(a) Applying the CIP rules we obtain:

```
molecule
as drawn
```

```
priority
```

priority
assignment

```
assignment
```

re-drawn with lowest priority group at back

Newman projection

$N B$. 'ghost' atoms, as defined in the notes, are shown in brackets on the structure and underlined in the 'priority summation' (in blue)

(b) Only one of the following molecules, molecule \mathbf{C}, has an asymmetric enantiomeric form - see below. Molecule B is achiral due to an internal mirror plane (i.e. an S_{1} improper rotation axis) and molecule \mathbf{A} has a C_{2} axis and therefore has a dissymmetric enantiomeric form.

A
dissymmetric enantiomers (C_{2} symmetric)

B internal mirror plane (C_{s}) ($C_{s}=S_{1}{ }^{\prime}{ }^{\prime}$ axis' $^{\prime}$) (achiral)

C
asymmetric enantiomers

It is non-trivial to spot that molecule \mathbf{A} has a C_{2} axis of symmetry. A 3 D model of this compound has been uploaded here: http://www.ch.ic.ac.uk/spivey/teaching/org1stereochemistry/stereochemistryjm ols/0910stereochemistry5.html to allow you to rotate the molecule (A model of
molecule \mathbf{B} is also there, showing its internal mirror plane). The below image was generated using the program 'wxMacMolPlt' which can be downloaded free from: http://www.scl.ameslab.gov/MacMolPlt/. This program has the facility to allow you to identifiy symmetry operations within any 3D molecule coordinates. In this case, the C_{2} axis is coincident with the Z axis (as defined for the coordinates of molecule at the above URL).

(c) The cis-1,3-dimethyl compound is a meso compound as it is achiral by virtue of an internal mirror plane (S_{l} axis) but has a stereoisomer that is chiral: the trans-1,3-dimethyl compound, which has a dissymmetric enantiomeric form. The cisand trans-1,2-dimethyl compounds both have asymmetric enantiomers.

Meso is the term given to achiral members of a series of diastereoisomers in which at least one is chiral

