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1. Consider the classical real scalar field ¢(x) with Lagrangian density

L= 30.00"¢ — V().

You are given that the classical Poisson bracket satisfies

{o(t, %), T(t.y) }og = —{T(t.¥), B(t. X) }og = 6P (x — y),

while {¢(t, x), d(t,¥)}px =0and {AB,C}, . = A{B.C} .+ B{A C}...

(i)

(it)

XXXX /Y /222

What is the definition of the momentum density 7(x) conjugate to ¢(x)? What
is it equal to in this case?

Rewrite £ in terms of ¢ and V¢ and hence show that the Hamiltonian H is
given by

H— / Px (312 + 1V -V + V(9)) .

What is V/(¢) for a free scalar field of mass m? What is the minimum value of
H in this case? [6 marks]

ANSWER: By definition, m = 8L/8¢ = ¢. Here L = 3¢ — IV - V¢ — V(¢).
Hence

H = /d3x (mp— L) = /d3x (¢ — 3¢° + 3V - Vo +V(9))
= /d3x (37 +3Ve-Vo+V(9),
as required. For a free scalar field of mass m, V(¢) = %m2¢2. Since H is then a sum

of squares, H > 0, with the minimum realised by ¢ = 0.

Define

T = 00" — n* (L0,00™d — V(9)) ,
M#P = THxP — THOXY.

Show that 8,7 = 0 if ¢ satisfies the equation of motion §,04¢ + V'(¢) =0
(where V'(¢) = dV/d¢) and hence that 9, M**? = 0. [5 marks]

ANSWER: By the chain rule, 8,V (¢) = (8.0)V'(¢) where V'(¢) = dV(¢)/do,
hence
0, TH = 8,(8*$0"¢) — 2n 8, (0xpd*P) + n* 3,V ()
= (8,0"¢)0" ¢ + (0"$)(8,8"¢) — (87$)(8"0xp) + (8" D)V (¢)
= (8"9) (8,0"¢ + V'(¢))
=0.
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We have 0,x° = 0,2 hence,
OuMHP = 9, (TH' xP — THPXY)
= (0, TH)xP + THY(9uxP) — (8, THP)x" — THP(O,Xx")
= THY§,P —THPG,Y
N - 7
=0,

since by definition THY = TYH,

(iii) Consider the integrals
Q+ = /d3xTO“(t, x),

Q" = /d3XMO‘“’(t,x).
How do they depend on t? What does Q* represent physically? What about
QY, where j,j =1,2,37

Write down the components of Q* and show explicitly that one is related to
H. [4 marks]

ANSWER: They are Noether charges, independent of t since the corresponding
currents THY and MHYP are conserved. Physically Q¥ correspond to the total conserved
four-momentum P*. The three charges J' = $eU*Q/¥ are the total angular momentum
of the field. Explicitly we have

7% = 8%8° — n°° ($0x¢0™d — V(9)) = ¢ — L,
T = 8%0'¢ — % (10,00™¢ — V(¢)) = —7V'p.
Hence Q* = (P°, P) where
P = —/d3x7rVd>,

and P° = H.

(iv) Show that {Q*, ¢(x)} .5 = —0*¢(x) and comment on the result.
Comment briefly on what you expect for the Poisson brackets between different
components of Q¥ and Q**. [5 marks]

ANSWER: The only non-zero contributions to {T(t,y), ¢(t,X)} g are

[T, y), (t. x)} pg = 5{7°(t,¥), (t. ) } pg = 7(t. ¥){7(t, ¥), d(t. X)} g
= —m(t,y)8¥(y — x) = =8°(t, y)6® (y — x),

{TO(t.y), ¢(t. %)} pg = —{m (£ Y)V'B(t, ¥). d(t. X) } pg = —V'd(t, ¥){m(t. ¥). §(t. X) } o5
= V'¢(t, )8 (y — x) = —0'¢(t, )6 (y — x).
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Since Q* are independent of time we can choose to evaluate them at t = x° so that
(@000} p = [ AT (e.5).8(8. )}

T / dPyore(t, y)6® (y — x)
= —0"¢(x).

This reflects the fact that Q" are the generators of the translation symmetry
group. Similarly Q"Y' are the generators of the Lorentz symmetry group. Collectively
{Q*, Q**} form a representation of the Poincaré group under the Poisson bracket.

[Total 20 marks]
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2. Consider a free real scalar field ¢(x) with conjugate momentum density m(x) = ¢(x).
Define the operator

ap = / xS E,0(0. %) + in(0, )],

V2E,

where Ep = +/|p|? + m?.

(i)

(it)

XXXX /Y /222

The equal-time commutation relations (ETCRs) state that

[@(t,x), (2, y)] =69 (x — y).

Are the fields ¢(x) and m(x) in the Schroédinger or Heisenberg picture? Why
is this picture more natural in a relativistic theory?

What are the ETCRSs for [¢(t, x), ¢(t, y)] and [n(t,x), 7(t,y)]? [4 marks]

ANSWER: The fields operators are in the Heisenberg picture since they ex-
plicitly depend on time. This means they are function of all four coordinates
x*. This is the natural picture in a relativistic theory, since one can then write
relativistically invariant expressions. The ETCRs for the remaining commutators are

[(t, x), ¢(t,¥)] = [n(t, x), 7(t,y)] = 0.

Derive an expression for af, in terms of ¢(0, x) and (0, x). Using the ETCRs
show that

(ap. a] = (2m)*6® (p — q),
[ap, a4) =0, [al, al] = 0.

[6 marks]

ANSWER: By definition, since ¢ and hence w are Hermitian,

ah = / d3x(e_ip'x)* [Epd(0, x) + im(0, x)]!

V2E,

[Ep9(0, x) —im(0, x)] .

_ / e

ANSWERS 5 This question continues overleaf ... ]



Quantum Field Theory May 2009 ANSWERS May 4, 2009

efip-x eiq-y

[Ep®(0, x) + im(0, x), Eq$(0, y) — im(0, y)]

ﬁ

m

o

< N
ﬁ
Q

d3y\/ﬁ<iEq[7r(O,X),¢(O,y)] - iEp[d>(O,x),7r(O,y)D
pEq

(—1)(Ep + Eq)i6(x — y)

since E_p = Ep. We also have [a}, al)] = —[ap, aq}T =0.

(i) Given

¢(X) = /CP—[JL (apefip-x + aTeip'X) ,
(2m)® \/2E, P

where p® = E,, use the results from part ii to show that at unequal times

[¢(X) Cb(J/)] = /(;%)32_15) (e—ip~(x—y) _ eip-(x—y)) '

What properties must this commutator have if the field theory is to respect
microcausality? [5 marks]
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ANSWER: Substituting we have

[(x). d(¥)]
B d3qg d3p 1
) (2m)3 (27m)3 \/2Eq+/2E,

3, 43 . o
:/ d%g d'p ! ([aq,a;r,]e_'q'xe'p'y—l— [ag,ap]e'q’xe_'p'y)

(2m)3 (2m)3 \/4E4E,

d3qg d3p 1

~ ] (2m)2 (271)3 \JAE4E,

[(aqe_iq'x + af,eiq'x), (ape_ip'y + a;r,eip'y)]

((27r)36(3)(q o p)e—iq~x+i/3~y
— n)3%®(q - p)e—iq~x+iD'Y>

d*qg 1 i i
— / (27:)73 5, (e—lcr(x—y) _ elq-(x—y)) .

Microcausality implies that operators commute if they are space-like separated. In
particular this requires [(x), d(y)] = 0 if (x — y)? < 0.

(iv) You are given that §(x? — a%) = (1/2a) [6(x — a) — 6(x + a)]. Show that the
expression for [¢(x), ¢(y)] given in part iii can be rewritten as

[¢(X). ¢(Y)} = /(;%)35([32 _ mz)efip-(fo)'

where d*p = d®pdp®. Comment on the Lorentz transformation properties of
this expression, and give a brief argument that the ET CRs take the same form
in all inertial frames.

What is the significance of this result? [5 marks]

ANSWER: We have p?> — m? = (p®)? — E2. Using the given relation we then have
P

d*p Cip(x—
Gt~ e
3
— d°p L —ip-(x—y) _ a—ip(x=y)
3 e g
(2’71') 2Ep pO=Ep pP=—Ep
3
_ / (d ’;322 (e B0 y) _ g () siptx)
2m p
d3p 1 Cipxe o
= () 2E, (e ip-(x=y) _ gip:( y)),

where we have changed variables p — —p in the second term. Since the new expression
is manifestly Lorentz covariant, this shows that [qb(x), qﬁ(y)] is Lorentz covariant.
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Thus, evaluating in an arbitrary inertial frame,

(B2, %), Bt )] = [$(), 9] o0
d3p 1 ip-(x— —ip-(x—
_ / Y 3E, <ep( ¥) _ a—ip y))
=0 (odd integrand),
[$(t, %), 7(2,)] = 8y [90), 6] o_y oo

3 .
- / (;;;3; (eip-(xfy) 4 efip-(xfy))

=i6®(x —y),
(8, %), 7(t,¥)] = 8,080 [$(x). 6] o_oo
d3p E ip-(x— —ip-(x—
= (27r)37p (ep( ¥) _ a—ip( y))
=0 (odd integrand).

Thus although we chose a particular inertial frame to define the ETCRSs, the resulting
quantum theory is independent of the original choice of frame, as required for a
relativistic theory.

[Total 20 marks]
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3. This question is about the free classical Dirac field 1(x). The Lagrangian is given

by

L =iy o — mpy,

where the gamma matrices y* satisfy {y*,y*} =2n*"1 and 9 = '4° .

(i)

(1)

XXXX /Y /222

The field ¥(x) is a spinor. How many components does it have? After quan-
tization what is the spin of the corresponding single-particle states?

Treating %(x) and ¥(x) as independent fields, show that the Euler—Lagrange
equation for ¥(x) is the Dirac equation
Yo,y — myp = 0.
[4 marks]

ANSWER: A spinor field has four components. After quantization, the corre-
sponding single particle states are spin one-half. The Euler—Lagrange equations read
8,(0L/8(8,9)) = 8L/0P. Since BL/B(8,P) = 0 we have

oL .

a0 =ivHouY —my =0,

as required.

Using (’y“)T = v099#~0 show that if 9(x) satisfies the Dirac equation then

10, (x)Y* + mp(x) = 0.

Hence show that the current j# = ¢y is conserved, that is ,y* = 0, if ¥
satisfies the Dirac equation. [4 marks]

ANSWER: Taking the conjugate of the Dirac equation
0= — (iIv*0u% — mp)'~°
= 10,9 (v*) 170 + myTy°
= 10,1y y#y%y° + e
Hence
O = Bu (PyHb)
= (8;1.1»0)’)’#"// + '(//’Yu(au"-/})
= impy — imPy
=0,

as required.
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Show that the complex conjugate of L is given by
L= L—i0, (Yy'1) .
Consider the real Lagrangian
L= %i [’l/;’Y”(@;ﬂ/J) - (au'lp)fyu'lp} - m1/31/1
Treating 9(x) and 9(x) as independent fields, show that the corresponding
Euler—Lagrange equation for 1)(x) is again the Dirac equation. [5 marks]

ANSWER: We have (7°)f = v09%4% =40, so that
£ = (i9gy* o, — mpy)”
= i (Wi 0,y) — (myiyy)’
= —i(@u¥") (v %% — mpTyy
= —i(BuYN )Y vy % — myTyOy
= —i(au‘/;)’)’ﬂw - mw
= L — i [(0u)v* Y + Py  (8u)]

= L — i0u(Py'e).
For L' we have
oL’ . oL .
50u7) = —Ziyty, e = Livte,p — my,

so that the Euler—Lagrange equation reads
Oy (—2iv*y) — Sinkouy + mp = —iy 8,9 + myp = 0,

as required.

The matrix s = i7%y*y>y® has the property that {s,7y,} = 0. Show that

the “axial vector” current j5 = 9Py ys9 satisfies

Ot = 2imysip.
What does this result imply about the symmetries of the Dirac equation when
m =07
Identify the corresponding infinitesimal transformation of ¢ and demonstrate
directly whether or not £ is invariant under this transformation. [7 marks]

ANSWER: We have
Ouit’ = Ou (P¥*¥59)
= (BuP) Y 159 + Py ys(Bu)
= (Gu’lﬁ)’y“’d} - 'J”Y5’Y“(au'¢)
= imPysy — imprysy
= 2imrysy.

ANSWERS 10
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Thus if m = 0 the axial current is conserved and we have an additional symmetry of
the Dirac equation (by Noether’s theorem). The corresponding infinitesimal transfor-
mation is

0 = iays,
5w = (i T * i _ t4,0 0.0 _ - .. T
P = (iaysy) 40 = —iapTyiy® = iawyOy57°9° = iy,
since
= (Y293 = 2P0 = =i (VO )0 = %50,
Hence

5L = i [69y 0P + Py 0, (69)] — m [69 + Poy]
= (ia)i [Yysy* 0. + Yy ys0,9] — (i) m [Pysy + Pysy]
= —2iamPys.

Thus we have 8L = 0 only if m = 0 as expected.

[Total 20 marks]
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4. Consider a free Dirac field 1¢(x) given by

S(p)e—ip~X + b;TVS(p)eip-x} ’

'lp(X) = / 27_(_)3 /—2Ep Z

where p® = E, = +/|p|2 + m2. The only non-vanishing anti-commutation relations
are

{ay, &t} = {by, b1} = (2m)*6°(p — q)5".
The Hamiltonian H and the operator Q are given by

(W 2 B (a4 b0

Q= /(27r)3 STaf,—bf,be,).

(i) Define the vacuum state |0) and the single particle states |p, s, —) and |p, s, +).
What do the labels p, s and & denote?

Define a two-particle state, and show that the particles are fermions.
[6 marks]

ANSWER: By definition
a5]0) = b3|0) = 0, p,s, —) = \/2Epaj|0), b, s, +) = \/2Epb5'[0).

The label p denotes the three-momentum of the state, s = 1,2 denotes the two spin
states, and & denote the charge of the state, + for a positron and — for an electron.
The two electron state is

lp.r,—:q,s5,—) \/2E,,\/2E,_-,a;[,Taf,Jr \/2E,_ﬂ/2Ec,az‘§ra,r;r

= _|q,5, — P _>1

demonstrating that the particles obey fermi statistics.

(i) Show that

ajaylp,s,—) = (2m)*®(p—q)6"” |q.r.—),
biibylp. s, +) = (2m)*6®) (p — )6" |q, r, +).

Hence show that |0), |p, s, —) and |p,s,+) are eigenstates of H and Q and
give the eigenvalues. [6 marks]

XXXX /Yy /222 ANSWERS 12
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ANSWER: Using the properties of the ground state we have
aaglp. 5.—) = V2Epalj ayail|0)
= \/2Epag{a}, a5 }|0)
= (2% (p — )6 \/2E 3y |0),
= (2m)%6®)(p - q)6" |q.r. ).
Similarly
b b |p. 5. +) = /2E, b byl [0)
= V2Epbq { b, bg'}[0)
= (2136 (p — q)8"\/2E,b4|0).
= (2m)*6®(p— q)5" |q. 1, +).

Since ag|0) = bg|0) = 0 we have

H|0) = Q|0) =0,
while using the above results we have
d*q 35(3)
Hlp,s +) = on)? r;Q Eq(2m)°6(p — q)8"™ [q, r, £) = Ep|p, s, £),
d3¢q
Qlp.s. &) = ﬂ:/(%)3 > (@m)*6®(p— )6 |q.r,£) = £|p, s, £),
r=1,2

where we have used the factor that the commutators between ap, (or a,s,Jr ) and by, (or
by ) vanish.

(i) Using the results of part ii, write down an expression, similar to those for H
and Q, for an operator S, with eigenvalues

S.[0)=0, S.p 1.+)==xLp 1,£), S.|p.2,£) =Fi|p 2 £).

What does this operator measure? [3 marks]

ANSWER: Consider the operator

1 d&*p /4 2 1 2
S, = 2/ 2n)? (apTa,l, — apTaIQ, — prb}, + prbf,) .

As before S;|0) = 0 and

1

By < 35(3) r 1
S.lp. 1. %) —iQ/W;Eq(zvo 6 (p— @6 |q, 1, %) = £31p. 1, %),

1 d3
S.p.2, ) =F 9

2
2] (om)3 Z Eq(2ﬂ)35(3)(P —q)6"?|q,r, £) = :F%|P, 2, +),
r=1

XXXX/Y /222 ANSWERS 13This question continues overleaf .. .|
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as required.

One could also try to quantize the Dirac field using commutation relations.
Specifically the only non-vanishing commutators are then

(a5, a3t = —[b5, bE] = (21)*6%(p — q)6™.

and the sign of the bf,be, term in the Hamiltonian H changes.

If we define states in the Hilbert space in the conventional way, what are the
two problems with this quantization prescription?

How can one problem be alleviated by changing the definition of the Hilbert
space? [5 marks]

ANSWER: Consider the normalization of the putative electron states
(p.r.—1a,s, =) = \/2Ep\/2Eq(0]abag [0) = \/2Ep\/2E4(0] [}, a5']|0)
= —(27)*(2E,)6® (p — )(0[0)
= —(2m)*(2E,)6% (p - q)

Thus for p = q@ we have a negative norm state. This corresponds to negative proba-
bilities and hence violates the standard interpretation of quantum mechanics. We also
have

@ < i i
H= | Gy 2o o CER AT
s=1

implying that the positron states have negative energy. This is unphysical, and gives
a theory unstable to the production of the more and more positrons. One can correct
the norm problem be defining the positron states and vacuum using

b5, = by,

so that [bp, bg'] = (2m)363(p — q)6">. However the negative energy problem still
remains since the form of H is unchanged (after normal ordering).

[Total 20 marks]
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5. In both the interaction picture and the Heisenberg picture operators evolve with
time. One has

8:0; =i[Hos 0)],  8:0n =i[Hn, O],

where in the interaction picture, O, is the operator and Hp  is the free Hamiltonian,
while in the Heisenberg picture Oy is the operator and Hy is the total Hamiltonian.

(i) What are the corresponding expressions for the evolution of states |¢(t))y and
|9 (t)), in the Heisenberg and interaction pictures?

Comment briefly on why the interaction picture is useful in perturbation theory.

Write down the full Lagrangian density for “phi-fourth” theory and identify Lo
and L., the free and interaction Lagrangian densities, that contribute to the
free and interaction Hamiltonians respectively. [5 marks]

ANSWER: We have
O (1)) = —iHine i [(t))), Ot|Y(t))H = 0.

In the perturbation expansion, one expands as a power series in H,,:. In the interaction
picture, the fields still evolve with Hy; so take the same form as in the free theory.
All the dependence on Hjnt, Is then incorporated in the evolution of the states. In
“phi-fourth” theory we have L + Lq + Lins where

Lo = 30,¢0"¢ — Sm?¢?, Lint = — A"

(i) Show that in the two pictures 0;Hy = 0 and 0:Ho,; = 0. Hence show that
Ou(t) = eiHH(t—tO)OH(tO) e iHH(t—t0)
O/(t) — eiHo,/(t—to)Ol(tO) e_iHO,/(t—to),

are solutions of the evolution equations for Oy(t) and O,(t). [4 marks]

ANSWER: By definition
O¢Hy = i[Hp, Hy] =0, OtHo ) = i[Ho,1, Ho ] = 0.
We then have
8:04(t) = b (eiHH(tfto)OH(to) efiHH(t7t0)>
— 5, (eiHH(t—to)> On(to) e HH(E=10) | giHH(=1) 0, (1) B, (e—iHH(t—to)>

— iHHeiHH(f—tO)OH(tO) e—iHH(t—to) + eiHH(t_tO)OH(tO) (_iHH)e_iHH(t_to)
= iHOR(t) — IOu(t)Hy
= i[Hu, On(1)].

XXXX/Y /222 ANSWERS 1%This question continues overleaf .. .|
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Similarly

0:0(t) = 0t (eiHO-/(f—fo)o,(tO) e—iHol/(t—tO))
= at (eiHo,l(t*t0)> O/(to) e*iHO,I(t*to) + eiHo,/(t*to)Ol(tO) at (efiHO,l(t*t0)>

= iHo Iei/‘/o,/(t—to)ol(to) e~ iHo (t—t0) | eiHo,/(t—to)O/(to) (—iHo I)e—i/‘/o,/(f—fo)
= iHo,10,(t) —i0,(t)Ho,
= i[Ho.1, O(t)].

as required.

(iii) Let operators in the two pictures be related by
O,(t) = U(t, t) Ou(t)U(t, to) 1,

where U(ty, tp) = 1.
Using the results of part ii write an expression for U(t, tg). Show that it satisfies

8tU = _iHint,/U,

where Hi, 1s the interaction Hamiltonian in the interaction picture.
[4 marks]

ANSWER: We have Oy(ty) = O,(ty) and hence
U(t, to) = e'Mor(t—to) g=iHh(t—to)
Thus

8,U = &, (eiHo,/(f—fo)e—iHH(t—to))

— (i iHo,/(t—t0) o —iHH(t—to) iHo, (t—to) ( _; —iHu(t—to)
(iHo,1)e e +e (—iHp)e

= iHo (eiHo,/(t—to)e—iHH(t—to)) —j (eiHo,/(f—fo)e—iHH(t—to)) Hy

= iHo U — iUHy
= iHo U — i(UHyU YU
=i(Hoy—H)U

= —iHipe,U.

as required.

(iv) Define the time-ordered product

T Hine (t1) Hine, 1 ().
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As an expansion in Hju ;, show explicitly that

t
U(t, to) ::ﬂ._|/ dtlHint,/(tl)

to

t t
+ %(—i)z/ / dtidto T Hine, i (t1) Hine s (t2) + - .
to to
is a solution for U(t, ty) to second order in Hiny,. [7 marks]

ANSWER: By definition

T Hint, i (t1)Hine, i (t2) = 0(t1 — t2)Hine, (t1) Hine, 1 (£2) + 0(t2 — t1) Hint, 1 (t2) Hine, 1 (t1),

where 6(t) is the Heaviside step function. Now solve the equation for U = Ugy +
Uay + ... perturbatively in Hjnt, 1. At each order we have

6tU(n+1) = iHint,lU(n)-

We can satisfy U(to, to) = 1 by taking Ug)(to, to) = 1 and Upy(to-to) =0 for n > 1.
To zeroth-order
atU(o) =0 = U(o)(t, to) =1,

since we have the boundary condition U(ty, to) = 1. At first order we have
OrUq)(t, to) = —iHint 1 (£)U(0) (¢, to) = —iHint, (t)

t
= Uy(t, to) = —i/ dt1Hint, i (t1).

to
At second order we have
t
0tUoy = —iHint U1y = (‘i)2/‘//nt,/(t)/ dt1 Hint,i (1)
to

t-

t 1
= Uy (t, to) = (—i)2/ dtiHine (1) | dtoHine,(t2).

to to
By definition T Hipt.(t1) Hint.1 (t2) = T Hine.1 (t2) Hine.1 (t1). Thus
t t
/ dtl/ dtoT Hine,i (t1) Hine,i (t2)
to to

t t1 t to
=/ dtl/ dtZTHint,l(tl)Hint,l(t2)‘|‘/ dtz/ dta T Hint,1 (t1) Hint, 1 (t2)
t to to

N

0 to
t t1
/ dtl/ dtoT Hint.1(t1) Hine 1 (t2) (t1 > to in second term)
to to

N

t 51
/dﬁ/ dtoHint,1 (t1) Hinti (£2).

to to
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Hence
t
U(t. to) =1— i/ dtyHint, (t1)
£
’ t t
+ é(—i)2/ / dtydtoT Hipt, 1 (t1) Hine, i (t2) + . ..
th J 1o
as required.

[Total 20 marks]
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6. This question is about Feynman diagrams in “phi-fourth” theory. Recall that in the
interaction picture the S-matrix is given by

(i)

(it)

XXXX /Y /222

S =Texp (i/d4x - Lint(x) :) .

Explain how S can be described as a perturbation expansion and write down
the first three terms in the expansion.

The scattering amplitude iM is usually defined to be
(out|iTin) = (2m)*6™ (Pout — pin) IM

where § = 1 +17. Why is the 1 contribution not included? What are py,: and
pin and what is the physical meaning of the d-function? [4 marks]

ANSWER: In perturbation theory we treat L+ as a small quantity. Thus we can
expand S as

5:1+i/d4x:£,nt(x) ;
+ %(i)z//d‘lxldd'sz CLine(x1) 1 Line(xe) -+ ..

and calculate the scattering amplitude term by term (using for instance Feynman
diagrams). The 1 contribution is not included in the scattering amplitude since it
corresponds to no scattering. The quantities p;, an poy+ are the total momentum of
the incoming and outgoing states. The d-function implies momentum conservation.

Consider the scattering of three incoming ¢ particles with momenta ki, k> and
ks to three outgoing ¢ particles with momenta p;, p> and ps.

Define the [in) and |out) states for this process.

Use the position-space Feynman rules to calculate the contribution of the fol-
lowing Feynman diagram to (out|i7|in) in terms of the propagator Dg(x — y).

P3
P2 k3
P1 k2

ki
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(iii)

XXXX /Y /222

Given .
d*p e—ip-(x=y)

De(x —y) = .
Fx =) / (2m)* p?2 — m? + e
write this contribution as a function only of momenta.

Show that this agrees with the contribution to iM calculated using the
momentum-space rules. [7 marks]
ANSWER: We have
lin) = \/2Ex, \/2Ek,\/2Ex, ) al . |0).
|OUt> - \/2EP1 \/QEpz \/2Ep3a};12};za;r>3|0>‘

Using the Feynman rules,

contri. to {out|iT|in)

= (—i>\)2/d4xd4y ei(P3—k2—k3)'Xei(P1+P2—k1)'yDF(X —y)

= (—iN)? / d*x d* d*p iel(Ps—he—ks=p)xei(prtpa—hkitp)y
- g (2m)* p% — m? +ie
Y d*p (21)*6@ (ps — ko — ks — p)(2T)*6@) (p1 + po — k1 + p)
(2m)* p2—m? +ie
A2

= —m(zﬂ)45(4)(p1 +p2+ p3 — kl - k2 - k3)

For the momentum space rules, the momentum flowing in the propagator is ko + ks — p1
S0
i
(ki 4 ko — p3)3 — m? +ie
B iA2
T (it ke —p3)3—mtie

This is in agreement with the position-space calculation.

contri. to iM = (—iX)?

Draw a second Feynman diagram that has no loops, is not related to the
diagram in part ii by a permutation of the p;, momenta or of the k; momenta,
and contributes to iM at the same order in A.

Evaluate this diagram using the momentum-space Feynman rules.  [3 marks]

ANSWER: The diagram is

p3 ks

N

p1 ky
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The momentum flowing in the propagator is k1 + ko + k3, so using the Feynman rules
we find
[
(kl + ko + k3)3 —m? +ie
A2
(ki + ko + k3)3 — m? +ie’

contri. to iM = (—iX)?

consider the scattering of two incoming ¢ particles with momenta g; and g

to two outgoing ¢ particles with momenta p; and p».

Taking the non-relativistic limit and comparing with the Born approximation gives

IM(q1, g, p1, p2) = —i% [\N/(P1 —q,)+V(p, - a)] .

where V(q) is the Fourier transform of the classical potential V/(x) between the two
particles.

(iv)

XXXX /Y /222

Use the momentum-space Feynman rules to identify \7(k) and hence calculate
the form of V(x) at order A.

Draw a Feynman diagram that gives corrections to iM (and hence potentially
to V(x)) at order A\2. [6 marks]

ANSWER: At order X\, the only diagram is
P2 ko

pP1 kl

This contributes
contri. toiM = —iA.

Hence we have V/(q) = \. Fourier transforming gives

3 . 3 |
V(x) = / (gﬂc)lav(Q)e_'q'x = ((217:)73 e 1% = A0 (x).

(This is what is known as a contact interaction.) The relevant loop Feynman diagrams
at order \° are
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p2 ko o ko

P2 ko \

P1 kl
P1 kl P1 kl

(which lead to a renormalization of the vertex).

[Total 20 marks]
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