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1. Consider a real interacting scalar field ¢(x) described by the Lagrangian density
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First consider the classical theory.

(i) Use the Euler-Lagrange equations to write down the classical equation of mo-
tion for ¢.
The energy momentum tensor is defined to be

wy . AQu v uy 1 log m2 2 A 4
TH = 040"d —n (Ema b 50 _W)
Show that it is conserved, 6, T#” = 0, using the equations of motion.
Define four corresponding Noether charges P* and show that they are time
independent.
What is the underlying physical reason for the existence of these charges?
[8 marks]

(i) Derive the momentum density field 7 that is conjugate to ¢ and construct the
Hamiltonian density H ensuring that you write it in terms of ¢ and .
Obtain the Hamiltonian H and verify that it is equal to P°. [5 marks]

Now consider the quantum theory described by L.

(i) Let ¢(t, x) and 7(t, x) be operators in the Heisenberg picture.
Write down all of the equal time commutation relations.
Use these and the Heisenberg equation of motion

im(t, x) = [n(t, x), H]

to show that the field operator ¢(t, x) satisfies the classical equation of motion
that you derived in (i). You should write H in terms of the Hamiltonian density
and you can use the identity [A, BC] = [A, B]C + B[A, C]. [8 marks]

(iv) Consider the scattering of 2 particles with momentum py, p» into 4 particles
with momentum kq, ko, ks, ka at order A\2.
Write down two Feynman diagrams with distinct topology (i.e. they cannot be
obtained by relabelling the outgoing momenta), contributing to the scattering
matrix element /M at this order.
Use the Feynman rules in momentum space (which need not be stated or
proved) to write down the contribution to the scattering matrix element /M
for both diagrams.
Is energy conserved in this process? [9 marks]

[Total 30 marks]
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2. Consider the quantum theory of a free complex scalar field ¢(x) which can be
expanded as

d3 1 —ip-x ip-x
¢(X):/ﬁﬁ (ape p —{-b;ep ),

where E, = \/p2 + m? and p* = (E,, p). The operators a,, aj, b, and b}, satisfy
the commutation relations
[ap, al] = [bp. b}] = (271)*6® (p — q), (1)

with all other commutators vanishing.

(i) Describe the Hilbert space of particle states. In particular define the vacuum
|0) and describe all the single-particle states and all the two-particle states.
Argue that the particles are bosons. [8 marks]

(ii) Given the relations (1), show that the unequal-time commutator can be written
as

600 610)] = [ 525 (0 - o).
' (2m)3 2E,
Show that this expression implies that the equal-time commutator for ¢ and
¢' vanishes. 8 maric]

(iii) You are given that §(x> — a%) = 1/(2a) [6(x — a) — 6(x + a)].
Show that the expression for [¢(x), ¢(y)] given in part (ii) can be rewritten as

d*p -
T _ 2 2\ —ip(x—Yy)
600.8/0)] = [ 80 = m)e PO,
where d*p = d3p dp°.

Comment on the Lorentz transformation properties of this expression.

What is the form of [¢(x), ¢'(y)] when (x — y)? < 07

Briefly discuss the physical significance of this result. [8 marks]

(iv) Consider the Feynman propagator

Dr(x —y) = (0]T¢(x)8'(v)|0).

What does “T" denote? Write an expression for T¢(x)¢'(y) using the Heavi-
side step function 6(t).

Argue that, despite its definition, T¢(x)¢'(y) is a properly Lorentz covariant
operator.

[6 marks]

[Total 30 marks]
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3. The Clifford algebra is given by {7“,7”} = 2n*14 where 14 is the 4 x 4 identity
matrix. In the Weyl basis the gamma matrices can be written as

R I A N

where ¢’ are the Pauli matrices satisfying o'c? = §Y + ie/ko*.

K
(i) Defining S¥ = Zi[y*, "], show that in the Weyl basis S¥ = 1€l (UO aok)-

[6 marks]

Under a Lorentz transformation, parametrised by w,, = —w,,, a scalar field ¢(x)
and a Dirac spinor field ¥(x) transform as

B(x) = ¢'(x) = (A", x")
P(x) = YP'(x) = Al/zw((A_l)“uXU)
where Ay o = exp(—éwposp") and A\¥, = exp(w)#, = 0% +wH, + .. ..

(i) For a rotation in the 1-2 plane, for which the only non-vanishing components
of w are wip» = —w»o; = 0, calculate Ay o and A%,
Deduce what happens to ¢(x) and ¥(x) under a rotation of 27 and 4.
[10 marks]

Now let ¥(x) satisfy the Dirac equation
(778, —m)yp =0

(iii) By considering (iv*8, + m)(iv*8, — m)¥, show that ¥ (x) satisfies the Klein—
Gordon equation.

Assuming a plane-wave solution of the form (x) = u(p)e P> or ¥(x) =
v(p)eP* where p® > 0, give the condition on p? and show that

(P#Yu — m) u(p) =0, (P#Yu + m) v(p) = 0.

[7 marks]

(iv) Show that, in the rest frame where p* = (m,0), the general solutions for
u(m,0) and v(m, 0) in the Weyl basis are

=) o= (%)

where £ and £ are two-component vectors.
State what the four independent states, two for € and two for &, correspond
to physically in the quantum theory. [7 marks]

[Total 30 marks]
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4. Consider the interacting Yukawa theory with Lagrangian density
L= 38,000 — SM*¢” + 9 ("0, — m) Y — g,

(i) What is the dimension, in units of mass, of g7
Writing £ = Lo + Lint, give the free Lagrangian density £y and the interaction
Lagrangian density Lin:.
Writing the corresponding Hamiltonian density in a similar way, H = Ho+ Hine,
show that Hinw = —Lint.
[8 marks]
(ii) In the interaction picture the evolution operator U(t) satisfies the two condi-

tions
iU= HpU, U(—o0) =1

Show that the following expression satisfies these conditions

Ut)=1- //t dtiHine(t1)U(t1)

By iterating this expression, working to second order in H;,:, show that we can
write

t

u(t) = Texp[—// dtiHine(t1)]

—0o0

' t — 2 t t
=1-— I/ dtll_/,',,t(tl) + ( 2) / / dtldt2T[Hint(tl)Hint(t2)] + .
where T denotes time-ordering.

Hence, defining S = U(4o00), show that we can write

S= TeXp[//d4X£int(X)]

[9 marks]

(iii) Consider the process of a fermion state |py, r1, €7) with momentum p; and
spin r;, annihilating an anti-fermion state |p», 1>, ) state with momentum p»
and spin rp, to form two scalar particles with momentum k; and k. Draw
one Feynman diagram that contributes to this process at order g2. Using the
Feynman rules in momentum space (which need not be stated or proved), write
down the contribution to the scattering matrix element /M for the diagram.
(One may ignore the overall sign of the diagram). [8 marks]

(iv) In the scattering process considered in (iii) the net number of fermions minus
the number of anti-fermions in the initial state and the final state are the same.
Explain why this is true in any scattering process in this theory. [5 marks]

[Total 30 marks]
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