CHEM60001: An Introduction to Reaction Stereoelectronics

LECTURE 5 Neighbouring Group Participation, Non-classical Carbocations & Wagner-Meerwein 1,2-Shifts

Alan C. Spivey
a.c.spivey@imperial.ac.uk

Imperial College London

Nov 2016
Format & scope of lecture 5

- **Neighbouring Group Participation (NGP)**
- **Non-classical carbocations**
- **Ionic 1,2-rearrangements, part 1**
 - Wagner-Meerwein methyl and hydride shifts
Neighboring group participation (NGP)

- Groups remote from a reaction centre can participate in substitution reactions – **Neighboring Group Participation** (NGP) (or anchimeric assistance):
 - lone pairs of electrons, typically on N, O, S or Hal atoms interact with electron deficient/cationic centres
 - NGP is characterised by:
 - rate acceleration
 - retention of stereochemistry (via double inversion):
 - Rearrangements occur when the participating group ends up bonded to a different atom...

\[
\text{RELATIVE RATE } 1 : 600
\]
NGP with rearrangement

- **Payne rearrangements:**

\[
\text{BnO} -\text{O} -\text{OH} \xrightarrow{\text{NaOH, } H_2O} \text{BnO} -\text{O} -\text{O}^- \xrightarrow{\text{inversion}} \text{BnO} -\text{OH} -\text{O}^- \xrightarrow{\text{Et}_2\text{N}^+, \text{H}_2\text{O}} \text{BnO} -\text{OH} -\text{S}^\text{Bu}^- \xrightarrow{\text{iBuS}^-} \text{BnO} -\text{OH} -\text{S}^\text{Bu}^- \]

- **aza-Payne rearrangements:**

\[
\text{Et}_2\text{N} -\text{Cl} -\text{Me} \xrightarrow{\text{NaOH, } H_2O} \text{Et}_2\text{N} -\text{N} -\text{Me} \xrightarrow{\text{inversion}} \text{Et}_2\text{N} -\text{Me} -\text{OH} \xrightarrow{\text{H}^-} \text{Et}_2\text{N} -\text{Me} \]

- **Bromonium ion rearrangements:**

- **anti** (single enantiomer)

\[
\begin{align*}
\text{Br} & \quad \text{Me} \\
\text{Me} & \quad \text{OH} \\
\text{H}^- & \quad \text{Me}
\end{align*}
\]

diastereoisomers

- **syn** (single enantiomer)

\[
\begin{align*}
\text{Me} & \quad \text{OH} \\
\text{Br} & \quad \text{Me} \\
\text{H}^- & \quad \text{Me}
\end{align*}
\]

C₃-symmetric bromonium ion

\[
\begin{align*}
\text{Me} & \quad \text{Br} \\
\text{Br} & \quad \text{Me} \\
\text{Me} & \quad \text{Br}
\end{align*}
\]

\[\xrightarrow{\text{H-Br, } H_2O} \text{Me} \quad \text{Me} \quad \text{Br} \quad \text{Me} \quad \text{Br} \]

rearranged product

\[1 : 1\]

achiral (meso) [without ^13C label]

\[\text{Me} \quad \text{Me} \quad \text{Br} \quad \text{Me} \quad \text{Br} + \text{Me} \quad \text{Me} \quad \text{Br} \quad \text{Me} \quad \text{Br} \]

rearranged product

\[1 : 1\]

racemate
NGP with rearrangement – *involvement of π & σ bonds*:

- **NGP by aryl groups** (& alkenes) results in related rearrangements via phenonium/arenium ions:

 ![Diagram](attachment:image.png)

 - *anti* (single enantiomer)
 - *syn* (single enantiomer)

 - *C₇-symmetric phenonium ion* → rearranged product (1:1, single enantiomer without ¹³C label)
 - *meso phenonium ion (achiral)* → rearranged product (1:1, racemate without ¹³C label)

- **NGP by alkyl groups** can also proceed via **non-classical cations**:
 - Crystal structure of this carbocation finally obtained in 2013! See: Scholz Science, 2013, 341, 62 [DOI](https://doi.org/10.1126/science.1234567)

- The rearranged products of the above “NGP” processes can also be regarded as having undergone [1,2]-sigmatropic rearrangements...
[1,2]-Sigmatropic rearrangements

- **[1,2]-Sigmatropic rearrangements** take place when an **electron deficient/cationic centre** is formed adjacent to a group capable of migration using a lone or bonding pair of electrons
 - Participation of bonding electrons of aryl, alkyl and hydride groups are of particular importance:
 - 1,2-Aryl-, alkyl- & hydride shifts towards **carbenium ions/electron deficient carbon**:

\[
\text{H/R/Ar}^+ + \text{LG} \rightarrow \text{H/R/Ar}^+ \quad \text{H/R/Ar}^+ + \text{LG}^- \quad \text{a range of mechanistic cases from true carbenium ion-mediated to fully concerted rearrangements}
\]

- 1,2-Aryl-, alkyl- & hydride shifts towards **electron deficient oxygen**:

\[
\text{H/R/Ar}^+ + \text{O} \rightarrow \text{H/R/Ar}^+ \quad \text{H/R/Ar}^+ + \text{O}^- \\
\text{oxenium ion too high in energy to exist}
\]

- 1,2-Aryl-, alkyl- & hydride shifts towards **electron deficient nitrogen**:

\[
\text{H/R/Ar}^+ + \text{N} \rightarrow \text{H/R/Ar}^+ \quad \text{H/R/Ar}^+ + \text{N}^- \\
\text{nitrenium ion too high in energy to exist}
\]
Mechanistic variations

- The mechanism of 1,2-migrations vary from **stepwise** to **concerted** (cf. $S_N1 \leftrightarrow S_N2$):

 - The migrating centre however **always retains** its configuration as it retains an octet of electrons:
 - Consider the case of a 1,2-alkyl shift:

 - *Inversion* of configuration at the migrating centre is possible for 1,3 and higher sigmatropic rearrangements (see ‘Pericyclic reactions’ lectures), but loss of stereochemical integrity at this centre is never observed

loss of stereochemical integrity at cationic centres

inversion of stereochemistry at migration origin and/or terminus

"onium ions" are usually intermediates for heteroatom migrations & Ar but usually transition states for R & H
Migratory Aptitudes

- The ease with which carbon-based groups migrate vary according to the particular reaction & the conditions

- However, an approximate ranking is possible:
 - Data has been accrued from relative rate data and from competition experiments on various rearrangements
 - In general, the group best able to stabilise positive charge (in the transition state/intermediate) migrates:

- The position of HYDRIDE in this series is highly unpredictable – often migrates very readily!
- Care is required in interpreting results as other factors may dominate:
 - e.g. a pinacol rearrangement where cation stability is the determining factor:

- However, CORRECT ORBITAL OVERLAP IS CRUCIAL in the transition state and so (by Hammond’s postulate) the orbital alignment in the substrate must be appropriate for migration...
1,2-Shifts to C⁺ - Wagner-Meerwein rearrangements

- **[1,2]-Sigmatropic shifts** of hydride & alkyl groups towards carbenium ions are referred to as Wagner-Meerwein shifts (a Me group 1,2-shift is specifically known as a Nametkin rearrangement)

 - e.g. rearrangement during substitution at a neopentyl centre:

 \[
 \text{neopentyl iodide} \xrightarrow{\text{AgNO₃, H₂O}} \text{MeMeMeMeI} \xrightarrow{\text{Ag⁺}} \text{MeMeMeMeMe} \xrightarrow{\sigma_{C-C} \rightarrow \sigma^*_{C-I} (app)} \text{MeMeMeMeMe} + \text{MeMeMe} \]

 - 1,2-Me shift

 \[
 \text{OH} \quad \xrightarrow{\#} \quad \text{MeMeMeMeMe} \quad \xrightarrow{\text{OH₂, H⁺}} \text{MeMeMeMeMe} \quad \xrightarrow{\text{OH₂, H⁺}} \text{MeMeMeMeMe} \]

 - 1,2-hydride shift

 \[
 \text{MeMeMe} \xrightarrow{\sigma_{C-H} \rightarrow \text{Pvac (pp)}} \text{MeMeMeMeMe} \]

 - 1,2-hydride shift

 - e.g. rearrangement during Friedel-Crafts alkylation:

 \[
 \text{MeCl} \xrightarrow{\text{AlCl₃ cat., benzene}} \text{MeMeMeMeMe} \quad \xrightarrow{\sigma_{C-H} \rightarrow \text{Pvac (pp)}} \text{MeMeMe} \]

 - 1,2-hydride shift

 \[
 \xrightarrow{\#} \quad \text{MeMeMeMeMe} \quad \xrightarrow{\text{OH₂, H⁺}} \text{MeMeMeMeMe} \quad \xrightarrow{\text{OH₂, H⁺}} \text{MeMeMeMeMe} \]

 - 1,2-hydride shift

 \[
 \text{MeMeMe} \xrightarrow{\sigma_{C-H} \rightarrow \text{Pvac (pp)}} \text{MeMeMeMeMe} \]

 - 1,2-hydride shift

 \[
 \approx 1:1 \text{ mix as both cations precursors are secondary} \]

 - Rearranged substituted product

 \[
 \text{MeMeMeMeMe} \xrightarrow{\text{OH₂, H⁺}} \text{MeMeMeMeMe} \]

 - Rearranged substituted product

 \[
 \text{MeMeMe} + \text{MeMeMe} \]
Wagner-Meerwein rearrangements - *isomerisations*

- *Synthetically useful Wagner-Meerwein rearrangements*

 - *e.g. isomerisation of alkyl halides:*

 ![Chemical Reaction](image)

 - A remarkable synthesis of adamantane (C\(_{10}H_{16}\)):
Wagner-Meerwein rearrangements - biosynthesis

- **Wagner-Meerwein rearrangements** are prevalent in the biosynthesis of terpenoids such as lanosterol (precursor to cholesterol & the human sex hormones)
 - lanosterol is formed by the polycyclisation of 2,3-oxidosqualene by the enzyme OxidoSqualene Cyclase (OSC)
 - the conformation enforced by the enzyme is ~ chair-boat-chair, the process is **NOT concerted**, discrete cationic intermediates are involved & stereoelectronics dictate the regio- & stereoselectivity

```
\[
\begin{align*}
\text{2,3-oxidosqualene} & \quad \text{1) epoxide opening} \quad \text{2) 2x Markovnikov ring-closures (6-memb rings)} \\
\text{lanosterol} & \quad \text{Markovnikov ring-closure (5-memb ring)} \\
\text{protosterol cation} & \quad \text{1,2-alkyl shift} \quad \text{ring expansion (5 \to 6)}
\end{align*}
\]
```

- “The enzyme’s role is most likely to shield intermediate carbocations… thereby allowing the hydride and methyl group migrations to proceed down a thermodynamically favorable and kinetically facile cascade”
Wagner-Meerwein rearrangements - *monoterpenes*

- **Wagner-Meerwein rearrangements** occur widely during the biosynthesis of terpenes (isoprenoids) and are also synthetically useful for the functionalisation of these metabolites:
 - e.g. synthesis of camphor sulfonic acid from camphor:

 - NB. H_2SO_4/Ac_2O is a weak sulfonylating mixture (cf. oleum) for $S_{E}Ar$: