

Exam

M.Sc. in Quantum Fields and Fundamental Forces

TP.4 — Advanced Field Theory

2:00 – 5:00, Friday May 9, 2008

Answer **THREE** out of the four questions

Use a separate booklet for each question. Make sure that each booklet carries your name, the course title, and the number of the question attempted.

You may use the following results without proof:

- Loop integral in d dimensions (Minkowskian):

$$I_n(m^2) \equiv \int \frac{d^d p}{(2\pi)^d} \frac{1}{(p^2 - m^2)^n} = (-1)^n \frac{im^{d-2n}}{(4\pi)^{d/2}} \frac{\Gamma(n-d/2)}{\Gamma(n)}$$

- Gamma functions: $z\Gamma(z) = \Gamma(z+1)$ and

$$\Gamma\left(-m + \frac{\epsilon}{2}\right) = \frac{(-1)^m}{m!} \left(\frac{2}{\epsilon} + \sum_{p=1}^m \frac{1}{p} - \gamma + O(\epsilon) \right) \quad \text{for integer } m \geq 0$$

- Feynman parameters:

$$\frac{1}{ab} = \int_0^1 \frac{dx}{[xa + (1-x)b]^2}$$

- Gaussian two-point function

$$\frac{\int d^N q q_i q_j e^{-\frac{1}{2} q^T M q}}{\int d^N q e^{-\frac{1}{2} q^T M q}} = (M^{-1})_{ij}.$$

- Gaussian Grassmann integral

$$\int \left(\prod_i d\theta_i^* d\theta_i \right) \exp(-\theta_i^* B_{ij} \theta_j) = \det \mathbf{B}.$$

Question (1)

Consider a simple harmonic oscillator with action

$$S = \int_{-\infty}^{\infty} dt \left(\frac{1}{2} m \dot{x}^2 - \frac{1}{2} m \omega_0^2 x^2 \right).$$

The amplitude for the oscillator to move from point x_a at time t_a to point x_b at time t_b is given by the path integral

$$U(x_a, x_b; t_b - t_a) \equiv \langle x_b; t_b | x_a; t_a \rangle = \int_{x(t_a)=x_a}^{x(t_b)=x_b} \mathcal{D}x(t) e^{iS},$$

where $|x; t\rangle = \exp(i\hat{H}t)|x\rangle$ is an eigenstate of the coordinate operator $\hat{x}(t)$ with eigenvalue x . Furthermore, we have for a time-ordered operator

$$\langle x_b; t_b | \hat{\mathcal{O}} | x_a; t_a \rangle = \int_{x(t_a)=x_a}^{x(t_b)=x_b} \mathcal{D}x(t) \mathcal{O}[x(t)] e^{iS}.$$

(a) Show that you can write the ground state $|0\rangle$ as

$$|0\rangle \propto \lim_{T \rightarrow \infty} |x_a; -T\rangle,$$

with an appropriate rotation of the time coordinate on the complex plane.

[4 marks]

(b) Show that the expectation value of any operator \mathcal{O} in the ground state can be expressed in terms of path integrals as

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}x \mathcal{O}[x(t)] e^{iS}}{\int \mathcal{D}x e^{iS}}.$$

What are the boundary conditions in these integrals?

[5 marks]

(c) Calculate the two-point function $\langle x(\omega)x(\omega') \rangle$ of the Fourier transformed coordinate variable

$$x(\omega) = \int_{-\infty}^{\infty} dt e^{i\omega t} x(t).$$

[6 marks]

(d) Take the Fourier transform of your result to show that you obtain the standard result for zero-point fluctuations

$$\langle x(t)^2 \rangle = \frac{1}{2m\omega_0}.$$

Pay particular attention to the poles of the integrand and the integration path on the complex plane.

[5 marks]

[TOTAL 20 marks]

Question (2)

Consider the d -dimensional (Minkowskian) integral

$$I^\mu(k^\nu, m) = \int \frac{d^d p}{(2\pi)^d} \frac{p^\mu}{p^2(p+k)^2}.$$

(a) Explain why the integral is parallel to k^μ , i.e.,

$$I^\mu(k^\nu, m) = A(k^2, m)k^\mu,$$

where $A(k^2, m)$ is a scalar function.

[2 marks]

(b) Show that

$$I^\mu(k^\mu, m) = -\frac{k^\mu}{2} \int \frac{d^d p}{(2\pi)^d} \frac{1}{p^2(p+k)^2}.$$

[6 marks]

(b) Show that

$$I^\mu(k^\nu, m) = -\frac{k^\mu}{2} \int_0^1 dx \int \frac{d^d p}{(2\pi)^d} \frac{1}{[p^2 + x(1-x)k^2]^2}.$$

[5 marks]

(d) Show that for $d = 4 - \epsilon$ and $\epsilon \ll 1$, this becomes

$$I^\mu(k^\nu, m) = -\frac{k^\mu}{2} \frac{i}{16\pi^2} \left(\frac{2}{\epsilon} + \log \frac{4\pi}{-k^2} - \gamma - 2 \right) + O(\epsilon).$$

You can assume that $k^2 < 0$ and use the result

$$\int_0^1 dx \log x(1-x) = -2.$$

[7 marks]

[TOTAL 20 marks]

Question (3)

The bare Lagrangian of Quantum Electrodynamics is

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2\xi}(\partial_\mu A^\mu)^2 + \bar{\psi}(i\partial^\mu - m)\psi - e\bar{\psi}\gamma^\mu\psi A_\mu,$$

where the symbols have their usual meanings. In particular, ψ is the electron field, A_μ is the U(1) gauge field and $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$.

In *bare* perturbation theory, the superficially divergent one-particle irreducible correlation functions are

$$\mu \sim \text{---} \circlearrowleft \sim \nu = -\frac{ie^2}{12\pi^2}(k^2 g^{\mu\nu} - k^\mu k^\nu) \left(\frac{2}{\epsilon} + \log \frac{4\pi\mu^2}{m^2} - \gamma \right) + O(k^4).$$

$$\alpha \rightarrow \text{---} \circlearrowleft \rightarrow \beta = \frac{ie^2}{16\pi^2}(\xi k + (3 + \xi)m)_{\beta\alpha} \left(\frac{2}{\epsilon} + \log \frac{4\pi\mu^2}{m^2} - \gamma \right) + O(k^2).$$

$$\begin{array}{c} \mu \\ q \\ \text{---} \circlearrowleft \text{---} \\ \alpha \quad k + q \quad \beta \\ \beta \end{array} = -ie\gamma_{\alpha\beta}^\mu - \frac{ie^3\xi}{16\pi^2}\gamma_{\alpha\beta}^\mu \left(\frac{2}{\epsilon} + \log \frac{4\pi\mu^2}{m^2} - \gamma \right) + O(q). \quad (3.1)$$

(a) Let us define the renormalised fields by $\psi = Z_\psi^{1/2}\psi_R$ and $A^\mu = Z_A^{1/2}A_R^\mu$, and renormalised parameters e_R , m_R and ξ_R by

$$\begin{aligned} Z_A^{1/2}Z_\psi e &= e_R + \delta e, \\ Z_\psi m &= m_R + \delta m, \\ Z_A/\xi &= Z_\xi/\xi_R. \end{aligned}$$

Let us further write $Z_A = 1 + \delta Z_A$, $Z_\psi = 1 + \delta Z_\psi$ and $Z_\xi = 1 + \delta Z_\xi$. Write down the Lagrangian in terms of the renormalised fields and parameters.

[3 marks]

(b) Identify the terms that are treated as interactions in *renormalised* perturbation theory.
[3 marks]

(c) The Feynman rules for the counterterm vertices are

$$\mu \sim \text{---} \circlearrowleft \sim \nu \leftrightarrow -\frac{i}{2} \left[\delta Z_A (k^2 g^{\mu\nu} - k^\mu k^\nu) - \frac{\delta Z_\xi}{\xi_R} k^\mu k^\nu \right]$$

$$\alpha \rightarrow \text{---} \circlearrowleft \rightarrow \beta \leftrightarrow i(\delta Z_\psi k - \delta m)_{\beta\alpha}$$

$$\begin{array}{c} \mu \\ \text{---} \circlearrowleft \text{---} \\ \alpha \quad \beta \\ \beta \end{array} \leftrightarrow -i\delta e\gamma_{\alpha\beta}^\mu$$

What are the values of the counterterms in the $\overline{\text{MS}}$ scheme?

[7 marks]

CONTINUES ON PAGE 6

(d) Write down the correlation functions (3.1) in renormalised perturbation theory as functions of renormalised parameters.

[4 marks]

(e) Show that to the leading order, the beta function of the theory is

$$\beta(e) \equiv M \left. \frac{\partial e_R}{\partial M} \right|_B = \frac{e^3}{12\pi^2}.$$

[3 marks]

[TOTAL 20 marks]

Question (4)

The Lagrangian of the $SU(N)$ Yang-Mills field coupled to a complex scalar (Higgs) field in the fundamental representation is

$$\begin{aligned}\mathcal{L} = & -\frac{1}{4}(\partial_\mu A_\nu^a - \partial_\nu A_\mu^a)(\partial^\mu A^{a\nu} - \partial^\nu A^{a\mu}) \\ & + \frac{g}{2}f^{abc}(\partial_\mu A_\nu^a - \partial_\nu A_\mu^a)A^{b\mu}A^{c\nu} - \frac{g^2}{4}f^{abc}f^{ade}A_\mu^b A_\nu^c A^{d\mu}A^{e\nu} \\ & + \partial_\mu \phi_i^* \partial^\mu \phi_i + ig t_{ij}^a A_\mu^a [(\partial^\mu \phi_i^*) \phi_j - \phi_i^* (\partial^\mu \phi_j)] + g^2 t_{ij}^a t_{jk}^b g^{\mu\nu} \phi_i^* A_\mu^a A_\nu^b \phi_j,\end{aligned}$$

where g is the gauge coupling constant, f^{abc} are the structure constants and t_{ij}^a are the group generators. The colour indices are $i, j \in \{1, \dots, N\}$ and $a, b, c, d, e \in \{1, \dots, N^2 - 1\}$.

- (a) Find the dimensionalities of the fields ϕ_i and A_μ^a and the coupling g in d spacetime dimensions. [3 marks]
- (b) Draw all the interaction vertices, and indicate the terms in the Lagrangian they correspond to. (You don't need to write down the corresponding Feynman rules.) [4 marks]
- (c) Explain what is meant by gauge fixing and show that it is necessary for deriving the gauge field propagator. [5 marks]
- (d) Besides the gauge fixing term $\mathcal{L}_{gf} = -(\partial^\mu A_\mu^a)^2 / 2\xi$, gauge fixing also introduces an extra factor

$$\det [i\partial^\mu (\delta^{ab} \partial_\mu + g f^{abc} A_\mu^c)]$$

in the path integral. Show how this determinant can be represented by a ghost field c . Write down the new terms that appear in the Lagrangian, and draw the corresponding new vertex/vertices.

- [3 marks]
- (e) Draw all the one-particle irreducible one-loop diagrams that contribute to the gluon three-point functions $\langle A_\mu^a A_\nu^b A_\rho^c \rangle$. [5 marks]

[TOTAL 20 marks]