Examination Paper

M.Sc. in Quantum Fields and Fundamental Forces

TP.4 Advanced Field Theory

14.00 - 17.00 Monday, June 12,2000

Answer TWO questions from Section A and ONE question from Section B
(Questions from Section A carry 30% each and questions from Section B carry 40%)

Use a separate booklet for each question. Make sure that each booklet carries your
" pumber, the course title, and the number of the question attempted.
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Q.A1

().

().

(iv).

Show that Maxwell’s equations in empty space can be written as
0, F"* =0 (1)

and F** = 0¥AY — 3 A*, where B=VAA,E=—-A - VA"

Further, show that they follow from the free action
S[A)] = / 'z [-%F,,Fﬂ"]. @)

What are the equations of motion in the Lorenz gauge 3,A* = 0. State why
this condition cannot be implemented as an operator equation.

. Explain why, as a path integral, the generating functional for the Green func-

tions of the free electromagnetic field cannot be written simply as

2= [ [[PAveplisiA + [ desut?) 3)

Show how the covariant gauge generating functional
2di = [ [[PAvexisdal+i [ dost) @)
A
is constructed, where ‘
Sl = [ dtal-gFu P - (0.4 (5)

What is the photon propagator in this gauge?

What are the Euler-Lagrange equations of motion §S¢[A,] = 0, when § =17
State briefly how this relates to the canonical Gupta-Bleuler formalism by
which you were first introduced to Quantum electromagnetism.



Q.A2

(i).

(ii).

(iv).

If g is a Grassmann variable. devise a definition of

J= [ aar@ | 1)
so that translation invariance of the 'measure’ is preserved,
7= [ da+ w10 )

for fixed go. Show that "integration’ and ’differentiation’ are similar operations
in this case.

. If q,§,n,7 are Grassmann variables show that

exp(7iq) exp(gn) = exp(ig + dn), | (3)
and that 5
5 exp(7q) = gexp(7q). (4)

Let ¢1,d, g2, Go be Grassmann variables. If A is a 2x2 matrix show that the
four-dimensional Grassmann integral

Z = /dq1 dql dq2 dq: e_qu x det A. (5)

where §Aq = a11G1q1 + ... . Write down, without proof, the corresponding
result for the 2N dimensional Grassmann integral

N N
2= [Tl da]] da e, (6)
1 1

Consider the theory of a single fermion field ¢, interacting with a single scalar
field ¢, with action

S0l = [ 'z (3170, = m = g8+ 50,69 = 3u6) (D)

The generating functional for ¢-field Green functions is

2= [DwDsDs expi(Sth e+ [ a'219) Q
On integrating out the 1, ¢ fields, Z[j] can be written as
zlj) = / D¢ expi(Seysld] + f t'j6). )

What is S./[¢], and give a diagrammatic representation of it. [You may quote
Indet A = trin A for relevant matrices A, without proof.]



(v). Use Sesf[¢] to explain the origin of the Feynman rule for fermioxis,’}that'a, |
. diagram with n fermion loops acquires a factor (—1)" above and beyond that
for a comparable diagram of scalar fields. - R

State any assumption‘sk c‘:learly.'



Q.A3 |

A harmonic oscillator of unit mass moves in one dimension. Its energy eigenvalues

are

(i)-

(ii).

(ii).

E, = hw(n + %), n=0,1,2,... (1)

Consider an ensemble of such oscillators at temperature 7. Using energy
eigenstates evaluate the partition function Z = tr(e=PH) for the ensemble
directly, where 3 = (kgT)~! and kp is Boltzmann’s constant.

Show that the ensemble average of the harmonic oscillator energy can be writ-
ten as

- olnZz
= —— 2
B=-227, 2
and that it has the form
' _ 1 2
B = gho1+ ] ®)

How are the two terms interpreted?

The probability amplitude F(qi,t1; go, to) that the particle will be at ¢, at time
¢, if it was at go at time to can be represented by the path integral

F(q1,t1; 90, t0) = /'Dq exp (% /: dt [%éz(t) - _;_wzqz(t)]) (4)

with q(t;) = q1, q(te) = go. Use this expression to show that the partition
function Z can be written as the path integral

Z= e Dq exp ( - % oﬁh dr [-;. (d(‘zig.r)y + %‘,ﬂq?(r)]) (5)

In (4) 7 = it denotes imaginary time and the integral is restricted to periodic
paths, ¢(7 = Bk) = g(r = 0).
By expanding ¢(7) as

g(r)= ) g€ (6)

n=--00

where w, = 27n/(k, show that

__1 - 220 2 4 2
InZ = -3 Z In[A*h*(w? + w*)] + constant. (7

N= 00



(iv). It happens that the constant is 3 independent (yc}‘)uy do not have to show this).

- Calculate the ensemble average E and show that 1t agrees w1th the result
: denved previously. ,

NOTE: s
/ dg e47/? = \/2A (8)
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Q.A4

(i).

(iii).

For a single scalar field ¢, coupled to a source 4, write down the relationship
between the generating functional for n-field Green functions Z[j}, the gener-
ating functional for connected Green functions W{j], and the effective action

r(g].
What sets of diagrams does

rr

1
55(n). - 89(e) M
represent?
. Derive the relationship between
swW 8T
(2)

5505w ™ Tansa(es)

Define the effective potential V(¢) and give a physical interpretation of it.
Show that

V(¢) = V.(¢) + terms of order £, 3)
where { \ ,
_ 1 2,9 A4
Va(¢) = gm’¢" + 1A (4)
is the classical potential in the Lagrangian density
1
L=3 90" ¢ — V(). (5)
To O(R), V(¢) is given formally (to an additive constant) as
1 L L2 2,1y 2
Va(¢) = Va(@)+ sk [ d'EIn (k +m? 4 A¢ ) (6)
2 Jikica 2 |

where we have imposed a cutoff |k] < A on the Euclidean momenta k to render
the integral finite.

Explain briefly how the renormalisation programme enables us to construct a
finite V(¢) from V,(¢) that satisfies the definition given earlier. You do not
have to construct V(¢) explicitly. -



Q.B1

(i). What is the Casimir Effect. and how is it understood today? In what sense is
it more mysterious now than when first proposed? What implications does this
have for the existence of quantum fields, rather than the existence of quantised
relativistic point particles?

(ii). Briefly describe experiments in which it is observed.

(iii). Calculate its magnitude for the simple case of two parallel conducting sheets,
stating your assumptions. Is the force due to this effect attractive or repulsive?

NOTE: You may quote the result

‘ﬂ'2

/ﬂszlky [ Z \/k}; + k2 4 4r?n?/a?® - /-oo dn \/kg + k2 4 4n?n2/a?| = s

(1)
without proof.



Q.B2

Consider a complex scalar field ®(z) € C, with conjugate momentum I(z) € C,
whose dynamics is controlled by the Hamiltonian :

().

(i).

(ii).

(iv).

H = / &x (I + VO + V(®)), V(@)= mdlof* + Mof*

What are the classical ground states if (a) mg > 0, (b) m3 < 07
Why do you expect A > 0 to be required for useful solutions?

By considering the thermal expectation value of the Hamiltonian (H), derive
the gap equation in the form

m2 + M? +3MED) + Ax*) =0
where
1
V2

In your answer you should note what v s, the reasons why your representations
for the fields are valid in this context, and how you treat (£) and similar
expectation values which do not appear in the gap equation.

®(z) = —= (v +£(z) +ix(2)), Fuv=0.

Solve the gap equation using the high temperature approximation, where all
temperature independent contributions to the expectations values (including
infinite ones) are ignored. You may find the following result useful

& i ‘
/ (le;)zl)_(exp{w/lT} -1) ~ % +0(Tme), w=(k*+ mg)'/?

Find an expression for a critical temperature in terms of mZ and A

Sketch a phase diagram in terms of v/|mo| vs. T/|mo| indicating what the
different phases are.

Comment on the similarities between this model, Landau theory, the Ising
model and the behaviour of magnetisation seen in real magnets. In particular
comment on the behaviour of v near the critical temperature.



'Q.B3

Explain how topological defects can form at a symmetry-breaking phase transition,
using the formation of strings in a U(1)-breaking model as an example. Describe
briefly how ideas about cosmic string formation in the early Universe may be tested
in low-temperature laboratory experiments. Discuss the kind of information that
“has been or can be obtained from such experiments.



