Advanced Field Theory 2002
14.00 - 17.00 hrs, May 24

Answer THREE questions



Q.1

In this question I would like you to implement renormalisation in A¢* theory in
four dimensions to order A?. The Lagrangian density is, in terms of unrenormalised
variables,

1 1 1
L= 3 D00 Py — §m§¢2 - I)\0¢4- (1)

It is sufficient to adopt a UV cutoff regularisation scheme, in which Euclidean mo-
menta are cut off at value A, say. The diagrams that you will need are

In(mf) = - [ q+m

2 oy _ !
(K", mp) = / (@2 +m3)((k —q)? +md)
1

Ka(k2m2) = _ /

All momenta are Euclidean and k? < A? in each case.
To order A%, the Euclidean inverse propagator I'®(k?) and the 1PI four-point
function ' (kl, ko, ks, ky) are given as

1 1 1
IO = K +mi+ 5AOIA(mg) — ZIA(mg)JA(o, ma) — 6KA(k?,mg)
1
IO (ky, ko, kg, k) = Ao — 5)\(2)[(]/\((]{:1 + ky)?, m3) + permutations]

(i). Give a diagrammatic representation of I'® (k?) and I' (ky, ky, ks, k4).

(ii). What renormalisation conditions do you impose on the renormalised F(Q)(kzz)

and Tt} )(kl, ko, ks, k4)? In particular, how is the field renormalisation constant
Zs defined?

(iii). Without using counterterms, show how mass renormalisation is implemented
at one loop in the limit A — oo. Is there field renormalisation at one loop?

(iv). Now show how coupling constant renormalisation is implemented at one loop
in the limit A — oo.

(v). Finally, give an expression for Z3 (or Z3') to order A\? in terms of m, A and
A. Tt is sufficient to give an answer in terms of such of the I, Jy, K as are
needed.

You may quote the behaviour Iy ~ A% Jy ~ InA and Ky ~ A2, but K, contains
terms £%In A, without proof.

(¢* +md)(¢? +mi)((k —q—¢)* +m
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0

)



Q.2

Consider a real scalar field ¢ with Lagrangian density (omitting counterterms)

1 1 1
L= 58@6% — §m2¢2 — ZWL' (1)

The generating functional W{j] for its connected Green functions is defined (in units
in which A = 1) by

exp (;W[j]) = [D6 exp (; [ d Bamaw— ;m2¢2 - iw + jngD. @)

().

(ii).

If ¢(z) = W/§j(x) is invertible, we define the effective action I'[¢] by

rlgl = wij - [ d' jo, (3)
where we eliminate j in favour of ¢. Show that
or
— = —Jj(x). 4
55(2) J(x) (4)

. For constant j we can proceed in a similar way to define a I'(¢) for constant

¢, now proportional to the space-time volume €2 of the system as

[(¢) = —=QVers(9). ()
Show that, to order i (i.e. one loop), V.s;(¢) takes the form (omitting coun-
terterms)

Veosp(d) = ;m2q52 + i)«ﬁ‘* + Z/d‘% In(k% + m? + 3Ap?), (6)

where k is Euclidean momentum. You can use any method. There is no need
to prove every step e.g. you can quote the results for Gaussian integrals and
take for granted that det K = exp(¢rln K). State your assumptions clearly.

As it stands, V,;;(¢) is UV divergent and needs to be renormalised. Explain
(briefly) how counterterms are accommodated in the path integral and how

they need to be included in V,f¢(¢). What renormalisation conditions do you
impose on V,¢s and its derivatives?

Briefly indicate the steps needed to renormalise V.¢¢(¢), but do not do so.



Q.3

This question concerns Grassmann variables and Grassmannian integration.

(i). Consider the case of a single Grassmann variable ¢q. Devise a definition of

J= [ da @) (1)

so that translation invariance of the 'measure’ is preserved,

J= [ da f(a+a) 2
for fixed qq.

Show that 'integration’ and ’differentiation’ are similar operations in this case.

(ii). Let q1,q1, g2, 2 be Grassmann variables. If A is a 2x2 matrix show that the
four-dimensional Grassmann integral

7 — / dqy dgs dy dip 49 o det A, (3)

where the tilde denotes transposei.e. ¢Aq = ai1qiq1+... . Write down, without
proof, the corresponding result for the 2N dimensional Grassmann integral

N N .
Z = /HdQZqu_l €_qu, (4)
1 1

where, for simplicity, we take A to be real, symmetric, and non-singular. Hence
determine

N N o
Zn,n| = N/quin(ji e~ aAat+(natan) (5)
1 1

where 7 is a Grassmann column vector, and 7 is the corresponding row vector.
N is chosen so that Z[0,0] = 1.

iii). Using the fact that, for arbitrary Grassmann variables n;, Q;, (7:Q;)(n;Q;) =
i)
(7;Q;)(m:Q:), etc., show explicitly that

8?72- eXP(Z 7:Qi) = Q; eXp(Z 7iQi)- (6)

Assuming a similar expression on differentiation by 7;, evaluate

82
72 ’*
s, (1, 7]

n=n=0




Q.4

Maxwell’s equations in empty space are written in terms of the electromagnetic field
A, as
0, F"" =0, (1)

where F"# = Ot AY — 0¥ AM.
They follow from the free action

S14,] = [ d' [—iFWFW]. (@)

(i). From the point of view of path integrals explain why the generating functional
for the Green functions of the free electromagnetic field cannot be written
simply as (in units in which 7 = 1)

Zlj,] = / T[] DA, exp(iS[A,] + i / dz j, A") (3)

(ii). Show how the covariant gauge generating functional
Zelgl = /HDA exp(iSe[A —i—Z/d:L’juA“) (4)
is constructed, where

/d4 F SR 5(a A2, (5)

Calculate the photon propagator D, (x) with this gauge choice.

In deriving (4) it is sufficient, for examination purposes, to establish the iden-
tity between (3) and (4) for j, = 0.

(iii). With this gauge choice the Ward identity for the QED effective action Fg({ﬁ, 0, A,)
(in an obvious notation) takes the form
=T

i) e ) F i@ )

0= 253#,4#( z) —

Use this to explain why the renormalised photon is massless. State any as-
sumptions.



Q.5

(i) The renormalization group equation for the proper n—point vertex of a massless
scalar theory reads:

[ﬁ(g)gg + uai - m(g)] '™ (g,pn)=0.

Explain briefly the origin of this equation and the significance of the symbols
£ and 7.

(ii) Show that the equation

0

[mg)ag s M(fﬂ] Glg.1) =0

has contours of constant G given by G(g(t), 1) = G(g, ), where t := In(u/ o)
and g(t) is the solution of

(iii) Explain how the nature of the renormalized theory is determined by the beta
function, and in particular its zeros.

(iv) In QCD the lowest-order perturbative expression for 3(g) is 8(g) = —bg®.

Use this to find the form of ag(Q?) := (g(¢))?/4m, with Q% = Q3e*. What is
the significance of the scale parameter A7

(v) The solution of the full renormalization group equation involves the factor
exp[fs dt'{4 —n—nv(g(t'))}]. Evaluate this factor to lowest order, given that

v(9) = cg”.



