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In quantum field theory we often make use of the Dirac δ-function δ(x) and the θ-function θ(x)
(also known as the Heaviside function, or step function). These are defined as follows.

Fourier Transform

We will often work in with Fourier transforms. In particular rather than work in position space,
typically used in QFT to define fields and their dynamics (actions, Hamiltonians etc), we work in
the Foirier transform of the space and time variables. These are often linked to momentum and
energy but be careful. The Fourier transformation of time is some frequency-like variable (often
denoted k0 or similar in our QFT course) which can be positive or negative. The energy of some
physical state or particle must be non-negative so it can not simply be this Fourier transform
variable.

We will define the Fourier transform f̃(k) of a function f(x) is defined by

f̃(k) =

∫ ∞
−∞

dx e−ikx f(x) (1)

and its inverse is defined by

f(x) =
1

2π

∫ ∞
−∞

dk eikx .f̃(k) (2)

Note that there are several allowed variations with these conventions. We can use exp(+ikx) in
the definition of the Fourier transform as long as we use exp(−ikx) in the definition of the inverse.
We will use different signs in these exp(±ikx) factors for the time and the spatial components, and
different signs for particle and anti-particle parts of our fields so be clear about your conventions
from the start e.g. see φ definition of [Tong (2.84), p.36]. Likewise the factor of 2π may be shared
between the two definitions. For instance another common choice of normalisation is to put a factor
of 1/

√
2π in both integrals (1) and (2). The key principle is that if we take the Fourier transform

of any function f and then take the inverse Fourier transform of the result, we must end up with
exactly the same function f as we started with. Also note that the tilde used here to indicate
the transformed function is often dropped, the argument (x or k) indicates which function we are
considering.

The Delta Function

The δ-function, δ(x), is zero for all values of x except at x = 0, where it becomes infinite in such a
way that ∫ ∞

−∞
dx δ(x) = 1 . (3)

It is therefore a single infinite spike at x = 0. We also have the important result,∫ ∞
−∞

dx δ(x− x0)f(x) = f(x0) (4)

for any function f(x).
One way of defining the δ-function more precisely is to consider the series of Gaussians

fa(x) =
1

a
√
π

exp

(
−x

2

a2

)
(5)

1Based on notes by Prof. Gauntlett.
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which clearly satisfy ∫ ∞
−∞

dx fa(x) = 1 (6)

for all values of a. The functions fa(x) are peaked at x = 0 dropping off very rapidly as |x| becomes
large. If we let a become small, the Gaussian becomes progressively more peaked at x = 0, but in
such a way that the total area underneath it remains 1. The δ-function is then defined by

δ(x) = lim
a→0

fa(x) . (7)

The Fourier transform of the δ-function therefore is

δ̃(k) =

∫ ∞
−∞

dx e−ikxδ(x) = 1 (8)

so the inverse relation is the important relation

δ(x) =
1

2π

∫ ∞
−∞

dk eikx . (9)

This relation also allows us to prove the simple property

δ(cx) =
1

|c|
δ(x) (10)

by simply scaling k in the Fourier transform. In particular δ(−x) = δ(x).
All of this easily generalises to higher dimensions. We have, for example, in three dimensions

δ(3)(x) =
1

(2π)3

∫
d3k eik·x . (11)

The δ-function strictly speaking only has meaning when it is sitting inside an integral. It is
practically useful to remember this when interpreting combinations like xδ(x). This is obviously
only non-zero at x = 0 but then it has the form 0 ×∞. To see how to interpret this, we consider
the quantity ∫

dx xδ(x) f(x) . (12)

This is clearly zero for arbitrary well behaved functions f . So we interpret xδ(x) as zero.
One can also prove that

δ(x2 − a2) =
1

2|a|
[δ(x+ a) + δ(x− a)] (13)

or more generally

δ(g(x)) = Σj
δ(x− xj)
|g′(xj)|

(14)

where xj are the roots of g(x) and we have assumed that they are all single roots.

The Theta Function (a.k.a. the Heaviside or step function)

The θ-function is a discontinuous function defined by

θ(x) =

{
1 if x > 0

0 if x < 0

Its value at x = 0 may be taken to be 1/2 but it doesn’t really affect much and it can also be taken
to be defined as other values.
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The θ-function has zero slope everywhere except at x = 0 where it appears to be infinitely
steep. This suggests that the derivative of θ(x) is in fact δ(x). We can prove this more precisely as
follows. Consider the integral ∫ x

−∞
dy δ(y) . (15)

From the properties of the δ-function, this is clearly 0 if x < 0 and 1 if x > 0. That is,∫ x

−∞
dy δ(y) = θ(x) . (16)

So if we differentiate with respect to x we get

δ(x) = θ′(x) . (17)

Notice also that
d

dx
(θ(−x)) = −δ(x) . (18)

An Example

These properties are illustrated in the following example. Consider the differential equation

g̈ + ω2g = −iδ(t) . (19)

This is the equation of a harmonic oscillator that receives a kick at t = 0. Clearly for t > 0 or
t < 0, the solutions are linear combinations of e±iωt. Then one possible solution with the δ-function
source is

g(t) = N
[
θ(t)e−iωt + θ(−t)eiωt

]
(20)

where N is a normalisation factor, to be fixed. To see that this is a solution, we differentiate, using
the known properties of θ(t). We have

ġ = −iωN
[
θ(t)e−iωt − θ(−t)eiωt

]
+Nδ(t)

[
e−iωt − eiωt

]
. (21)

The second term in brackets is δ(t) times a function which vanishes at t = 0, so

ġ = −iωN
[
θ(t)e−iωt − θ(−t)eiωt

]
. (22)

Differentiating a second time we get

g̈ = −ω2N
[
θ(t)e−iωt + θ(−t)eiωt

]
− iωNδ(t)

[
e−iωt + eiωt

]
. (23)

In the second bracket, the δ(t) forces us to set t = 0 in the exponentials, and we get

g̈ = −ω2g − 2iωNδ(t) . (24)

We thus obtain a solution to the differential equation as long as we choose

N =
1

2ω
. (25)

You can consider this example as a simplified and alternative proof that the Feynman propagator
DF obeys the equation

(∂2 +m2)DF (x) = −iδ(4)(x) (26)


