
Advanced Field Theory 2001

14.00 - 17.00 hrs, June 12

Answer TWO questions from Section A
and ONE question from Section B



Q.A2

Maxwell’s equations in empty space are written in terms of the electromagnetic field
Aµ as

∂µF
νµ = 0, (1)

where F νµ = ∂µAν − ∂νAµ.

(i). Show that they follow from the free action

S[Aµ] =
∫

d4x [−1

4
FµνF

µν ]. (2)

How are the electric and magnetic fields defined in terms of the F µν?

Give one reason why there are difficulties if we take this action as it stands in
the canonical (operator) approach.

(ii). From the point of view of path integrals explain why the generating functional
for the Green functions of the free electromagnetic field cannot be written
simply as

Z[jµ] =
∫ ∏

µ

DAµ exp(iS[Aµ] + i
∫

dx jµA
µ) (3)

(iii). Show how the covariant gauge generating functional

Zξ[jµ] =
∫ ∏

µ

DAµ exp(iSξ[Aµ] + i
∫

dx jµA
µ) (4)

is constructed, where

Sξ[Aµ] =
∫

d4x [−1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2]. (5)

Calculate the photon propagator Dµν(x) with this gauge choice.

(iv). Quoting Feynman rules without proof explain why, if we use this propagator
in the lowest order diagrams for electron-electron scattering, the scattering
amplitude is independent of ξ.



Q.A3

This question concerns Grassmann variables and Grassmannian path integration.
We would like to show that, if Z[η∗, η] is the generating functional for the free

electron field coupled to sources η and η∗, written as a Grassmannian path integral,
then it satisfies the Dyson-Schwinger equation

(
(i∂/−m)

δ

iδη∗(x)
− η(x)

)
Z[η∗, η] = 0. (1)

However, this requires too much work and, instead, you are asked to do a truncated
version of the problem with a finite number of degrees of freedom.

(i). Consider the case of a single Grassmann variable q. Devise a definition of

J =
∫

dq f(q) (2)

so that translation invariance of the ’measure’ is preserved,

J =
∫

dq f(q + q0) (3)

for fixed q0. Further, show that
∫

dq f ′(q) = 0, (4)

where the prime denotes differentiation.

(ii). Let q, q∗, η, η∗ be Grassmann variables. We define a simplified generating func-
tion Z(η∗, η) by

Z(η∗, η) = N
∫

dq∗ dq e−S (5)

where S = Aq∗q−η∗q−q∗η, with A a c-number. N is chosen so that Z[0, 0] = 1.

Evaluate Z(η∗, η) a) directly, by expanding the exponential, and integrating
term by term b) by completing the square in the exponent and using the
translation invariance of the measure.

What is N?

(iii). Show, by explicit calculation that

∫
dq∗ dq

∂S

∂q∗
e−S = 0. (6)

Show that
∂

∂η∗
eη∗q = q eη∗q (7)



and, therefore, that Eq.(6) can be written as

(
− A

∂

∂η∗
+ η

)
Z(η∗, η) = 0. (8)

Using your solution for Z given earlier, check this by explicit calculation.



Section A

Q.A1

A particle of unit mass, coordinate q, moves in one dimension in a potential V (q).

(i). By inserting complete sets of states judiciously, show that the probability
amplitude

〈q1, t1|q0, t0〉 = 〈q1|e−iĤ(t1−t0)|q0〉 (1)

that the particle will be at q1 at time t1 if it was at q0 at time t0 can be
represented by the path integral, in units in which h̄ = 1,

〈q1, t1|q0, t0〉 =
∫
Dq exp

(
iS[q]t1t0

)
, (2)

where S[q]t1t0 is the action

S[q]t1t0 =
∫ t1

t0
dt

[
1

2
q̇2 − V (q)

]
(3)

with q(t1) = q1, q(t0) = q0. Define Dq.

State any assumptions that you make.

(ii). Show that the classical path for the particle to begin at q0 at time t0 and arrive
at q1 at time t1 is the solution to the variational equation

δS[q] = 0. (4)

What is the role of the classical path in the sum over paths and is it typical
of the paths that contribute to the sum?

(iii). A canonical ensemble of such particles is held at temperature T in a heat-bath.

Show that the partition function Z = tr(e−βĤ) for the ensemble can be written
as

Z =
∫

periodic
Dq exp

(
−

∫ β

0
dτ

[
1

2

(
dq(τ)

dτ

)2

+ V (q(τ))
])

, (5)

where τ = it denotes imaginary time and the integral is restricted to periodic
paths, q(τ = β) = q(τ = 0), where β = 1/T , in units in which kB = 1.

NOTE: You may use the fact that

〈q′|e−iεp̂2/2 e−iεV (q̂)|q〉 =
∫ dp

2π
ei(q′−q)p e−iεp2/2e−iεV (q), (6)

without proof. Similarly, you can quote the result
∫ dp

2π
eiqp e−iεp2/2 =

(
1

2πiε

)1/2

eiq2/2ε. (7)



Q.A4

Consider a real scalar field φ with Lagrangian density

L =
1

2
∂µφ∂µφ− 1

2
m2φ2 − 1

4
λφ4. (1)

The generating functional for its Green functions is

Z[j] =
∫
Dφ exp

(
i
∫

d4x
[
1

2
∂µφ∂µφ− 1

2
m2φ2 − 1

4
λφ4 + jφ

])
. (2)

(i). Show that iW [j] = ln Z[j] generates connected Green functions. You may
assume that Green functions for an odd number of fields are identically zero.

(ii). If φ̄(x) = δW/δj(x) is invertible, we define the effective action Γ[φ̄] by

Γ[φ̄] = W [j]−
∫

d4x jφ̄, (3)

where we eliminate j in favour of φ. Show that

δΓ

δφ̄(x)
= −j(x). (4)

(iii). For constant j we can proceed in a similar way to define a Γ(φ̄) for constant
φ̄, now proportional to the space-time volume Ω of the system as

Γ(φ̄) = −ΩVeff (φ̄). (5)

Show that, to one loop, Veff (φ̄) takes the form

Veff (φ̄) =
1

2
m2φ̄2 +

1

4
λφ̄4 +

h̄

2

∫
d/4k̄ ln(k̄2 + m2 + 3λφ̄2), (6)

where k̄ is Euclidean momentum. You can use any method. There is no need
to prove every step e.g. you can take for granted that det K = exp(tr ln K).
State your assumptions clearly.

(iv). As it stands, Veff (φ̄) is UV divergent. Indicate the steps needed to renormalise
Veff (φ̄), but do not do so.



Section B

Q.B1

(i). What is the Casimir Effect, and how is it understood today? In what sense is
it more mysterious now than when first proposed? What implications does this
have for the existence of quantum fields, rather than the existence of quantised
relativistic point particles?

(ii). Briefly describe experiments in which it is observed.

(iii). Calculate its magnitude for the simple case of two parallel conducting sheets,
stating your assumptions. Is the force due to this effect attractive or repulsive?

NOTE: You may quote the result

∫
d/kxd/ky

[ ∞∑

n=−∞

√
k2

x + k2
y + 4π2n2/a2 −

∫ ∞

−∞
dn

√
k2

x + k2
y + 4π2n2/a2

]
=

π2

45a3
(1)

without proof.



Q.B2

(i). Define coherent states in quantum mechanics and discuss their main proper-
ties.

(ii). The quantum forced harmonic oscillator (with zero-point energy removed) has
Hamiltonian

Ĥ =
1

2
p̂2 +

1

2
ω2q̂2 − q̂ f(t)− 1

2
ω. (1)

Show that, if |α(t)〉 is a coherent state, then

|ψ, t〉 = |α(t)〉eiφ(t) (2)

is an eigenstate of Ĥ provided

dα

dt
= −iωα +

if(t)√
2ω

. (3)

Deduce that 〈ψ, t|p̂|ψ, t〉 and 〈ψ, t|q̂|ψ, t〉 satisfy the classical equations of mo-
tion for p and q in the presence of a source.

(iii). Use this result, and your knowledge of coherent states to explain (briefly) how
Maxwell’s classical equations are to be understood, given that electromag-
netism is intrinsically quantum mechanical.


