheduling in a multi-product batch plant by explicit consideration of batch-to-batch evolution of fouling

- Novel formulation for condition-aware batch scheduling
- Continuous-time precedence based approach (MILP)
- Integrate with prognosis model for sequence-dependent fouling evolution

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No 655215