
QFT Exam Summer 2016
Post Exam Comments for Students1

General Comments on QFT course.

This course was given for the first time by Tim Evans in the Autumn of 2014. The current course
dropped the previous emphasis on fermions and on the Lorentz group. This course focusses on
the basics of QFT by using scalar fields alone, taking students through to the Feynman diagrams
needed for the cross section calculation in a simple scattering process. Classical fermions and the
Dirac equation were discussed in one lecture only but the material was not examinable for this
course.
The ideas in QFT are challenging as many concepts are hard to visualise and are out of our
everyday experience e.g. what is a quantum field. The algebra is often at the limit of our 4th year
MSci students’ experience, e.g. operators, contour integration, though they are all well within
the students’ capabilities. So this course provides them with the chance to gain experience with
such techniques. Still students find the wealth of tricks and nomenclature quite confusing and
the undergraduates get no chance to use these ideas at other times in their final year. The one
exception is the use of classical scalar fields in the Unification course but there the emphasis is on
symmetry and that aspect is hardly discussed in this course.
The course is also taken by a wide range of MSc students but my aim is to ensure that this
examination satisfies the requirements of a typical fourth year MSci exam.
I tried to keep the questions in this exam fairly close to the lecture and problem sheet material.
Length of question should prove the main challenge as a good understanding will be needed to
work through the algebra quickly.

1. This material was covered in the lectures but with several details skipped over. The use of
equations of motion to derive the classical form of the conserved current for a single complex
scalar was given in the lectures. The rest of the question was part of PS4 Q4 though it
was not covered in a rapid feedback nor marked as important. It is largely an exercise in
manipulation of annihilation and creation operators which also formed the bulk of PS1 and
PS4.

(i) I expected students to derive the expression for the current from the Lagrangian density
given. However I did accept solutions which started from some general expression for
current in terms of derivatives of a Lagrangian density which students had memorised.
The simplest approach here was to insert the given expression for Jµ into the conserved
current equation ∂µJ

µ = 0 to show it is true, which still needs the use of the equations
of motion.

Students were generally bad at handling the f in the Lagrangian density though most
of time students ignored the problems they caused to get the right answer anyway.
The function f is usually a polynomial but in any case it is a normal function and you
should just use f ′ to denote its derivative. So for the usual form for a complex field
we would have f(Φ†Φ) = m2Φ†Φ + (λ/4)(Φ†Φ)2 which means that f is nothing but
f(x) = m2x + (λ/4)x2. This was only meant to save students from writing down two
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terms when one with f ′ would do but clearly this hindered rather than helped students.
You need to realise that

∂

∂Φ
f(Φ∗Φ) =

∂(Φ∗Φ)

∂Φ

df(z)

dz

∣∣∣∣
z=Φ∗Φ

(1)

= Φ∗
df(z)

dz
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z=Φ∗Φ

(2)

= Φ∗f ′(Φ∗Φ) (3)

(ii) The expression for the field was given at t = 0 while this question requires the time
derivative of the field. This should be standard knowledge with the equation for the field
only present to define the notation which it does successfully. The biggest problem here

is that many students could not combine the two terms in J0, the −i(∂tΦ̂†(x))Φ̂(x) and
its hermitian conjugate (exploiting that property saves time). The b̂†b̂ and ĉ†ĉ terms
should add together while the ĉb̂ and b̂†ĉ† terms should cancel. With the wrong sign
you get a commutators [b̂†, b̂] and [ĉ†, ĉ] but the ĉb̂ and b̂†ĉ† terms now no longer cancel,
a clear indicator of a problem. I suspect some students expected a commutator and
then ‘made’ the annoying terms go away.

The resulting expression is

Q̂ =

∫
d3p

(2π)3

(
ĉ†pĉp − b̂†pb̂p

)
+ infinite c-number . (4)

The real point of the question is that the two terms are number operators for the two
types of scalar particle. These have to be interpreted as showing that the particles
created by ĉ† have the opposite charge of their anti-particles b̂† because of different sign
in the expression.

(iii) Just basic practice manipulating free field expressions. I expected students to be famil-

iar with the expression for Q̂ so they could have done this part from that knowledge.

The physics at the end is to emphasise that Φ̂ and Φ̂† are eigenstates of charge. That is

Φ̂ and Φ̂† act on any state to increase or decrease the conserved charge by one. While
this is like the effect of the particle and anti-particle annihilation and creation operators
in the previous part, there is an important difference. The field Φ̂ is not “the particle

field” and Φ̂† is not “the anti-particle field”. Both these fields contain both particle
(b̂,b̂†) and anti-particle (ĉ,ĉ†) contributions. In fact the excitations created by fields
are a superposition of pure particle and pure-antiparticle states in the usual quantum
mechanical sense of a superposition. The reason these fields are useful is that the
particle and anti-particle contributions appear in opposite senses. One field has terms
which add one particle and other terms remove one anti-particle so the net change on
a state when acted on by such a field is to add one unit of charge to the state — fields
are eigenstates of charge. The other field, the hermitian conjugate, will do the reverse.
Neither the number of particles nor the number of anti-particles is conserved when
acting a field on a state.

By way of contrast we could use the real field representation φ̂1 = (Φ̂ + Φ̂†)/
√

2 and

φ̂2 = −i(Φ̂ − Φ̂†)/
√

2 and that captures the physics perfectly well. However it is not
the best basis for this work because φ̂1 and φ̂2 when acting on state do not change
that state by a definite amount of the conserved charge. These real scalar fields are
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not eigenstates of charge and as such as not naturally reflecting the physics of problem.
Using them will lead to more complicated calculations though you would eventually get
the right answer. The real scalar fields are expressed in terms of â1p = (b̂p+ĉ†−p)/

√
2 and

â2p = −i(b̂p− ĉ†−p)/sqrt2 which are legitimate annihilation operators but the conserved
charge is not given in terms of the number of these quanta making these quanta a poor
match to the physics but again you can do the calculations with them if you try.

2. Wick’s theorem is a core part of the course. It is covered in lectures, problems sheets and
in a rapid feedback class. Part (i) and (ii) are special cases of PS5, Q3. Part (iii) is also one
example from PS5, Q3 while (iv) is part of PS5 Q4.

(i) When answering an exam question where the focus is on a definition, it is not enough
to give loose definition. When you are busy answering a question on a different topic
but a definition or theorem is used in passing, then a quick note about the definition
rather than a lengthy full definition would be appropriate.

Here is clearly a case where a proper formal definition of normal ordering is needed.
Say that normal ordering moves “φ+ to the right and φ− to the left” begs the question
to the left/right of what or what about the order within the φ+ themselves? Too many
students failed to give a careful definition.

The normal ordered product of fields contains a term with just φ− so it is not enough
to say φ̂+| 0〉 ∼ â| 0〉 = 0 when explaining why expectation values of normal ordered
products are zero here.

(ii) Again, this called for a precise definition of Time Ordering. Phrases such as “latest
times to the left” were often seen. This phrase leaves open several questions: time of
what (fields), move what to the left (fields of the latest times?), to the left of what
(fields at medium and early times?), and how late does the time of a field have to be
to be the latest? After that still have to tell the examiner how late and early time
fields are ordered within themselves. Yes, all students writing brief things like that
probably know what time ordering means but full marks could only be given for a
proper definition. Yes writing a formal definition is a bit annoying and painful but
this is the only time you have to do it, namely in explicit requests for definitions in a
question like this.

(iii) Generally well done.

(iv) Generally well done.

3. The discussion of the U operator is in PS5, Q2 in great detail, and was also covered in a
rapid feedback class. The question here, part (i), is simpler than in the PS as here the result
is given. The main focus of this question is on the difference between the physical (|Ω〉) and
the free (| 0〉) vacuum. The example given here, the full propagator in λφ4, was studied in
the last problem sheet (PS7, Q1) and covered in the last rapid feedback class at the start
of the Spring term but this problem was not explicitly covered in lectures. The question in
PS7 covered many aspects and the nature of vacuum diagram contributions discussed here
was just one small part or the problem sheet.
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(i) This part was poorly done. You need to start by arguing why the interaction Hamilto-
nian Hint in the S matrix can be replaced by the full Hamiltonian.

(ii) You just apply the result from part (i), you don’t need to do some lengthy derivation.

(iii) Too many people forgot the lowest order term in the perturbative expansion of Z,
namely 1, i.e. Z = 1 + λz1 +O(λ2).

(iv) In this part you only needed some simple expansions but the lowest order term of Z is
essential. Many peoplemissed this and could not express the expansion of Πc as series
in λ.

4. This is about φ→ ψψ̄ decay in Scalar Yukawa Theory, taken from Problem Sheet 6. We only
looked at the tree level g1 calculation in lectures. We have, however, used the same model
and various ψψ and ψψ̄ scattering processes as the primary example in this course. So similar
results and diagrams appear in lectures, in problem sheet questions marked “important”, in
the New Year tests (made available to all students) and in the 2015 exam. So the Feynman
rules should be very familiar and other parts mimic very closely what was asked in similar
questions. This year was much better than last year in terms of the Feynman rules and
diagrams.

(i) Book work. Don’t forget that in the formula used in lectures the times of the in (out)
fields in the Green function need to be taken to −∞ (+∞). If you used the LSZ formula
then the question asked for a derivation so that needed to be given.

(ii) Don’t forget the rules for external legs. That is for each field in the Green function
there is an external vertex with that coordinate, the coordinate is not integrated over
(as you do with internal vertices) but you do have one leg/line/edge coming out of that
vertex corresponding to the appropriate explicit field in the Green function (not a field
from the S matrix).

(iii) Generally well done.

(iv) Generally well done. There were six third order O(g3) diagrams that did not contain
tadpoles (which, as stated in the question, were excluded but they did not lose marks if
given). Of these the two that students most often forgot (one,or sometime both) were
B and E in figure 1.
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Figure 1: The Feynman diagrams for the full Green function describing the decay φ → φψ̄ in
Scalar Yukawa theory showing all contributions up to O(g3).

5


