
Black Holes – Problem Sheet 3

1. Show that changing coordinates from the Schwarzschild coordinates (t, r, θ, φ) to the

Kruskal coordinates (U, V, θ, φ) the Schwarzschild metric in region I (i.e. for r > 2M)

takes the form

ds2 = −32M3

r
e−r/2MdUdV + r2dΩ

with r = r(U, V ). Also show that in region I the Killing vector k = ∂t takes the form in

the Kruskal coordinates:

k =
1

4M
(V ∂V − U∂U )

Calculate the norm squared of k in the Kruskal coordinates and check that it agrees with

the calculation in Schwarzschild coordinates.

2. Consider a radially infalling spaceship, following a geodesic, in the Schwarzschild space-

time. Show that light emitted by the spaceship and seen by a distant observer at r =∞ is

redshifted and the redshift increases exponentially fast (in proper time of the observer) so

that signals from the particle essentially disappear in time of order 4M . Hint: Draw the

Penrose diagram. Draw the trajectory of the spaceship falling into the black hole and the

observer. When the spaceship is at radius R close to 2M it sends two photons separated

by proper time ∆τ . Draw the trajectories of the photons. Calculate the separation in EF

coordinates ∆u of the two pulses. How is this related to the frequency of light seen by

the observer?

3. A round, unit radius sphere, SN−1, is parametrised by coordinates µI , I = 1, . . . , N with

µIµI = 1 and has metric ds2 = dµIdµI ≡ dΩN−1. Show that we can parametrise the unit

round sphere SN via X0 = cos θ and XI = sin θµI . What is the range of the coordinate

θ? Show that

dΩN = dθ2 + sin2 θdΩN−1 (1)

(We used this result in discussing the conformal compactification of Minkoswki spacetime.)

4. Consider the derivation of the conformal compactification of Minkowski spacetime in four

spacetime dimensions. Show that i0, i± are all points and that I ± are topologically

R× S2.

5. Consider the spacetime associated with the spherically symmetric collapse of a star to

form a black hole. As an observer crosses the event horizon can they still see the star?

Can they still see their feet? If their friend crosses the event horizon later can they meet?

Use a Penrose diagram to support your answers.

6. We have ∂µg = ggρσ∂µgρσ, true for any invertible matrix (a mnemonic is “det= exp-trace-

log”). Show that (−g)−1/2∂µ(−g)1/2 = Γρρµ. Hence show that for a vector V µ, a scalar

(function) φ and a two-form Fµν we have the useful results
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(i) ∇µV µ = 1√
−g∂µ (

√
−gV µ)

(ii) ∇2φ = 1√
−g∂µ (

√
−ggµν∂νφ)

(iii) ∇µFµν = 1√
−g∂µ (

√
−gFµν)

(iv) Use the last result to show that Maxwells equations are solved for the Reissner-

Nordström black hole solution.

(v) If Sµν = S(µν) show ∇µSµν = 1√
−g∂µ (

√
−gSµν)− 1

2∂ν(gλµ)Sλµ

7. Consider the Schwarzschild metric in ingoing Eddington-Finklestein coordinates (v, r, θ, φ).

Introduce new coordinates (t̃, r, θ, φ) with t̃ = v − r. Having expressed the metric in

these coordinates, make one more change of coordinates from spatial polar coordinates

to standard spatial cartesian coordinates: x + iy = r sin θeiφ, z = r cos θ. Show that the

components of the metric are then given in the coordinates (t̃, x, y, z)

gµν = ηµν + fkµkν (2)

where ηµν is the Minkowski metric, f = 2M/r and kµ = (1, x/r, y/r, z/r). Show that with

respect to either g or η that kµ is a null vector and is tangent to affinely parametrised

geodesics: kρ∇ρkµ = 0. With a bit more effort one can show that the Kerr metric can

also be put into this so-called “Kerr-Schild” form.

8. Consider a p-form, A, and a q-form, B. Let d be the exterior derivative. Show

(i) A ∧B = (−1)pqB ∧A

(ii) ddA = 0

(iii) d(A ∧B) = (dA) ∧B + (−1)pA ∧ dB
If we also have a metric we have the Hodge star operator ∗. Show that

(iv) ∗(∗A) = ±(−1)p(n−p)A

(v) (∗d ∗A)µ1...µp−1 = ±(−1)p(n−p)∇νAµ1...µp−1nu

9. Consider Einstein Maxwell theory with Lagrangian L =
√
−g(R − FµνFµν). Derive the

Einstein equations Rµν − 1
2Rgµν − 2(FµσFν

σ − 1
4gµνF

2) = 0.

(i) Show δgµρ = −gµνgρσδgνσ

(ii) Show δΓµνρ = 1
2g
µσ(δgσν;ρ + δgσρ;ν − δgνρ;σ) (which is a tensor).

(iii) Show δR = Rµνδg
µν +∇µVµ, where Vµ = ∇νδgνµ − gνσ∇µδgνσ.

(iv) Show δ
√
−g = −1

2δ
√
−ggµνδgµν .

(v) Hence show δL =
√
−g[Rµν − 1

2Rgµν − 2(FµσFν
σ − 1

4gµνF
2)]δgµν +

√
−g∇µVµ. The

last term does not contribute after integrating, and hence varying the action with

respect to gµν gives the Einstein equations above.
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