Exam

M.Sc. in Quantum Fields and Fundamental Forces

TP.4 — Advanced Field Theory

2:00 – 5:00, Friday May 11, 2007

Answer THREE out of the five questions

Use a separate booklet for each question. Make sure that each booklet carries your name, the course title, and the number of the question attempted.

You may use the following results without proof:

 \bullet Loop integral in d dimensions (Minkowskian):

$$
I_n(m^2) \equiv \int \frac{d^d p}{(2\pi)^d} \frac{1}{(p^2 - m^2)^n} = (-1)^n \frac{im^{d-2n}}{(4\pi)^{d/2}} \frac{\Gamma(n - d/2)}{\Gamma(n)}
$$

• Gamma functions: $z\Gamma(z) = \Gamma(z+1)$ and

$$
\Gamma\left(-m+\frac{\epsilon}{2}\right) = \frac{(-1)^m}{m!} \left(\frac{2}{\epsilon} + \sum_{p=1}^m \frac{1}{p} - \gamma + O(\epsilon)\right) \quad \text{for integer} \quad m \ge 0
$$

• Feynman parameters:

$$
\frac{1}{ab} = \int_0^1 \frac{dx}{[xa + (1-x)b]^2}
$$

• Dirac matrices:

$$
\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}, \quad \text{tr}\gamma^{\mu}\gamma^{\nu} = 4g^{\mu\nu}, \gamma^{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}\gamma^{4}.
$$

Question (1)

The Lagrangian of the pseudoscalar Yukawa theory is

of the pseudoscalar Yukawa theory is
\n
$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m_{\phi}^{2} \phi^{2} - \frac{1}{4!} \lambda \phi^{4} + \bar{\psi} (i \partial \phi - m) \psi - i g \bar{\psi} \gamma^{5} \psi \phi,
$$
\n(1.1)
\nseudo)scalar field and ψ is a fermion field.
\ntion theory, the superficially divergent correlation functions are
\n
$$
\begin{aligned}\n&\text{-}\text{-}\textcircled{2}\text{-}\text{-} &\text{if } \frac{i}{16\pi^{2}} \left(\lambda m_{\phi}^{2} + 2g^{2} p^{2} \right) \frac{2}{\pi} + \text{finite terms.}\n\end{aligned}
$$

where ϕ is a real (pseudo)scalar field and ψ is a fermion field.

In bare perturbation theory, the superficially divergent correlation functions are

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m_{\phi}^{2} \phi^{2} - \frac{1}{4!} \lambda \phi^{4} + \bar{\psi} (i \partial - m) \psi - i g \bar{\psi} \gamma^{5} \psi \phi
$$

eudo)scalar field and ψ is a fermion field.
tion theory, the superficially divergent correlation function.

$$
\begin{aligned}\n&\text{-}\text{-}\textcircled{2}\text{-}\text{-}\text{} &= \frac{i}{16\pi^{2}} \left(\lambda m_{\phi}^{2} + 2g^{2} p^{2} \right) \frac{2}{\epsilon} + \text{finite terms.} \\
&= \frac{i}{16\pi^{2}} \frac{g \phi}{2} \frac{2}{\epsilon} + \text{finite terms.} \\
&= \frac{i}{16\pi^{2}} \left(\frac{3}{2} \lambda^{2} - 24g^{4} \right) \frac{2}{\epsilon} + \text{finite terms.} \\
&= -\frac{g^{3}}{16\pi^{2}} \gamma^{5} \frac{2}{\epsilon} + \text{finite terms.}\n\end{aligned}
$$

(a) Let us define the renormalised fields by $\phi = Z_{\phi}^{1/2} \phi_R$ and $\psi = Z_{\psi}^{1/2} \psi_R$, and renormalised couplings by

$$
Z_{\phi}^{2}\lambda = \lambda_{R} + \delta\lambda,
$$

\n
$$
Z_{\phi}^{1/2}Z_{\psi}g_{B} = g_{R} + \delta g,
$$

\n
$$
Z_{\phi}m_{\phi}^{2} = m_{\phi R}^{2} + \delta m_{\phi}^{2},
$$

\n
$$
Z_{\psi}m = m_{R} + \delta m.
$$

Let us further write $Z_{\phi} = 1 + \delta Z_{\phi}$ and $Z_{\psi} = 1 + \delta Z_{\psi}$. Write down the Lagrangian in terms of the renormalised fields and parameters. [3 marks]

- (b) Identify the terms that are treated as interactions in renormalised perturbation theory. [2 marks]
- (c) What is the contribution from the counterterms to each of the correlation functions in part (a)? [3 marks]
- (d) What are the values of the counterterms in the $\overline{\text{MS}}$ scheme?
- (e) Show that the beta functions of the theory are

$$
\beta_g \equiv M \left. \frac{\partial g_R}{\partial M} \right|_B = \frac{5g^3}{16\pi^2},
$$

$$
\beta_\lambda \equiv M \left. \frac{\partial \lambda_R}{\partial M} \right|_B = \frac{1}{16\pi^2} \left(3\lambda^2 + 8\lambda g^2 - 48g^4 \right).
$$

[6 marks] [TOTAL 20 marks]

[6 marks]

Question (2)

The gauge-fixed Lagrangian of the Yang-Mills theory is

$$
\mathcal{L} = -\frac{1}{4} (\partial_{\mu} A_{\nu}^{a} - \partial_{\nu} A_{\mu}^{a}) (\partial^{\mu} A^{a\nu} - \partial^{\nu} A^{a\mu})
$$

$$
+ \frac{g}{2} f^{abc} (\partial_{\mu} A_{\nu}^{a} - \partial_{\nu} A_{\mu}^{a}) A^{b\mu} A^{c\nu} - \frac{g^{2}}{4} f^{abc} f^{ade} A_{\mu}^{b} A_{\nu}^{c} A^{d\mu} A^{e\nu}
$$

$$
- \frac{1}{2\xi} (\partial^{\mu} A_{\mu}^{a})^{2} + \partial^{\mu} c^{a*} (\partial_{\mu} c^{a} - g f^{abc} A_{\mu}^{b} c^{c}). \tag{2.1}
$$

(a) Why are the terms on the last row of Eq. (2.1) needed? How do observable quantities depend on the value of ξ ?

[2 marks]

- (b) Explain in words how the ghost field arises in the gauge fixing procedure. What are its main properties? [3 marks]
- (c) Derive the Feynman rule for the ghost-gluon vertex

[3 marks]

(d) Using the propagators

where $\mathcal C$

A^a µ (k) Ab ν (−k) ↔ −iδab k 2 g µν − (1 − ξ) k µk ν k 2 , c b∗ (k)c a (k) ↔ iδab k 2 ,

show that the one-loop contribution to the ghost two-point function in dimensional regularisation is

$$
g^{2}C_{2}(G)\delta^{ab}\mu^{\epsilon}\int \frac{d^{d}p}{(2\pi)^{d}}\frac{1}{(k+p)^{2}p^{2}}\left[k^{2}+k\cdot p-(1-\xi)\left(\frac{(k\cdot p)^{2}}{p^{2}}-k\cdot p\right)\right],
$$

$$
C_{2}(G) = f^{acd}f^{bcd}.
$$

[5 marks]

(e) Calculate the divergent part of this integral in the Feynman gauge $(\xi = 1)$.

[6 marks]

(f) What kind of a counterterm will you need to deal with the divergence?

[1 marks]

Question (3)

Consider the d-dimensional (Minkowskian) integral

$$
I^{\mu}(k,m) = \int \frac{d^d p}{(2\pi)^d} \frac{p^{\mu}}{p^2((p+k)^2 - m^2)}.
$$
\n(3.1)

(a) Explain why the integral is parallel to k^{μ} , i.e.,

$$
I^{\mu}(k,m) = A(k,m)k^{\mu},
$$

where $A(k, m)$ is a scalar function.

[2 marks]

(b) Show that

$$
I^{\mu}(k,m) = \frac{1}{2} \left(\frac{m^2 - k^2}{k^2} I_2(k; 0, m) - \frac{1}{k^2} I_1(m) \right) k^{\mu}, \tag{3.2}
$$

where

$$
I_1(m) = \int \frac{d^d p}{(2\pi)^d} \frac{1}{p^2 - m^2}.
$$

$$
I_2(k; m_1, m_2) = \int \frac{d^d p}{(2\pi)^d} \frac{1}{(p^2 - m_1^2)((p + k)^2 - m_2^2)}.
$$

[6 marks]

(c) Show that in the limit $k \to 0$, the integral is

$$
I^{\mu}(k,m) = -\frac{i}{(4\pi)^{d/2}} \frac{2}{d} \Gamma\left(2 - \frac{d}{2}\right) m^{d-4} k^{\mu} + O(k^3).
$$

[12 marks]

Question (4)

Consider a real scalar field theory with the Lagrangian

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \frac{1}{3!} g \phi^3.
$$

(a) Write down the propagator and the Feynman rule for the interaction vertex.

[2 marks]

(b) What are the dimensionalities of ϕ , m and g in d dimensions?

[3 marks]

(c) If a diagram has E external legs and V vertices, how many internal lines does it have? How many loops does it have?

[2 marks]

(d) In four dimensions, is the theory non-renormalisable, renormalisable or superrenormalisable? [1 marks]

(e) Draw all superficially divergent one-particle irreducible (1PI) Feynman diagrams that have at least one external leg.

[4 marks]

(f) For each diagram in part (e), write down the integral it corresponds to including all the prefactors

[6 marks]

(g) In renormalised perturbation theory, will you have to introduce a quartic (counter)term ϕ^4 ? Will you need a ϕ^4 term in Wilsonian renormalisation?

[2 marks]

Question (5)

Let us consider a simplified version of the Standard Model of particle physics, which consists of the SU(3) gauge field, the top quark and the Higgs. The model has three coupling constants: the gauge coupling g_s , the Higgs self-coupling λ and the Yukawa coupling g_t . The couplings run as a function of the renormalisation scale M (when $M \geq m_t$) as

$$
\frac{dg_s^2}{d\ln M} = -\frac{14}{16\pi^2}g_s^4,\tag{5.1}
$$

$$
\frac{dg_t^2}{d\ln M} = \frac{g_t^2}{16\pi^2} \left(9g_t^2 - 16g_s^2 \right),\tag{5.2}
$$

$$
\frac{d\lambda}{d\ln M} = \frac{1}{16\pi^2} \left(24\lambda^2 + 12g_t^2 \lambda - 6g_t^4 \right). \tag{5.3}
$$

The mass of top quark is

$$
m_t = \frac{g_t(v)v}{\sqrt{2}},
$$

and the mass of the Higgs is

$$
m_H = \sqrt{2\lambda(v)}v,
$$

where $v \approx 246$ GeV is the Higgs expectation value, and the couplings are calculated at $M = v$. The top mass has been measured to be $m_t \approx 171 \text{ GeV}$. The Higgs mass has a lower bound $m_H \gtrsim 115 \text{ GeV}$. The gauge coupling is $g_s(v) \approx 1.2$.

(a) Consider first each of the three couplings on its own, setting the two others zero. State whether each of the couplings is relevant, marginally relevant, marginally irrelevant or irrelevant.

[3 marks]

(b) Still considering each of the couplings on its own, solve the renormalisation group equations to find $g_s^2(M)$, $g_t^2(M)$ and $\lambda(M)$. Based on this calculation, what is the maximum energy at which the theory could be valid?

[4 marks]

(c) Consider now the coupled equations (5.1) and (5.2). Use an ansatz $g_t^2 = \rho g_s^2$ with constant ρ to find an exact solution. Sketch the renormalisation group flow on the (g_s^2, g_t^2) plane. If we could ignore the Higgs coupling λ , would the theory have a continuum limit? Does the existence of the continuum limit depend on the couplings g_t^2 and g_s^2 , and if so, how? Is this compatible with the measured values?

[7 marks]

(d) Consider now all three coupled equations (5.1), (5.2) and (5.3). Assuming the relationship you found in part (c), find a solution with $\lambda = \sigma g_s^2$ and $g_t^2 = \rho g_s^2$ with constant σ and ρ . If the couplings satisfied these relation, would the theory have a continuum limit? Given the measured values of g_s and v, what would the predicted top and Higgs masses be?

[6 marks]