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1. Consider a complex scalar field ¢(x) and a real scalar field o(x) described by the
Lagrangian density
1
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(i) Using the Euler-Lagrange equations, write down the equations of motion for
o(x), ¢(x) and ¢*(x) (treating the latter two as independent fields).

[3 marks]
(ii) Derive the momentum conjugate to ¢, ¢* and o and construct the Hamiltonian
for this field theory. [4 marks]

(iii) Show that the Lagrangian is invariant under the symmetry transformation
$(x) = ¢ (x) = e“¢(x),
where a is a constant. Using the equations of motion, show that the current
JF=1(¢"0"¢ — $p049")
is conserved. [3 marks]

(iv) Consider the integral

Q= /d3xj°(t,x).

Using the equations of motion show that Q is independent of t. [2 marks]
Now consider the quantum theory corresponding to L.

(v) In the free theory with A = 0, briefly describe, without derivation, the single
particle states that exist corresponding to the complex field ¢ and the real field
o, including the mass and properties with respect to the operator corresponding
to Q. [4 marks]

(vi) Consider now the impact of including interactions in the quantum theory by
allowing A # 0. Write down the basic vertex for the momentum space Feynman
rules (numerical coefficients need not be given). [4 marks]

[Total 20 marks]
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2. Consider a free real scalar field with, in the Heisenberg picture,

3
d(x) :/—d p_1 (ape™ + ale™)

(2m)3\/2E,

where p® = E, and 7(x) is the momentum density conjugate to ¢(x).

(i) The equal time commutation relations (ETCRs) state that

[o(t, x), m(t, y)] =i6°(x — y).

What are the ETCRSs for [¢(t, x), ¢(t, y)] and [n(t,x), 7(t,y)]? [2 marks]
(i) Show that

ap = /d3x e [Epd(t, x) + im(t, x)] .

2Ep
[4 marks]
(iii) Hence, using the ETCRs, show that
ap, af] = (2m)%6°(p — q),
[ap, aq] =0, [aL, aH = 0.
[6 marks]
(iv) Using the results from part (iii), show that at unequal times
d®p 1 . _
— | 2F = (a—ip(x=y) _ aip(x—y)
[(D(X)r (p()/)] (2,”)3 2Ep (e € ) ’
[4 marks]
(v) Show that when x — y is spacelike, [¢(x), ¢(y)] = 0. What is the physical
implication of this result? [4 marks]

[Total 20 marks]
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3. Let ¥(x) be a classical Dirac spinor field. The gamma matrices y* satisfy
(v} =211

Work in a basis in which (v°)T = 4% and (v')" = —4'. The Lagrangian density for
the Dirac field is defined to be

L(x) = P00, — m)w(x)

(i) Show that y%y#4° = («4#)'. Derive the Euler-Lagrange equations for £ treating
(x) and 7 (x) separately, showing that for both cases one obtains the Dirac
equation. [6 marks]

Under a Lorentz transformation the Dirac field transforms as
PY(x) = YP'(x) = /\% (AN 1x),
where /\% = exp[—éwWS‘“’] with SH = ﬂ’y“,’y”}.

(i) Given Aly0 = fyo(/\%)‘1 and also that (/\%)‘lfy“/\% = A*,Y show that un-
der a Lorentz transformation the Lagrangian density transforms via £(x) —
L(A"1x). What is the significance of this result? [7 marks]

Now define a conjugate spinor by ¥(°)(x) = C*(x) where C is a matrix satisfying
CTC =1 and CTy+*C = —(4*)*.

(ii) Show that 4(°)(x) transforms under an infinitesimal Lorentz transformation in
the same way that (x) does . [5 marks]

(iv) A Majorana spinor has the property 1(x) = 9(°)(x). Briefly comment on the
implications of this property for the particle content of the quantum theory.
[2 marks]

[Total 20 marks]
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4. Consider a free Dirac field ¢/(x) given by

’(,[J(X) s(p —ip-x + b;TVS(p)eip-x} '

(27r)3 1 /_QEP Z

where p® = E, = /|p|2 + m2. The only non-vanishing anti-commutation relations
are

{a;, aff} = {b[,, bZT} = (2m)38%(p — q)6".
The Hamiltonian H and the operator Q are given by

(27r ZE astas + byiby)

Q - /W 5;2 (af,Tag — b‘s;rb,s,) .

(i) Define the vacuum state |0) and the single particle states |p,s,e™) and
|p, s, et). What do the labels p, s and e* denote?

Define a two-particle state, and show that the particles are fermions.
[6 marks]

(i) Show that

ajaglp.s,e”) = (2m)*6(p— q)6" |, r, e7),

byibglp, s ey = (2m)*6¥(p — q)6™° |q. r, ™).
Hence show that |0), |p,s,e”) and |p, s, e™) are eigenstates of H and Q and
give the eigenvalues. [6 marks]

(iii) Next consider the interacting Yukawa theory with Lagrangian density
L = 38,00 ¢ — SM*¢* + 4 (iv0, — m) b — gpip.

Consider the process of an et state with momentum p and spin r scattering
with a ¢ particle with momentum k to produce an e™ state with momentum
p’ and spin r’ and a ¢ particle with momentum k’. Draw two Feynman dia-
grams that contribute to this process at order g?. Using the Feynman rules
in momentum space (which need not be stated or proved), write down the
contribution to the matrix element /M of both of the diagrams. (One may
ignore the overall sign of the diagrams). [8 marks]

[Total 20 marks]
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5. This question concerns ¢*-theory. The scattering matrix S can be written

S = T[exp(//d4x£’(x))]
with interaction Lagrangian density

L= d*x¢*(x)

41
where ¢(x), in the interaction picture, can be written ¢(x) = ¢ (x) + ¢~ (x) where
d®p 1 -
(x :/——a e P,
¢ ( ) (27(')3 /—2Ep P

d®p 1

P )= | Gap JoE

where E, = p° = /p2 + m?.

(i) Show that

T Aip-x
ape ,

3
(67 (x), ¢~ (v)] = / (;Wl;32_;)e—ip~(x—)/)
[2 marks]
(i) Show that
T(@(x)¢(y)) = N(@(x)¢(y)) + De(x — y)
where the Feynman propagator is given by
De(2) = &p 1 (0(z°)e ™7 + 6(—2")e"?) .
(2m)3 2E,
Also, state, without proof, Wicks theorem. [4 marks]

(iii) Consider the scattering of 2 particles with momenta ki, k> into n particles with
momenta py, ..., pn. The scattering amplitude iM can be written as

(P1, .. poli Tk, ko) = (2m)*6@ (X) iM

where T is defined via § = 1 +17. Why is the 1 contribution not included?
What is the argument, X, of the delta function. What is the physical meaning
of the -function? [3 marks]

(iv) Write down the Feynman rules in momentum space for the calculation of the
connected amputated diagrams contributing to iM. (You do not need to
discuss possible symmetry factors). [5 marks]

(v) Consider the scattering of 2 particles into 6 particles at order A3. Write down
two Feynman diagrams with distinct topology (i.e. they cannot be obtained by
relabelling momenta), contributing to /M at this order and use the Feynman
rules in momentum space to calculate the contribution for both diagrams.

[6 marks]

[Total 20 marks]
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