LECTURE 2 Stereoelectronics of Ground States – Conformational Analysis

Alan C. Spivey
a.c.spivey@imperial.ac.uk

Feb-Mar 2018
Format & scope of lecture 2

- **The conformation of hydrocarbons**
 - Ethane & alkanes
 - Propene & alkenes
 - $A^{1,2}$ and $A^{1,3}$ strain
 - 1,3-Dienes & biaryls
- **The conformation of functional groups**
 - Aldehydes & ketones
 - Esters & lactones
 - the ester anomeric effect
- **The conformation of functional groups**
 - Amides
 - Acetals
 - the anomeric effect, Bohlmann IR bands
 - X-C-C-Y and R-X-Y-R’ systems
 - gauche conformations
Saturated hydrocarbons - ethane

- **Ethane** prefers to adopt a **staggered** rather than **eclipsed** conformation because:

 - 1) The **eclipsed conformers** are **destabilised** by **steric interactions**
 - *i.e.* by non-bonded, van der Waals repulsions between the atoms concerned

 - 2) The **staggered conformers** are **stabilised** by \(\sigma \to \sigma^* \) **stereoelectronic interactions**
 - *i.e.* in a staggered conformation all the bonds on adjacent carbons are **anti periplanar** to each other allowing six \(\sigma \to \sigma^* \) stabilising interactions

\[
\text{van der Waals repulsions are maximised when eclipsed (shown)}
\]

\[
\begin{align*}
\text{steric destabilisation of eclipsed conformations} & \quad \text{stereoelectronic stabilisation of staggered conformations} \\
\end{align*}
\]

- For theoretical discussions of the relative importance of these effects see

 - L. Goodman *Nature* 2001, 411, 539 (DOI) and 565 (DOI)

- **NB. Steric effects dominate for groups larger than hydrogen**
Unsaturated hydrocarbons – propene

- **Propene** prefers to adopt **A\textsubscript{1,3} eclipsed** conformations rather than **A\textsubscript{1,2} eclipsed** conformations
 - The barrier to rotation is 8.0 kJ/mol (cf. propane 14.8 kJ/mol)

- The **A\textsubscript{1,3} eclipsed** conformation allows for better overlap of the orbitals for stabilising \(\sigma_{C-H} \rightarrow \pi^{*}_{C=C} \) **hyperconjugation/\(\sigma \)-conjugation**
 - This better overlap is a consequence of the ~109° angle subtended by the 'lobes' of the \(\pi^{*}_{C=C} \) orbital relative to the C=C axis

- **NB.** Steric effects dominate for groups larger than hydrogen...
Higher alkenes – $A^{1,2}$ vs $A^{1,3}$ strain

- **Steric interactions** (i.e. van der Waals forces) dominate affairs when groups other than H are involved
 - $A^{1,3}$ strain is the destabilising eclipsing interaction shown below:
 - As C=C double bonds are shorter than C-C single bonds, $A^{1,3}$ strain in the illustrated conformation of 2-pentene is more destabilising than the syn-pentane interaction in the illustrated conformation of n-pentane

 ![Eclipsing Interactions Diagram](image)

 Enthalpy difference between conformers
 \[\Delta H^\circ = +16.3 \text{ kJ/mol} \]

 $A^{1,3}$ strain

 - $A^{1,2}$ strain is the destabilising eclipsing interaction shown below:
 - As the C-C-C angle at an sp³ carbon (~109°) is smaller than at an sp² carbon (~120°), $A^{1,2}$ strain in the illustrated conformation of 2-Me-but-1-ene is less destabilising than the eclipsing interaction in the illustrated conformation of n-butane

 ![Eclipsing Interactions Diagram](image)

 Enthalpy difference between conformers
 \[\Delta H^\circ = +12.6 \text{ kJ/mol} \]

 $A^{1,2}$ strain

 - For a given pair of groups (e.g. Me ↔ Me, above), $A^{1,3}$ strain is more destabilising than $A^{1,2}$ strain. The lowest energy conformation adopted by complex alkenes is that in which both $A^{1,2}$ & $A^{1,3}$ strains are minimised
Unsaturated hydrocarbons – 1,3-dienes

- **1,3-Dienes** prefer to adopt **s-trans** conformations in which both double bonds are **co-planar**
 - e.g. butadiene:
 - **Co-planarity** of the π bonds allows for optimal overlap of the orbitals for \(\pi_{\text{C=C}} \rightarrow \pi^*_{\text{C=C}} \) resonance stabilisation
 - The **s-trans** conformation is preferred over the **s-cis** conformation because it suffers less **strain**
Unsaturated hydrocarbons - *biaryls*

- **Biaryls** prefer to adopt *non-planar* conformations in which the **dihedral angle** is ~45°

![Diagram of biaryl conformations]

- This is a compromise between:
 - Stabilising \(\pi_C=C \rightarrow \pi^*_C=C \) resonance when coplanar
 - Destabilising steric interactions between adjacent *ortho* aromatic substituents when coplanar

![Graph showing energy changes with dihedral angle]

- If at least three *ortho* substituents are large then the co-operative steric interactions restrict C-C bond rotation to such an extent that the two conformers become **configurationally stable** and, provided the groups are different, can be isolated as enantiomers known as **atropisomers**
Functional groups – *aldehydes & ketones*

- **Alkyl aldehydes & ketones** prefer to adopt $A^{1,3}$ *eclipsed* conformations

 ![Eclipsed Conformations](image)

 $A^{1,3}$ *eclipsed*
 MAJOR
 $A^{1,2}$ *eclipsed*

 - As for allylic systems, $A^{1,3}$ *eclipsed* conformations allow stabilising $\sigma_{C-H/C} \rightarrow \pi^*_{C=O}$ *hyperconjugation*:
 - These interactions are more significant than the corresponding interactions in an allylic system because the $\pi^*_{C=O}$ orbital is a better acceptor (*i.e.* is lower in energy) than a $\pi^*_{C=C}$ orbital
 - These interactions also account for the greater stability of ketones relative to aldehydes (*i.e.* Deslongchamps theory: more interactions for the ketone)

 ![Hyperconjugation](image)

 - Moreover, $A^{1,3}$ *strain* is less significant in these compounds relative to allylic compounds as the sp^2 hybrid lone pairs on the carbonyl oxygen are ‘small’ relative to any substituent on an alkene

 ![Strain](image)

 NB. of course there are two identical interactions: on the top and bottom faces
Functional groups - esters

- **Esters** prefer to adopt **s-cis** conformations in which all atoms of the group are **co-planar**

 \[
 \begin{align*}
 \text{s-cis} & \quad \Delta H^\circ \sim 25 \text{kJ/mol} \\
 \text{s-trans} & \quad \Delta H^\circ \sim 50 \text{kJ/mol}
 \end{align*}
 \]

 - **Co-planarity** is stabilised by \(n_{\text{Op}} \rightarrow \pi^*_{\text{C}=\text{O}} \) resonance

 \[
 \begin{align*}
 \text{s-cis} & \quad n \rightarrow \pi^* (\text{pp}) \\
 \text{s-trans} & \quad n \rightarrow \pi^* (\text{pp})
 \end{align*}
 \]

 - Because the p-orbital on oxygen is symmetrical resonance does not favour s-cis over s-trans or vice versa

 - However, there is a relatively strong enthalpic preference for the **s-cis** conformer over the **s-trans** one (\(\Delta H^\circ \sim 25 \text{kJmol}^{-1} \) cf. \(\sim 10 \text{kJmol}^{-1} \) for amides) although the barrier to rotation about the acyl oxygen bond (*i.e.* interconversion) is relatively low (\(\Delta H^\# \sim 50 \text{kJmol}^{-1} \) cf. \(\sim 85 \text{kJmol}^{-1} \) for amides)
Functional groups – esters cont.

- **There are three factors which favour the s-cis over the s-trans conformer:**
 - There is a $n \rightarrow \sigma^*$ **anomeric effect** which stabilises the s-cis form

![Diagram of anomeric effect]

- There is significant ‘$A^{1,2}$ strain’ in the s-trans form (the sp2 hybrid lone pair on the carbonyl oxygen is ‘small’ relative to a substituent bonded to the acyl carbon atom)

![Diagram of $A^{1,2}$ strain]

- The s-cis form has a significantly **smaller overall dipole moment** relative to the s-trans form
 - There is a general preference for conformers with minimum overall dipole (minimum overall charge separation)

![Diagram of bond dipole moments]
Evidence for the ester anomeric effect

- **Fluorocarbonates** prefer to adopt an *s-trans* conformation:

 ![Diagram of s-cis and s-trans conformations](image)

 - Here, the σ^* orbital of the C-F bond is a better acceptor than the σ^* orbital of the C-O bond (*i.e.* lower in energy because F is more electronegative than O)

 - Hence, in these compounds there is a stronger **anomeric stabilisation** of the *s-trans* conformation than of the *s-cis* conformation.

 \[\text{ESTAB}_{s\text{-trans}} > \text{ESTAB}_{s\text{-cis}} \]

 - NB. the *cis* and *trans* designations here are relative to the carbonyl group and not strictly according to CIP rules (where F>O in 'priority')
• **5- & 6-Membered lactones** contain an ester function with an enforced s-trans conformation so anomeric $n_{Osp2} \rightarrow \sigma^*_{C-O}$ stabilisation is not possible

![s-trans](image)

• As a result, lactones have some different properties to corresponding acyclic esters:

 – **Lactones are more basic than acyclic esters** - because the oxygen sp2 lone pair is ‘more available’ for interaction with protons (e.g. it is possible to form salts etc.)

 – **Lactones are more susceptible to nucleophilic attack at the carbonyl carbon than acyclic esters** - because anomeric $n_{Osp2} \rightarrow \sigma^*_{C-O}$ stabilisation results in ‘dilution’ of the dipole across the carbonyl in acyclic esters; this interaction is absent for lactones (i.e. they are more electrophilic)

 – **Lactones are more prone to enolisation than acyclic esters** - [pKa ~22 (lactone) cf. pKa ~25 (acyclic ester)] because for acyclic esters there is an energy penalty associated with loss of anomeric stabilisation ($n_{Osp2} \rightarrow \sigma^*_{C-O}$) in going to the enolate; this is not the case for lactones.
The Claisen Condensation - Why Thioesters?

- recall the chemistry of coenzyme A (1st lecture) – properties of alkyl thioesters (cf. alkyl esters)
 - good leaving group ability of RS: (cf. RO⁻)
 - due to pKₐ (RSH) ~10 cf. pKₐ (ROH) ~16

- high acidity of protons α to the carbonyl of thioesters (cf. ester) & weak C-S bond (cf. C-O bond):
 - due to poor orbital overlap between the lone pairs on sulfur (ₙₛ) [cf. ₙₒ] and the carbonyl anti bonding orbital π⁺_{C=O}

```
\[
\begin{align*}
\text{Nu:} & \quad \text{Nu:} \\
\text{SR} & \quad \text{SR} \\
\end{align*}
\]
```

- a good leaving group

```
\[
\begin{align*}
\text{Nu:} & \quad \text{Nu:} \\
\text{OR} & \quad \text{OR} \\
\end{align*}
\]
```

- a poorer leaving group

```
\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{S} & \quad \text{S} \\
\text{R} & \quad \text{R} \\
\end{align*}
\]
```

- less effective

```
\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O} \\
\text{R} & \quad \text{R} \\
\end{align*}
\]
```

- pKa = 20
 - acyl-sulfur bond weak

```
\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O} \\
\text{R} & \quad \text{R} \\
\end{align*}
\]
```

- pKa = 25
 - acyl-oxygen bond strong
Amides prefer to adopt s-cis conformations in which all atoms of the group are co-planar. Co-planarity is stabilised by $n_{\text{Np}} \rightarrow \pi^*_{\text{C}=\text{O}}$ resonance which is stronger than the corresponding $n_{\text{Op}} \rightarrow \pi^*_{\text{C}=\text{O}}$ resonance in esters because the nitrogen lone pair is a better donor than the oxygen lone pair.

- Co-planarity stabilises the s-cis conformer over the s-trans conformer, but the enthalpic difference in ground state energy is less pronounced than in the case of esters ($\Delta H^\circ \approx 10\text{kJmol}^{-1}$, cf. $\approx 25\text{kJmol}^{-1}$ for esters).

- This is because the only significant factor favouring the s-cis conformation over the s-trans is ‘$A^{1,2}$ strain’ (cf. esters where there is an anomeric effect and for which dipole effects are significant):

NB. This strain is often referred to as $A^{1,2}$-strain despite the fact that the non-carbonyl carbon is NOT sp^3 hybridised.
The anomic effect – 6-ring acetals

- **6-ring acetals prefer to adopt chair conformations in which the anomeric oxygen is axial**
 - This is in contrast to the situation for cyclohexanes in which the substituent adopts an equatorial position 1) to avoid unfavourable 1,3-diaxial or ‘1,3-flagpole’ interactions, & 2) to minimise gauche interactions:

- **Two factors favour the α-anomer:**
 - An $n_{sp^3} \rightarrow \sigma^*_{C-X}$ **anomeric effect** which stabilises the α-anomer
 - The better the σ^*_{C-X} orbital is as an acceptor, the stronger the effect
 - The α-anomer has a smaller overall dipole moment than the β-anomer
The generalised anomeric effect & structural evidence

- **The anomeric effect in its most general form explains the conformational behaviour of systems containing two heteroatoms bound to a single carbon atom**
 - *i.e.* X-C-Y where X and Y are electronegative groups (*e.g.* acetals, where X = Y = O below)

![Diagram of the generalised anomeric effect with bond lengths](image)

- **Evidence for the anomeric effect comes from *e.g.* bond length analysis of fluoro sugars**

![Diagram of bond lengths in fluoro sugars](image)

X-ray bond lengths of fluorosugars...evidence for lengthening (and weakening) of the 'acceptor' C-F bond.
The anomeric effect – alkaloid ‘Bohlmann bands’

- **Geometrically rigid alkaloids** having at least **2 x C-H bonds anti-periplanar to nitrogen lone pairs** display characteristic low frequency infra-red stretching frequencies of the C-H bonds
 - This is because of multiple $\text{n}_{\text{Sp}3} \rightarrow \sigma^*_{\text{C-H}}$ **anomeric interactions** which weaken the acceptor (i.e. C-H) bonds
 - These bands (2700-2800 cm$^{-1}$) only occur when there are at least 2 appropriately orientated C-H bonds. Presumably due to the weak nature of the interaction
 - For recent use during Terengganensine A synthesis see: J. Zhu *Angew. Chem. Int Ed.* 2016, 55, 6556 (DOI)
1,2-Disubstituted ethanes - *gauche* preference

- **X-C-C-Y** containing compounds (where X and Y are electronegative groups) adopt *gauche* rather than *anti* conformations – *despite this conformation having a larger overall dipole*
 - Stabilisation accrues from $\sigma \rightarrow \sigma^*$ interactions between the best combinations of anti-periplanar donor and acceptor bonds (**the gauche effect**)

- **NB.** In the case of 1,2-ethanediol an *intramolecular H-bond* also stabilises the *gauche form*
- Also, 1,4-hypercoordination has been proposed as an additional factor stabilising *gauche conformations*, particularly when X or Y is a second row element: Inagaki *Org. Lett.* 1999, 1, 1145 (DOI)
Peroxides, hydrazines, disulfides - gauche preference

- **X-Y containing compounds** (where X and Y are electronegative groups) also adopt *gauche* rather than *anti* conformations
 - Stabilisation accrues from $n \rightarrow \sigma^*$ (anomeric) interactions between antiperiplanar donor lone pairs on X and Y and acceptor bonds
 - *e.g.* hydrogen peroxide (H_2O_2) and hydrazine (H_2NNH_2)

 ![Diagram of H$_2$O$_2$ and N$_2$H$_4$](image)

 - ***Disulfides*** adopt a *quasi gauche* conformation (dihedral angle $\Theta_{\text{C-S-S-C}}$ of $\sim 90^\circ$, cf. $\sim 60^\circ$ as expected)
 - This is because sulfur is in the second row of the periodic table and the geometry of the sp3 sulfur centres are distorted such that the angle between the lone pairs is $>109^\circ$ and that between the two substituents is $<109^\circ$. Anti-periplanarity for $2 \times n_s \rightarrow \sigma^*_{\text{S-C}}$ interactions results in the observed conformational geometry

 ![Diagram of R$_2$S$_2$](image)
1,2-, 1,3- & 1,4-Diheteroatom arrays - summary

1,4-

\[
\begin{align*}
\text{app} & & \sigma \\
\text{X} & & \text{C/H} & & \text{C/H} \\
\text{Y} & & \text{C/H} & & \text{H/C} \\
\end{align*}
\]

\[
\begin{align*}
\text{gauche preference} \\
2x (\sigma \rightarrow \sigma^*)
\end{align*}
\]

C-H/C = best \(\sigma\) donor
C-Y = best \(\sigma\) acceptor

1,3-

\[
\begin{align*}
\text{app} & & \text{app} \\
\text{X} & & \text{R} & & \text{R} \\
\text{Y} & & \text{R} & & \text{R} \\
\end{align*}
\]

\[
\begin{align*}
\text{the anomeric effect} \\
2x (n \rightarrow \sigma^*)
\end{align*}
\]

\(n_X\) and \(n_Y\) = best donors
C-Y and C-X = best \(\sigma\) acceptors

1,2-

\[
\begin{align*}
\text{app} & & \\
\text{X} & & \text{C/H} & & \text{C/H} \\
\end{align*}
\]

\[
\begin{align*}
\text{gauche preference} \\
2x (n \rightarrow \sigma^*)
\end{align*}
\]

\(n_X\) and \(n_Y\) = best donors
C-C/H = best \(\sigma\) acceptors