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1. Consider a real interacting scalar field φ(x) described by the Lagrangian density

L =
1

2
∂µφ∂

µφ−
m2

2
φ2 −

λ

4!
φ4

First consider the classical theory.

(i) Use the Euler-Lagrange equations to write down the classical equation of mo-

tion for φ.

The energy momentum tensor is defined to be

T µν = ∂µφ∂νφ− ηµν
(

1

2
∂σφ∂

σφ−
m2

2
φ2 −

λ

4!
φ4
)

Show that it is conserved, ∂µT
µν = 0, using the equations of motion.

Define four corresponding Noether charges P µ and show that they are time

independent.

What is the underlying physical reason for the existence of these charges?

[8 marks]

(ii) Derive the momentum density field π that is conjugate to φ and construct the

Hamiltonian density H ensuring that you write it in terms of φ and π.

Obtain the Hamiltonian H and verify that it is equal to P 0. [5 marks]

Now consider the quantum theory described by L.

(iii) Let φ(t, xxx) and π(t, xxx) be operators in the Heisenberg picture.

Write down all of the equal time commutation relations.

Use these and the Heisenberg equation of motion

i π̇(t, xxx) = [π(t, x), H]

to show that the field operator φ(t, xxx) satisfies the classical equation of motion

that you derived in (i). You should write H in terms of the Hamiltonian density

and you can use the identity [A,BC] = [A,B]C + B[A,C]. [8 marks]

(iv) Consider the scattering of 2 particles with momentum p1, p2 into 4 particles

with momentum k1, k2, k3, k4 at order λ2.

Write down two Feynman diagrams with distinct topology (i.e. they cannot be

obtained by relabelling the outgoing momenta), contributing to the scattering

matrix element iM at this order.

Use the Feynman rules in momentum space (which need not be stated or

proved) to write down the contribution to the scattering matrix element iM
for both diagrams.

Is energy conserved in this process? [9 marks]

[Total 30 marks]
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2. Consider the quantum theory of a free complex scalar field φ(x) which can be

expanded as

φ(x) =

∫
d3p

(2π)3
1√
2Eppp

(
apppe−ip·x + b†pppeip·x

)
,

where Eppp =
√
ppp2 +m2 and pµ = (Eppp, ppp). The operators appp, a†ppp, bppp and b†ppp satisfy

the commutation relations[
appp, a

†
qqq

]
=
[
bppp, b

†
qqq

]
= (2π)3δ(3)(ppp − qqq), (1)

with all other commutators vanishing.

(i) Describe the Hilbert space of particle states. In particular define the vacuum

|0〉 and describe all the single-particle states and all the two-particle states.

Argue that the particles are bosons. [8 marks]

(ii) Given the relations (1), show that the unequal-time commutator can be written

as [
φ(x), φ†(y)

]
=

∫
d3p

(2π)3
1

2Eppp

(
e−ip·(x−y) − eip·(x−y)

)
.

Show that this expression implies that the equal-time commutator for φ and

φ† vanishes. [8 marks]

(iii) You are given that δ(x2 − a2) = 1/(2a) [δ(x − a)− δ(x + a)].

Show that the expression for
[
φ(x), φ(y)

]
given in part (ii) can be rewritten as

[
φ(x), φ†(y)

]
=

∫
d4p

(2π)3
δ(p2 −m2)e−ip·(x−y),

where d4p = d3p dp0.

Comment on the Lorentz transformation properties of this expression.

What is the form of
[
φ(x), φ†(y)

]
when (x − y)2 < 0?

Briefly discuss the physical significance of this result. [8 marks]

(iv) Consider the Feynman propagator

DF (x − y) = 〈0|Tφ(x)φ†(y)|0〉.

What does “T” denote? Write an expression for Tφ(x)φ†(y) using the Heavi-

side step function θ(t).

Argue that, despite its definition, Tφ(x)φ†(y) is a properly Lorentz covariant

operator.

[6 marks]

[Total 30 marks]
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3. The Clifford algebra is given by
{
γµ, γν

}
= 2ηµν14 where 14 is the 4 × 4 identity

matrix. In the Weyl basis the gamma matrices can be written as

γ0 =

(
0 12

12 0

)
, γ i =

(
0 σi

−σi 0

)
, (1)

where σi are the Pauli matrices satisfying σiσj = δi j + iεi jkσk .

(i) Defining Sµν = 1
4

i
[
γµ, γν

]
, show that in the Weyl basis Si j = 1

2
εi jk
(
σk 0

0 σk

)
.

[6 marks]

Under a Lorentz transformation, parametrised by ωµν = −ωνµ, a scalar field φ(x)

and a Dirac spinor field ψ(x) transform as

φ(x)→ φ′(x) = φ((Λ−1)µνx
ν)

ψ(x)→ ψ′(x) = Λ1/2ψ((Λ−1)µνx
ν)

where Λ1/2 = exp(− i
2
ωρσS

ρσ) and Λµν = exp(ω)µν = δµν + ωµν + . . . .

(ii) For a rotation in the 1-2 plane, for which the only non-vanishing components

of ω are ω12 = −ω21 = θ, calculate Λ1/2 and Λµν.

Deduce what happens to φ(x) and ψ(x) under a rotation of 2π and 4π.

[10 marks]

Now let ψ(x) satisfy the Dirac equation

(iγν∂ν −m)ψ = 0

(iii) By considering (iγµ∂µ +m)(iγν∂ν −m)ψ, show that ψ(x) satisfies the Klein–

Gordon equation.

Assuming a plane-wave solution of the form ψ(x) = u(p)e−ip·x or ψ(x) =

v(p)eip·x where p0 > 0, give the condition on p2 and show that

(pµγµ −m) u(p) = 0, (pµγµ +m) v(p) = 0.

[7 marks]

(iv) Show that, in the rest frame where pµ = (m, 0), the general solutions for

u(m, 0) and v(m, 0) in the Weyl basis are

u(m, 0) =

(
ξ

ξ

)
, v(m, 0) =

(
ξ′

−ξ′
)
,

where ξ and ξ′ are two-component vectors.

State what the four independent states, two for ξ and two for ξ′, correspond

to physically in the quantum theory. [7 marks]

[Total 30 marks]
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4. Consider the interacting Yukawa theory with Lagrangian density

L = 1
2
∂µφ∂

µφ− 1
2
M2φ2 + ψ̄ (iγµ∂µ −m)ψ − gφψ̄ψ.

(i) What is the dimension, in units of mass, of g?

Writing L = L0 +Lint, give the free Lagrangian density L0 and the interaction

Lagrangian density Lint.
Writing the corresponding Hamiltonian density in a similar way, H = H0+Hint ,
show that Hint = −Lint.

[8 marks]

(ii) In the interaction picture the evolution operator U(t) satisfies the two condi-

tions

i U̇ = HintU, U(−∞) = 1

Show that the following expression satisfies these conditions

U(t) = 1− i
∫ t

−∞
dt1Hint(t1)U(t1)

By iterating this expression, working to second order in Hint , show that we can

write

U(t) = Texp[−i
∫ t

−∞
dt1Hint(t1)]

≡ 1− i
∫ t

−∞
dt1Hint(t1) +

(−i)2

2

∫ t

−∞

∫ t

−∞
dt1dt2T [Hint(t1)Hint(t2)] + . . .

where T denotes time-ordering.

Hence, defining S = U(+∞), show that we can write

S = Texp[i

∫
d4xLint(x)]

[9 marks]

(iii) Consider the process of a fermion state |p1, r1, e−〉 with momentum p1 and

spin r1, annihilating an anti-fermion state |p2, r2, e+〉 state with momentum p2
and spin r2, to form two scalar particles with momentum k1 and k2. Draw

one Feynman diagram that contributes to this process at order g2. Using the

Feynman rules in momentum space (which need not be stated or proved), write

down the contribution to the scattering matrix element iM for the diagram.

(One may ignore the overall sign of the diagram). [8 marks]

(iv) In the scattering process considered in (iii) the net number of fermions minus

the number of anti-fermions in the initial state and the final state are the same.

Explain why this is true in any scattering process in this theory. [5 marks]

[Total 30 marks]
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