Particles and symmetries: problem set 1

- (a) Consider the group of symmetries of an equilateral triangle but now including reflections. This is known as S₃, the symmetric group of order 3. It has 6 elements: the three in Z₃ plus three reflections. Write out the multiplication table. Is S₃ abelian? What are its subgroups?
 - (b) Consider the set Z of positive and negative integers. Does this form a group under (a) addition, (b) multiplication?
 - (c) Show that the set of matrices

$$B = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a, b \in \mathbb{R}, a > 0 \right\}$$

forms a group under matrix multiplication. Is it abelian, finite? Can you identify some of its subgroups?

- (d) Show that O(n) and SO(n) form groups. Show that if $M \in O(n)$ then det $M = \pm 1$ and hence $\dim_{\mathbb{R}} SO(n) = \dim_{\mathbb{R}} O(n)$. Consider O(2). Write down explicit expressions for $M \in O(2)$ for det M = 1 and det M = -1. Show that the latter matrices correspond to reflections.
- (a) We have the definition that given two groups G and H the product group G × H is the set of pairs of element G × H = {(a, α) : a ∈ G, α ∈ H} with the product

$$(a,\alpha)(b,\beta) = (ab,\alpha\beta)$$

Show that the product group $G \times H$ satisfies the conditions required of a group.

- (b) Show that every subgroup of an abelian group is normal.
- (c) Let a be an element of G and $H \subset G$ be a subgroup. One defines the left and right cosets as the sets of elements

$$aH = \{ah \in G : h \in H\}, \qquad Ha = \{ha \in G : h \in H\},\$$

Show that if H is normal then aH = Ha for all $a \in G$. One defines the product of two subsets $S, T \subset G$ by

$$ST = \{st \in G : s \in S \text{ and } t \in T\}$$

Show that if H is normal then the set of left cosets $\{aH\}$ forms a group under this product. (This group is called the **quotient group** G/H.)

3. Consider the finite groups of order n, that is, with n elements. The list different

groups of order n is

$$n = 2 \quad \mathbb{Z}_{2}$$

$$n = 3 \quad \mathbb{Z}_{3}$$

$$n = 4 \quad \mathbb{Z}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}$$

$$n = 5 \quad \mathbb{Z}_{5}$$

$$n = 6 \quad \mathbb{Z}_{6} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{3}, S_{3}$$

$$n = 7 \quad \mathbb{Z}_{7}$$

$$n = 8 \quad \mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, Dih_{4}, Dic_{2}$$
...

- (a) Show that $\mathbb{Z}_6 \simeq \mathbb{Z}_2 \times \mathbb{Z}_3$. More generally show that $\mathbb{Z}_p \times \mathbb{Z}_q \simeq \mathbb{Z}_{pq}$ if only if p and q are coprime.
- (b) The dihedral group Dih_n is the full symmetry group of a regular *n*-sided polygon (rotations and reflections). Show that Dih_4 has \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ as sub-groups.
- (c) The dicyclic group Dic_2 is the group formed by the set of quaternions

$$\{\pm 1, \pm i, \pm j, \pm k\}$$

under multiplication. Show that it has \mathbb{Z}_4 and \mathbb{Z}_2 as subgroups and that both these subgroups are normal.

- (d) Calculate the left cosets for the Z₂ subgroup of *Dic*₂. Form the quotient group *Dic*₂/Z₂ and show that it is isomorphic to Z₂ × Z₂. Do the same for the Z₄ subgroup and show that *Dic*₂/Z₄ ≃ Z₂. (This is a general property of the dicyclic groups: they all have a normal Z_{2n} subgroup such that *Dic*_n/Z_{2n} ≃ Z₂. Hence the term "dicylic".)
- 4. Consider the matrix group

$$G = \left\{ \begin{pmatrix} e^{it} & 0\\ 0 & e^{iat} \end{pmatrix} : t \in \mathbb{R} \right\}$$

where a is irrational. Find a sequence of real numbers t_n such that the corresponding matrices converge to minus the identity matrix $-\mathbf{1}_2$. Hence prove that G is not a matrix Lie group.