Year 1 CHEM40006
Reactivity at Carbon Centres

LECTURE 14 - Reactivity at sp² Centres: Aromatic Compounds as Nucleophiles

Alan C. Spivey
a.c.spivey@imperial.ac.uk

Imperial College London

Feb 2020
Format and scope of presentation

• **Electrophilic aromatic substitution (S_EAr):**
 – Directing effects
 • *meta-*directing groups (*deactivating*)
 • *ortho-*/*para-*directing groups which *deactivate*
 • *ortho-*/*para-*directing groups which *activate*
 • *ortho-*/*para-*ratios
 • *ipso-*directing groups
 – Polysubstituted aromatics
 • cooperating and competing directing influences

Key further reading: Clayden, Greeves & Warren, *Organic Chemistry*, 2nd Ed., Chapter 21
• *directing effects* – pages 479 - 492
Aromatics as ambident nucleophiles – *directing effects*

- **Substituted aromatics are ‘ambident’ nucleophiles**
 - *i.e.* they can potentially react at various positions

 substituent as nucleophile (*e.g.* $X = NH_2$)

 ![Diagram showing ambident nucleophilic reactivity]

 - *ipso*-carbon as nucleophile
 - *ortho*-carbon as nucleophile
 - *meta*-carbon as nucleophile
 - *para*-carbon as nucleophile

- **What governs the position of reactivity?**
 - The ‘directing effect’ of the substituent X
 - These fall into two broad categories:
 - *meta*-directing groups
 - *ortho-/para*-directing groups…
Directing effects

- Electrophilic substitution is under kinetic control - i.e. fastest formed product predominates
- The fastest formed product will be formed via the lowest energy transition state:

How can we estimate which transition state has lowest energy?

HAMMONDS POSTULATE: ‘energy of TS# will resemble that of Wheland intermediate more closely than the starting materials or products’

We can estimate the energies of the Wheland intermediates from their resonance forms...
meta-Directing groups (deactivating)

- **‘Deactivated’** – *i.e. less reactive than benzene (overall more electron deficient)*

- **CF₃, NR₃⁺, NH₃⁺**
 induction deactivates overall & destabilizes o-/p-WIs

- **NO₂, CN, SO₃H, SO₂R, CHO, COR, CO₂R, CO₂H**
 conjugation deactivates overall & decreases relative reactivity of o-/p- positions; induction deactivates overall & destabilizes o-/p-WIs
ortho-/para-Directing (deactivating)

- **Deactivating** – *i.e. less reactive than benzene (overall more electron deficient)*

- **I, Br, Cl, NO**

 (*conjugation* increases relative reactivity of *o*-/*p*- positions; *induction* deactivates overall)

 *i.e. conjugation dominates relative reactivity of *o*-/*p*- vs. *m*- but induction deactivates overall*
ortho-/para-Directing (activating)

- **Activating** – i.e. more reactive than benzene (overall more electron rich)
 - NR$_2$, NH$_2$, OH, OR, NHCOR, OCOR
 (conjugation activates overall & increases relative reactivity of o-/p- positions)
 - **Alkenyl, aryl**
 (conjugation activates overall & stabilizes o-/p-WIs)
 - **Alkyl**
 (sigma conjugation activates overall & stabilizes o-/p-WIs)
ortho-/para-Ratios

- Statistically we expect ~2:1 ortho- : para-
- Theoretical charge density studies favour the para-:

- Steric effects (large E^+ or directing substituent or both) disfavour the ortho-

<table>
<thead>
<tr>
<th>E</th>
<th>% o-</th>
<th>% p-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>39</td>
<td>55</td>
</tr>
<tr>
<td>NO₂</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>Br</td>
<td>11</td>
<td>87</td>
</tr>
<tr>
<td>SO₃</td>
<td>1</td>
<td>99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>% o-</th>
<th>% p-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>58</td>
<td>37</td>
</tr>
<tr>
<td>Et</td>
<td>45</td>
<td>49</td>
</tr>
<tr>
<td>iPr</td>
<td>30</td>
<td>62</td>
</tr>
<tr>
<td>iBu</td>
<td>16</td>
<td>73</td>
</tr>
</tbody>
</table>

- Complexation (chaperone) effects can favour the ortho-
 - Strazzolini J. Org. Chem. 1998, 63, 952 (DOI)

- Solvent effects are difficult to predict
ipso-Substitution

- **Proto-desulfonylation:**

 ![Reaction Scheme]

- **Utility of SO$_3$H as temporary directing group**

 ![Reaction Scheme]

- **Desilylation, degermylation & destannylation:**

 - **Review:** Eaborn J. Organometal. Chem. 1975, 100, 43 (DOI)
Polysubstituted Aromatics

- **Two substituents direct to the same positions - cooperation:**
 - \(o-/p \)-directing
 - \(o-/p \)-directing
 - \(\text{OH} \)
 - \(\text{Br} \)
 - \(\text{FeBr}_3 \)
 - \(\text{Br} \)
 - \(\text{Br} \)
 - \(\text{OH} \)
 - \(\text{Br} \)
 - \(\text{EtCOCl} \)
 - \(\text{AlCl}_3 \)
 - \(\text{Cl} \)
 - \(\text{CO}_2\text{Me} \)
 - \(\text{major prod (+ some o-)} \)

- **Two substituents activate different positions – competition:**
 - two activating groups – the more powerful director dominates:
 - \(o-/p \)-directing
 - \(\text{OH} \)
 - \(\text{SO}_3 \)
 - \(\text{H}_2\text{SO}_4 \)
 - \(\text{OH} \)
 - \(\text{SO}_3\text{H} \)
 - \(\text{activation by conjugation overrides activation by sigma-conjugation} \)
 - \(\text{NHAc} \)
 - \(\text{HNO}_3 \)
 - \(\text{NHAc} \)
 - \(\text{NO}_2 \)
 - \(\text{Me} \)
 - \(\text{Me} \)
 - \(\text{Me} \)
 - \(\text{Me} \)
 - \(\text{...even when the conjugation is diluted in an amide} \)

 - an activating & a deactivating group: in general, activating effects override deactivating effects:
 - \(o-/p \)-directing
 - \(\text{OMe} \)
 - \(\text{OMe} \)
 - \(\text{c.HNO}_3 \)
 - \(\text{c.H}_2\text{SO}_4 \)
 - \(\text{OMe} \)
 - \(\text{OMe} \)
 - \(\text{O}_2\text{N} \)
 - \(\text{H} \)
 - \(\text{H} \)
 - \(\text{the aldehyde deactivates C5, C6 is preferred on account of being para activated and on steric grounds} \)
Synthetic ‘check list’ for \(S_{E}Ar \)

- **Will** \(E^+ \) **react at ring carbon or elsewhere** (e.g. at amine substituent \(\rightarrow \) diazonium salt)?

- **Is the** \(E^+ \) **sufficiently reactive to react with a ring carbon?**

- **If reaction at a ring carbon is expected, what orientation relative to existing group(s) (i.e. directing effects)?**
 - ortho-/para- or meta- or ipso-?
 - If ortho-/para- …which?
 - Do directing effects of existing groups cooperate or compete?
 - Use a temporary directing group to get desired orientation?

- **Mono- or multiple substitution?**
 - Will introduction of \(E \) activate or deactivate the ring relative to the starting material?