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Conventions:

We use conventions as in lectures. In particular we take (−,+,+,+) signature and choose

units so that h̄ = 1 and c = 1.

You may find the following useful:

The Christoffel symbol is defined as,

Γµ αβ ≡
1

2
gµν (∂αgνβ + ∂βgαν − ∂νgαβ) .

The covariant derivative of a vector field is,

∇µv ν ≡ ∂µv ν + Γν µαv
α .

For the flat FRW metric ds2 = −dt2 + a2(t)δi jdx
idx j , the non-zero Christoffel compo-

nents are,

Γt i j = aȧ δi j , Γi tj = Γi jt =
ȧ

a
δi j

and the Friedmann equation is H2 = 8πG
3
ρ.
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1. (i) Write the stress tensor for a perfect fluid in a general spacetime in terms of

energy density ρ, pressure P and local 4-velocity uµ. Write the components of

the stress tensor for a homogeneous isotropic fluid in a flat FRW spacetime.

Explicitly derive the fluid equation of motion,

ρ̇+ 3H (ρ+ P ) = 0

by computing the components of the stress tensor conservation equation.

[5 marks]

(ii) Consider a homogeneous isotropic fluid in flat FRW spacetime with equation

of state P = wρ for constant w . Solve the Friedmann and fluid equations to

find the scale factor a(t) as a function of time t. Derive the values of w for

which this cosmology is accelerating.

[4 marks]

(iii) Compute the observer particle (Hubble) horizon size, dH, for this solution.

What is the condition on w so that the particle horizon is finite?

[4 marks]

(iv) Consider a flat FRW universe filled with N homogeneous isotropic fluid compo-

nents, which do not interact with each other, with densities ρi and equation of

state parameters wi with i = 1, . . . , N. At a time t = t0 a comoving observer

sees a comoving source at a redshift Z. Define the luminosity distance, dL,

of the source as seen by the observer. Show that this can be written as the

integral,

dL =
(1 + Z)

H(t0)

∫ 1
1

(1+Z)

dx

x2
√∑N

i=1Ωix−3(1+wi )

where as usual Ωi = ρi/ρcr itical at the time t = t0.

[7 marks]

[Total 20 marks]
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2. (i) Consider a homogeneous isotropic ideal gas. Recall that,

ρ =
∫ ∞
0
dp 4πp2n(p)E , P =

∫ ∞
0
dp 4πp2n(p)

p2

3E
.

State the density distribution function n(p) for a Bose or Fermi gas made up

of particles with mass m, chemical potential µ, and g degrees of freedom.

[4 marks]

(ii) Show that in the highly relativistic limit (where we may ignore mass and chem-

ical potential) the energy density for a boson and fermion are,

ρboson =
1

2
gaBT

4 , ρf ermion =
7

16
gaBT

4

with the pressure in both cases given by P = ρ/3, where aB = π2k4/15 is the

radiation constant (in units c = h̄ = 1). You may use the integral,

∫ ∞
0
dx

x3

ex ± 1
=

15∓ 1

240
π4 .

[5 marks]

(iii) Use the first law of thermodynamics to derive that the entropy density s for a

highly relativistic species with no chemical potential is,

s =
4ρ

3T
.

[3 marks]

(iv) Explain why the temperatures of the cosmic photon background Tγ and neu-

trino background Tν are related as

Tγ
Tν
'
(

11

4

) 1
3

.

In particular you should derive the numerical factor in the above expression.

(You may assume that when a relativistic species decouples it maintains a

Bose/Fermi distribution with effective temperature Tef f ∝ 1/a).

[8 marks]

[Total 20 marks]
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3. (i) Consider a space-time with metric ds2 = g̃µνdx̃
µdx̃ν = −dt2+ gi j(t, x)dx idx j

with x̃µ = (t, x i). Write down the Liouville equation for the phase space

distribution function of free particles n(t, x i , pj). Show that for free particles

following trajectories x i(t) with 4-momenta pµ = (p0, pi) then,

dx i

dt
=
pi

p0
.

[3 marks]

(ii) Use the fact that certain Christoffel components for this space-time are,

Γ̃i tt = 0 , Γ̃i tk =
1

2
g i j∂tgjk , Γ̃i kl = Γi kl

where Γi kl are Christoffel components for the spatial metric gi j , to show that

for free particles,

dpi
dt

=
1

2

1

p0
pjpk∂igjk .

[7 marks]

(iii) Show that for a homogeneous isotropic gas in a flat FRW space-time, so

gi j = a2(t)δi j , the Boltzmann equation is, ∂

∂t

∣∣∣∣∣
p

−Hp
∂

∂p

∣∣∣∣∣
t

 n(t, p) = C

where p =
√
g i jpipj and C is the collision term representing particle interactions.

[4 marks]

(iv) Recall the particle number density for flat FRW is N(t) =
∫∞
0 dp 4πp2n(t, p).

Show that N(t) obeys,

1

a3
d (a3N)

dt
=

∫ ∞
0
dp 4πp2C

[3 marks]

(v) Consider photons which are kept in thermal equilibrium in the early universe by

interactions with matter. Show that if these interactions quickly turn off as the

universe expands and cools, the free streaming photons still maintain a Bose

distribution but with an effective temperature that redshifts as Tef f ∝ 1/a.

[3 marks]

[Total 20 marks]
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4. (i) Consider a real scalar field φ with potential V (φ) and governed by the equation

of motion ∇2φ = V ′(φ). For the homogeneous isotropic flat FRW solution the

scalar field and Friedmann equations are,

φ̈+ 3Hφ̇+ V ′(φ) = 0 , H2 =
8πG

3

(
1

2
φ̇2 + V

)
.

Consider φ to be the inflaton. Recall the slow-roll condition is φ̇2 � V (φ).

Show by differentiating w.r.t. time that this implies |φ̈| � |V ′(φ)|. State the

scalar and Friedmann equations in the slow roll approximation, and derive the

condition on the potential,

|V ′| �
√
GV .

[3 marks]

(ii) We now consider the inflaton scalar to be inhomogeneous but keep the metric

as flat FRW. By writing φ(t, x) = φcl(t) + δφ(t, x) so that φcl(t) is the

homogeneous slow roll solution, and |δφ| � 1 is a small inhomogeneity, show

that to linear order in δφ,

δφ̈+ 3Hδφ̇−
1

a2
δi j∂i∂jδφ+ V ′′(φcl)δφ = 0 .

[6 marks]

(iii) We may write a solution δφ(t, x) = δφkj (t)e
ikix

i
in terms of a constant co-

moving wavenumber ki . What equation must δφki (t) obey? Show that for

sufficiently early times during inflation, we may write an approximate solution

for a given ki in WKB form as,

δφki (t) ' cki f (t)e−ik
∫

dt
a(t)

with k =
√
δi jkikj and cki a constant, where you should deduce the leading

order behaviour of f (t).

[5 marks]

(iv) Write down a quantised inflaton field operator φ̂(t, x) in terms of creation

and annihilation operators a†ki and aki that obey standard commutation rela-

tions, and the solutions δφ(t, x) = δφki (t)e
ikix

i
. The conjugate momentum

for the inflaton in flat FRW is π(t, x) = a3(t)φ̇(t, x). Determine the con-

stants of integration cki that appear in the early time approximate solutions

for the δφki (t) above in order to obtain the conventional quantisation (the

Bunch-Davies vacuum) for the inflaton. You may find it useful to recall that∫
d3kje

ikix
i

= (2π)3δ3(xk).

[6 marks]

[Total 20 marks]
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