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SECTION A: Particle Symmetries

1. This question is about the Heisenberg group.

(i) Consider the set of matrices

H =


1 a c

0 1 b

0 0 1

 : a, b, c ∈ R

 .
Write down the conditions that define a group. Show that H forms a group

under matrix multiplication. [4 marks]

(ii) Give the conditions that define an abstract Lie algebra. Find the form of the

Lie algebra h corresponding to the Lie group H.

Now consider the operators q̂, p̂ satisfying the Heisenberg commutation rela-

tions (with ~ = 1) [
q̂, p̂
]

= iê,

where ê is the identity operator. Show that the Lie algebra generated by the

anti-Hermitian operators {iq̂, ip̂, iê} is isomorphic to h. [5 marks]

(iii) Consider the set of matrices of the form

eX =

∞∑
n=0

1

n!
Xn where X ∈ h.

Show that the series eX terminates in a finite number of terms and hence

calculate eX explicitly. Show that
{

eX : X ∈ h
}

= H. [4 marks]

(iv) Define the adjoint representation of a matrix Lie algebra. Is the adjoint repre-

sentation of H reducible? Is it decomposible? [3 marks]

(v) Consider the set N ⊂ H given by

N =


1 0 2πn

0 1 0

0 0 1

 : n ∈ Z

 .
Show that N forms an abelian normal subgroup of H. Define the quotient

group H/N. Discuss whether H and H/N are simply connected. [4 marks]

[Total 20 marks]
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SECTION B: Unification – the Standard Model

2. Consider the Lagrangian

L = ∂µφ
†∂µφ−m2φ†φ−

1

2
λ
(
φ†φ
)2

+ ψ̄Li 6∂ψL + ψ̄Ri 6∂ψR − y
(
ψ̄LφψR + ψ̄Rφ

†ψL
)
,

where φ is a two-component complex Lorentz scalar, ψL is a two-component left-

handed Weyl spinor, and ψR is a single-component right-handed Weyl spinor.

(i) What is the particle spectrum (i.e., masses and numbers of degrees of freedom)

if m2 > 0? [5 marks]

(ii) Show that the theory has internal symmetry group SU(2)× U(1)× U(1), and

how the fields φ, ψL and ψR transform under these symmetry transformations.

[5 marks]

(iii) Find the vacuum state of theory if m2 = −µ2 < 0. Expand the Lagrangian to

quadratic order in fields about the vacuum state, and use it to determine the

particle spectrum. [6 marks]

(iv) Find the residual symmetry group, and discuss how it is related to the differ-

ences in the particle spectrum between parts (i) and (iii). [4 marks]

[Total 20 marks]

3 End of examination paper


