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The aim of these notes is to show how to derive the momentum space form of the Retarded
propagator which is ∆(p) = i/[(p0 + iε)2 − ω2]. For most of this course and for most work
in QFT, “propagator” refers to the Feynman propagator but there are many other types of
propagator. Classically these are different Green functions for the Klein-Gordon equation
with various boundary conditions. In QFT, the different propagators are associated with
expectation values of free fields in different orders.

Cauchy’s theorem

We now want to use a result from complex analysis. Suppose an analytic function f(z) has
simple poles at z = zi where i = 1, . . . , n. This means that near z = zi the function diverges
as

f(z) =
Ri

z − zi
+ . . . (1)

where the remaining terms are finite as z → zi and Ri is known as the residue at z = zi. For
simple poles like this, the Ri is simply the part of the function f(z) without the pole but
evaluated at the pole zi i.e. you find

Ri = lim
z→zi

(z − zi)f(z) . (2)

This means the residue is in principle different for every pole zi.
Cauchy’s theorem states
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∫
C

f(z)dz = 2πi
∑
i

Ri (3)

where the sum is over those points z = zi enclosed by the closed curve C.

The Retarded Propagator

The Retarded propagator for a free real scalar field of mass m, ∆R(x), is given by

∆R(x) =

∫
d4p

(2π)4
e−ip0t+ip·x i

(p0 + iε)2 − p2 −m2
. (4)

where ε is an infinitesimal positive real number and the integrations are along the real axes.
To see that this does encode retarded boundary conditions, i.e. it is zero for x0 < y0, we look
for a form given in terms of integrals over three-momentum only. This is also the form we get
when looking at certain commutators of free field operators (not necessarily at equal times,
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see below) so it is natural to use this form when connecting our classical Green functions to
products of free field operators.

So we rewrite this four-momentum integral as, using z as the p0 variable in the complex
plane1

∆R(x− y) =

∫
d3p

(2π)3
e+ip.(x−y) 1

2π

∫
C0

dz e−izt
i

(z + iε)2 − p2 −m2
, (5)

=

∫
d3p

(2π)3
e+ip.(x−y) 1

2π

∫
C0

dz e−izt
i

(z + iε)2 − ω2
p

. (6)

where C0 is the curve running from −∞ to +∞ along the real energy axis. That is the
integrand in (6) has two poles in the lower-half plane at z = ±ω − iε′ as shown in figure 1.
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Figure 1: Energy integration curve C0 (red line) and poles (blue crosses) for the integrals (4)
and (6). Integration shown in the complex z = p0 plane with <(p0) (=(p0)) plotted along
the horizontal (vertical) axis.

Case 1: Positive time difference t = x0 − y0 > 0.
Suppose t = x0 − y0 > 0. In this case we can complete the energy integration in

(6) along a semi-circle at infinity in the lower half-plane of the complex energy variable z
where =(z) < 0. The integral along this lower semi-circle (C−) gives zero as exp(−izt) =
exp(−i.− i(∞)t) exp(−i.<(z)t)→ 0 so it can be added on to our contour C0. So using the
closed contour C0 + C− as shown in figure 2 gives us for t = x0 − y0 > 0

θ(x0 − y0)∆R(x− y) = θ(x0 − y0)
∫

d3p

(2π)3
e+ip.(x−y)

× 1

2π

(
−2πi. e−izt

i

(z + ω − iε′)

∣∣∣∣
z=+ω

)
+

1

2π

(
−2πi. e−izt

i

(z − ω − iε′)

∣∣∣∣
z=−ω

)
. (7)

where we note that the closed curve is running in a negative sense so we get a factor of −2πi
times the residue at the pole enclosed by the contour. The factor of 1/(2π) in front of the

1See “The Feynman Propagator and Cauchy’s Theorem” handout for summary of integration in the
complex plane using and Cauchy’s theorem.
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Figure 2: Closed energy integration curve C0+C− used for positive time case of the integrals
(4) and (6). Integration shown in the complex z = p0 plane with <(p0) (=(p0)) plotted along
the horizontal (vertical) axis.

term from the poles comes from the integration measure dk0. Tidying this up gives

θ(x0 − y0)∆R(x− y) = θ(x0 − y0)
∫

d3p

(2π)3

×
(

1

2ω(p)
e−iω(p)(x0−y0)+ip·(x−y) − 1

2ω(p)
e+iω(p)(x0−y0)+ip·(x−y)

)
. (8)

Case 2: Negative time difference t = x0 − y0 < 0.
The second case where t = (x0−y0) < 0 works in a similar way. In this case we complete

the energy integration in (6) along a semi-circle at infinity in the upper half-plane of the
complex energy variable z where =(z) > 0, see figure 3. The integral along this upper
semi-circle (C+) gives zero as exp(−izt) = exp(−i. + i(∞)t) exp(−i.Re(z)t) → 0 so it can
be added on to the integration curve. So with the closed contour C0 +C+ of figure 3 we find
for t = (x0 − y0) > 0 that there are no enclosed poles so we have

θ(y0 − x0)∆R(x− y) = 0 . (9)

All times t = x0 − y0.
Putting (8) and (9) together gives us

∆R(x− y) = θ(x0 − y0)
∫

d3p

(2π)3
1

2ω(p)

(
e−iω(p)(x0−y0)+ip·(x−y) − e+iω(p)(x0−y0)+ip·(x−y)) .(10)

∆R(x− y) = θ(x0 − y0)
∫

d3p

(2π)3
1

2ω(p)
e+ip·(x−y) (e−iω(p)(x0−y0) − e+iω(p)(x0−y0)

)
(11)

where we have switched integration variables in the second term as normal, replacing p by
−p. It can be convenient to write this in term of the Wightman function

D(x− y) =

∫
d3p

(2π)3
1

2ωp

e−ip(x−y) (12)

as this combination occurs in several places. This gives us

∆R(x− y) = θ(x0 − y0) (D(x− y)−D(y − x)) (13)
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Figure 3: Closed energy integration curve C0+C+ used for negative time case of the integrals
(4) and (6). Integration shown in the complex z = p0 plane with <(p0) (=(p0)) plotted along
the horizontal (vertical) axis.

Relation to commutators

A single real scalar field operator φ̂(x) in a non-interacting theory2 of mass m has the form

φ̂(x) =

∫
d3p

(2π)3
1√

2ω(p)
(âpe

−ipx + â†pe
+ipx) , (14)

where p0 = ω(p) =
∣∣∣√p2 +m2

∣∣∣ . (15)

Then the commutation relation [φ̂(x), φ̂(y)] is found as follows3[
φ̂(x), φ̂(y)

]
=

[∫
d3p

(2π)3
1√
2ωp

(âpe
−ipx + â†pe

+ipx),

∫
d3q

(2π)3
1√
2ωq

(âqe
−iqy + â†qe

+iqy)

]
(16)

where we set p0 = |ωp| and q0 = |ωq|. So we find[
φ̂(x), φ̂(y)

]
=

∫
d3p

(2π)3

∫
d3q

(2π)3
1√

4ωpωq

[
(âpe

−ipx + â†pe
+ipx), (âqe

−iqy + â†qe
+iqy)

]
(17)

=

∫
d3p

(2π)3

∫
d3q

(2π)3
1√

4ωpωq

(
e−ipx+iqy

[
âp, â

†
q

]
+ e+ipx−iqy [â†p, âq]) (18)

=

∫
d3p

(2π)3

∫
d3q

(2π)3
1√

4ωpωq

×
(
e−ipx+iqy(2π)3δ3(p− q)− e+ipx−iqy(2π)3δ3(p− q)

)
(19)

⇒
[
φ̂(x), φ̂(y)

]
=

∫
d3p

(2π)3
1

2ωp

(
e−iωp(x0−y0)e+ip.(x−y) − e+iωp(x0−y0)e−ip.(x−y)

)
(20)

2We can think as this as being in the Heisenberg picture for a free field theory. However this is also the
form for the real scalar field in the Interaction picture in the Interaction picture.

3Perhaps easier to calculate the Wightman function D(x−y) and the commutator is simply
[
φ̂(x), φ̂(y)

]
=

D(x− y)−D(y − x).
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This gives [
φ̂(x), φ̂(y)

]
=

∫
d3p

(2π)3
1

2ωp

e+ip.(x−y) (e−iωp(x0−y0) − e+iωp(x0−y0)
)

(21)

=

∫
d3p

(2π)3
1

2ωp

(
e−ip(x−y) − e+ip(x−y))∣∣

p0=ωp
. (22)

Note we used a change of integration variable in the second term from p to −p.
Looking at the results for the commutators, we see that from (21) that in (11) we have

one of the integral forms for
[
φ̂(x), φ̂(y)

]
with an extra heaviside function, i.e.

∆R(x− y)1̂I = θ(x0 − y0)
[
φ̂(x), φ̂(y)

]
. (23)

Note that the right-hand side is in principle a messy operator but the left hand side shows
this combination is in fact a trivial operator, it is proportional to the unit operator.


