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Conventions:

We use conventions as in lectures. In particular we take (−,+,+,+) signature and choose

units so that h̄ = 1 and c = 1.

You may find the following useful:

The Christoffel symbol is defined as,

Γµ αβ ≡
1

2
gµν (∂αgνβ + ∂βgαν − ∂νgαβ) .

The covariant derivative of a vector field is,

∇µv ν ≡ ∂µv ν + Γν µαv
α .

For the flat FRW metric ds2 = −dt2 + a2(t)δi jdx
idx j , the non-zero Christoffel compo-

nents are,

Γt i j = aȧ δi j , Γi tj =
ȧ

a
δi j

and the Friedmann equation is,

H2 =
8πG

3
ρ

with stress energy conservation yielding,

ρ̇+ 3H (ρ+ P ) = 0 .
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1. (i) Consider a homogeneous isotropic ideal gas of particles in Minkowski spacetime.

Starting from the thermal Bose/Fermi distributions in phase space, derive the

non-relativistic limit of the real space number density to show,

n = g

(
mkT

2π

) 3
2

e
µ−m
kT

for T,m, µ, g the temperature, particle mass, chemical potential and internal

degrees of freedom. You may use
∫∞
0 dx x2e−x

2
=
√
π/4.

[5 marks]

(ii) Consider nucleosynthesis and the weak processes n+ ē → p+ ν̄, n+ν → p+e,

n → p+ e + ν̄ that convert neutrons to protons, both of which can be treated

as non-relativistic. Derive the equilibrium Saha equation and solve it for the

neutron fraction.

[5 marks]

(iii) Use a dimensional argument to estimate Γ, the scattering rate per neutron, for

the two body processes n + ē → p + ν̄ and n + ν → p + e in terms of the

Fermi constant GW ' 10−5/(GeV )2 and temperature. Give an approximate

expression for the freeze out temperature for these processes, Tf reeze, as a

function of the effective number of relativistic degrees of freedom gef f driving

the expansion at the time of freeze out. (Recall for radiation ρ = 1
2
gef f aRT

4

where aR = π2k4/15.)

[3 marks]

(iv) In the approximation that these two body weak processes turn off instanta-

neously, explain how today’s number density of Hydrogen, nH,0, and Helium,

nHe,0, in primordial gas clouds relate to the neutron fraction at Tf reeze, and

nB,0, the baryon number density today.

Briefly explain why we can ignore the one body decay n → p + e + ν̄.

[4 marks]

(v) Consider cosmology with N additional massless left-handed neutrinos. Assume

the only change to nucleosynthesis is in Tf reeze due to the dependence on gef f
you calculated above, and approximate,

gef f ' 2 +
7

8
× (3 + N)× 2×

(
4

11

) 4
3

during nucleosynthesis. The mass fraction of today’s primordial Helium is,

Y =
4nHe,0

nH,0 + 4nHe,0

and is observed to be Y ' 0.248 ± 0.003. Estimate 1
Y
dY
dN

and evaluate it for

N = 0. Briefly comment on the significance of this value in relation to the

observations of Y .

[3 marks]

[Total 20 marks]
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2. (i) Consider flat FRW spacetime ds2 = gµνdx
µdxν = −dt2+ a(t)2δi jdx

idx j , and

a particle with 4-momentum pµ. Show for a free particle,

dpi

dt
= −

1

p0
Γi αβp

αpβ .

[3 marks]

(ii) Now defining p =
√
gi jpipj , use the above result to show that for a free particle

in flat FRW,

dp

dt
= −

ȧ

a
p .

[5 marks]

(iii) Assume n = n(t, p) is the homogeneous isotropic phase space distribution for

an ideal gas of particles. Derive the Boltzmann equation with collision term

C(t, p) using the result above to show, ∂
∂t

∣∣∣∣∣
p

− p
ȧ

a

∂

∂p

∣∣∣∣∣
t

 n(t, p) = C(t, p) .

[4 marks]

(iv) Use this Boltzmann equation equation to derive an evolution equation for the

real space number density n(t),

1

a3(t)

d

dt

(
a3(t)n(t)

)
=
∫ ∞
0
dp 4πp2C(t, p) .

[3 marks]

(v) Consider highly relativistic particles with phase space distribution n(t, p), which

decay into thermal products at temperature T . Take the decay part of the

collision term to be,

Cdecay(t, p) = −Γ n(t, p)

with Γ a constant, and further assume detailed balance. Assume that in thermal

equilibrium the number density of the particles goes as,

neq(T ) = q (kT )3

for a constant q. Find the general solution for the real space number density

n(t) assuming temperature goes inversely with scale factor, so T ∼ 1/a.

[5 marks]

[Total 20 marks]
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3. (i) Consider a flat FRW universe. At time t0, the scale factor and Hubble function

are a0 and H0. Consider it filled with various matter components with equations

of state pi = wiρi for constants wi , and energy density fractions Ωi at time t0,

and assume these do not interact with each other. A null ray starts at redshift

Z1 and finishes at Z2 travelling a comoving radius R, where R2 = ∆x i∆x i .

Show that,

R =
1

a0H0

∫ 1
1+Z2

1
1+Z1

dy

y 2
√∑

i Ωiy−3(1+wi )
.

[5 marks]

(ii) Model our universe by flat FRW with radiation fluid and dust matter, with

fractions Ωr ,Ωm respectively (i.e. ignore dark energy). Assuming that radiation

matter equality was at a redshift Zeq � 1, what is Ωr?

Using the above integral show that the comoving radius R moved by a photon

between the big bang and last scattering at redshift Zlss � 1 is approximately,

R '
2

a0H0

(√
1

Zlss
+

1

Zeq
−
√

1

Zeq

)
.

[4 marks]

(iii) Likewise compute the comoving radius moved by a photon between last scat-

tering and today, Z = 0.

Hence compute the angle (in degrees) a causal region at last scattering sub-

tends in the sky today in this model, for the values Zeq = 3500 and Zlss = 1100.

[4 marks]

(iv) Now introduce an inflationary epoch as a period of exact de Sitter with N e-

foldings of inflation, and H =constant. Assume an instantaneous transition

to the radiation/matter era discussed above, at a redshift Zrad � Zeq, Zlss .

Show that the minimum number of e-folds, Nmin, required to solve the horizon

problem in this model is given approximately by,

eNmin '
2Zrad√
Zeq

.

[6 marks]

(v) For a reheat temperature corresponding to kT ' 1020GeV and Zeq = 3500,

compute Nmin.

[1 mark]

[Total 20 marks]
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4. (i) Consider a real inflaton scalar field φ with potential V (φ) and governed by the

equation of motion ∇2φ = V ′(φ). Take the spacetime to be flat FRW, but

allow the inflaton to have small inhomogeneous fluctuations, δφ(t, x), about a

homogeneous and isotropic solution φcl(t), so that φ(t, x) = φcl(t) +δφ(t, x).

Explicitly compute that to linear order in δφ,

δφ̈+ 3Hδφ̇−
1

a2
δi j∂i∂jδφ+ V ′′(φcl)δφ = 0 .

[6 marks]

(ii) Consider a solution with comoving wavenumber ki ,

δφ(t, x) = δφkj (t)e
−ikix i + c.c.

Now approximate the inflating spacetime as de Sitter with H =const, and take

V ′′ ' 0. Show then that the time dependence,

δφki (t) =
1√

2k(2π)3
e+

ik
a(t)H

(
1

a(t)
+
iH

k

)

with k =
√
δi jkikj provides a solution.

[4 marks]

(iii) We quantise the inflaton in this de Sitter using the above modes, writing,

δφ̂(t, x) =
∫
d3ki

(
akiδφki (t)e

−ikix i + a†kiδφki (t)
?e+ikix

i
)

with creation and annihilation operators, aki and a†ki , obeying the standard

relations,

[aki , aqj ] = 0 , [aki , a
†
qj

] = δ(3)(ki − qi) .

We write the equal time 2-point function of fluctuations in vacuum in terms of

a dimensionless power spectrum ∆2(t, k), so,

〈0|δφ̂(t, x)δφ̂(t, y)|0〉 =
∫
d3ki
k3

∆2(t, k) e−iki (x
i−y i ) .

By explicit computation show that for super horizon modes ∆2(t, k) is a con-

stant determined only by H.

[5 marks]

(iv) Consider a potential V = λφ4. Assume we require slow roll, with at least 60

e-folds of inflation, and that slow roll lasts until φ reaches the minimum of

the potential. Consider the large scale CMB temperature fluctuations whose

dimensionless power spectrum, ∆2(T ), is estimated in terms of ∆2 above as,

∆2(T ) ∼
H2

φ̇2
∆2 .

Given that this should be of order
√

∆2(T ) ∼ 10−5, estimate the magnitude of

the parameter λ in the potential.

[5 marks]

[Total 20 marks]
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