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Examination Paper

M.Sc. in Quantum Fields and Fundamental Forces

L TP.4 Advanced Field Theory ]

14:00 - 17:00 Monday, June 7th, 1999

Answer TWO questions from Section A and ONE question from Section B

(Questions from Section A carry 30% each and Questions from Section B carry 40% of the total)

Use a separate booklet for each question. Make sure that each booklet carries your
name, the course title, and the number of the question attempted.
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Section A

Q.A1l

A particle of unit mass, coordinate ¢, moves in one dimension in a potential V'(q).

(i).

(ii).

(iii).

By inserting a complete set of momentum eigenstates, in units in which A = 1,
show that R

(qllew-p’/? e~V @|g) = §get(q —9p gmiep (2 o= V@) (1)

By inserting complete sets of states judiciously, show that the probability
amplitude

(qi-tigo.to) = (mze-im:‘-%):%) (2)
that the particle will be at g; at time ¢, if it was at go at time to can be
represented by the path integral

(qu.tilaoto) = [ Dy exp (iSlally). 3)
where Siqj;! is the action

sty = [t [ - Via)] SRETRRC)

0

with g(t,) = @1, q(te) = ¢o. Define Dg.

In particle physics a more useful quantity is the generating functional of time-
ordered products of the gs, the groundstate expectation value

Z[j] = (O|T (e"f d*.fﬁ) 10). (5)
Show that, i"f‘to < t,t’ <t, |
(@ WIT@OHlgorto) = [ Da a(t)a(t) exp (istay) (6)

List (but do not implement) the steps whereby you would arrive at the path
integral for Z[j], :

2(j) = [ Dg exp (iS[q] vi [ jq). 7)
Explain the nature of the time contour in eq.(7).
NOTE: N N
limN—oo (e("/N*B/N)) - limN_,oo(eA/Né‘B/N) , (8)

and

f dp igp —iep’/?_,( 1 )1/2 iq’/h. |
/2::6 e = \ame) ¢ )



Q.A2

Maxwell's equations in empty space are

().

(iii).

(iv).

VE = 0 = V.B,
~E+VAB =0 = B+VAE. (1)
Show that they are equivalent to
a.F*=0 (2)

and F¥* = 9* 4 — 9 4*. where B=V A A. E = —A — V.4°,

Further. show that they follow from the free action

1
S[Au] = /d“z[_IFuVFw]' {3)

. Explain why the generating functional for the Green functions of the free

electromagnetic field cannot be written simply as

20, = [TIDAvexplS(A) +i [ dejua®) () -

Show how the covariant gauge generating functional
Zeliul = [ TI DA expliSeltu] +i [ dju %) (5)
m
is constructed, where
1, ., 1
SelAd) = [z (- gFuF* — 50,4, (©)

What is the photon propagator in this gauge?

Quoting Feynman rules without proof explain why, if we use this propagator
in the lowest order diagrams for electron-electron scattering, the scattering
amplitude is independent of §.



Q.A3

().

(ii).

(iii).

(iv).

Let A be a real nonsingular NxN symmetric matrix. Show that the integral
over N complex variables ¢;, (i = 1.2,..,¥)

N N L i
— . = -9 A '
Z—/Illdq.l;qu, Mx o (1)

In eq.(1) q denotes the column vector with components g;.

Hence show that. if j is a fixed column vector with components J:.

1

N N
ATREE / dg; Tl dq e @' 21#094a) o —— &'47' 2
. J°] IIIqI]Iq,e , X = (2)

Now consider the case when the gs are Grassmann variables. Beginning with
one g, devise a definition of

J= [ dafta) 3)
so that translation invariance of the 'meaéure’ is preseri'ed, |
I=[dg+o) fl )

for fixed go. Show that ‘integration’ and ‘differentiation’ are similar operations
in this case. ‘

Let qi,4], 92,95 be Grassmann variables. If A is a 2x2 matrix show that the
four-dimensional Grassmann integral

Z= /dq, dq; dg; dq;'e""“’ ox det A. (%)
where ¢'Aq = a“q’{ql-+ R Write down, without proof, the corresponding
result for the 2N dimensional Grassmann integral

N N ' '
z = [T]dg.J]da7 ™', (6)
o P
Hence, by completing the square, determine
oo t tq4q!
Z[r]’r"] = jndq,' qu: e~ Art(nlate ﬂ)’ (7)
1 1

where 7 is a Grassmann column vector, and nt is defined accordingly.

What implication does this have for Feynman rules for fermions? (Only a brief
discussion is required.)



Q.A4

A particle of unit mass. coordinate g, moves in one dimension in a potential V'(q).
A canonical ensemble of such particles is held at temperature T in 2 heatbath.

(i). By adopting a basis of energy eigenstates | E,) explain why the ensemble av-
erage O of an observable with operator O can be written as
tr(0p)
trp

0 = (1)

where p = e~3H, 3 = (kgT)~! where kg is Boltzmann's constant, and trA =

~(EaldlEx).
‘How does compléteness allow us to write an equivalent expression in terms of
position eigenstates |q)?

(ii). We work in units in which & = 1. The probability amplitude F(qi,t1: go. to)
that the particle will be at g at time 4, if it was at go at time to can be
represented by the path integral

Flantsanto) = [Dr e (i [ & [e0 - vaw)]) @

with ¢(t) = qu1, g(to) = o Use this expression to show that the partition
function Z = tr(e~?#) for the ensemble can be written as

o=l eonl- Lo () +va]). o

where T = it denotes imaginary time and the integral is restricted to periodic
paths, g(r = 8) = q(r = 0).

(iii). Suppose that g(t) is coupled to a constant source j to give a partition function

e oven(- [ () v sl

Define F(j) by

F(3) = —ksTn Z(j), (3)
whereby §(j), oy
qU) = —-553—1, (6)

is the ensemble average of g in the presence of the source.

( Cat'd ot Faqe)



[f the relation between § and j is invertible. define T'(g) by

[(q) = F(3(9) — q.4(q)- , (7)
Show that
o) _ . 9
2

How do we understand the value of § for which dT'(¢)/9g = 0?

{iv). In fact, this value is § = 0, because of the peculiarities of quantum mechanics
in one spatial dimension. We extend Z{()) above to the partition function of a
real scalar field & at temperature T, Lagrangian density

1, ... 1 4, 1
£ = .—z—af_&od"O — §m2¢2 —_ Z/\O‘. (9)
as
. 3 1/7do\? 1 ‘ 1 1, ¢ ..
_ .o s [Llfdo* 1 2, 2.2 by 4
2= /pmd,-cp" e'\p( f;er [ £ [2 (dr) (Ve hgmiott e +’¢D‘

For constant j we can proceed in a similar way to define a F(é),_now propor-
tional to the spatial volume L3 of the system as T'(¢) = L3V 5(9).

V.s1(&) is expressible to one loop as
LD 1 20, 1 4 1oag a2, (2R a2
Verrlo) = 3m P +Zz\o +5,3 Z/ﬂsk In(k®+m +(~/3—') +3X0°). (11)

Explain briefly why the second term in eq.(11) takes the form it does.

(v). If m? < 0 we find that, when T = 0. dV.1;($)/8é = 0 has solutions with
o # 0. Sketch what happens to Vess(9) as T increases. How do we interpret
this?



Section B

Q. BS

Write an essay on the interpretation of quantum mechanics. You may use the following
questions as an outline.

Describe the Copenhagen Interpretation (CI) of quantum mechanics. What predic-
tions can be made using the CI? Give examples of questions that the Cl cannot be used
to answer. Are these scientific questions? Is the Cl precisely defined?

Describe the “Many \Worlds Interpretation” (MWI). Is it precisely defined? What-
predictions can be made using the MWI? {a what way(s) does it improve upoti the C1? In
what ways is it less successful than the CI?



S osiial

Write down the Schrodinger equation for a particle of unit mass with electric cha
¢ in (a) the vacuum and (b) a static magnetic field B = VA A.

In the double slit experiment with electrons, fringes appear on a screen, S, due
interference between the parts of the wavefunction that pass through the upper and los
of two slits in a previous screen in front of an electron gun. The wavefunction at a pa

Q on the screen S is given by

2(Q) = ¥,(Q) 4+ ¥-(@) = e B8 g(py 4 T Ty )

where p is the momentum of the electrons. \What are C4, C- and P, illustrating y

‘answers on a diagram? Where, on your diagram, would you place a vecy long thin solen

in order to demonstrate the Aharonov-Bohm effect? What is the effect and why is i
surprise? Show that the effect is governed by the magnitude of the magnetic flux thro

the solenoid. .
Show how the saine mathematics can be reproduced by considering a particle mov

in vacuum on the two-dimensional plane with the origin removed.



Q. B7

can form at symmetry-breaking phase transitions. Describe some
condensed-matter systems. How has it been possible to

Explain how topological defects
tion by doing laboratory experiments?

of the types of defects that may form in
test ideas about cosmological defect formula



