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1. Consider the Lagrangian for two free real scalar fields ¢;(z) € R (i = 1,2) where
both fields have the same mass parameter

m? m?
2 2

L= %(%%)(8“@) (¢1)2+%(au¢2)(8“¢2) (¢2)2_g ((61)* + (¢2)2))2 (1)

The Euler-Lagrange equations in terms of some generic field ¢ may be written as

oL oL
(i) Define a complex scalar field
D(2) = —= (¢1(z) + ida(a)) (3)

V2

Show that the Lagrangian density for the complex scalar field is given by
A
L= (9,0*)(0"P) — m*®*d — Z(Cb*q)f (4)

where you must give an expression for A in terms of g.
Find the equations of motion for the complex fields ® and ®*.

[8 marks]
(i) Consider J, where
Ju = 04(0,8) - (9,8). (5)
Show that this current is conserved provided that ® and ®* satisfy the equation
of motion. [12 marks]

(iii) Note: in this part we do not use natural units.

Consider a line of N identical masses of mass M. In cartesian coordinates the
n-th mass lies in equilibrium at coordinates (0,0,na) for n =0,1,2,..., (N —
1). The interactions are such that when disturbed, the masses can only move
perpendicular to the line, i.e to (z,(t), y,(t), na) with dynamics described by
Lagrangian L

L AL M 0) — a6 — 2 a0
+M(yg(t)) - M; 2 (Yt (1) = ya(1))* = MQQ (yn(1))?

G (a0 + (0] (6)

where ,,(t) = dz,(t)/dt, y,(t) = dy,(t)/dt and G is a real coupling constant.
We enforce periodic boundary conditions and define zy(t) = x¢(t) and yn(t) =
Yo(t). Show that in the N — 00, a — 0 limit we can rewrite this as the classical
field theory (4). You should identify ®(z), a complex field in two space-time
dimensions, in terms of z,(t) and y,(¢). You should also identify expressions
for m and A of (4) in terms of the parameters in (6). [10 marks]

[Total 30 marks]
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2. In this question all fields and conjugate momenta are in the Heisenberg represen-
tation.

In the special case of a non-interacting theory, a free scalar field takes the form

—~ d3 1 , )
a1 = [ 801 e sy = |

2m)3 /2w,
The annihilation and creation operators obey the following commutation relations
ap,a}] = 21)°*(p—q),  [ap,aq] = [a},a)] = 0. (2)

(i) Generalise the form of the free scalar field in the Heisenberg picture (1) and
the corresponding annihilation and creation operator commutator relations,
(2), for the case of a pair of non-interacting free real scalar fields qgl and (52
sharing the same mass m.

Calculate the four Wightman functions D;;(x — y) = (0|q31(x)gz§] ()] 0) (4,5 =
1,2) for two fields in terms of an integral over three-momentum, the dispersion
relation wy, and the difference in the space-time coordinates x and y.

Show that these are zero or they can be expressed in terms of one function
D(x —y) where, for 2 = (t,x), we have

d3p 1 —iwpt+ip-x

Find expressions for the following Wightman functions for the complex scalar
field ®(z) = &= (q@ﬂx) + zq@ﬂx)) in terms of D(xz — y) of (3)

() Dale = 1) = (8()2(0)|0),
(b) Di(x —y) = (0](x)d7(y)|0).
(©) Doz —y) = (0&1(x)b(y)|0).
(d) Dp(x —y) = (0]&1(x)1(4)|0).

[14 marks]

(ii) Calculate the vacuum expectation value of the following time-ordered products
in terms of D(x — y) of (3)

() Aa(z —y) = (0]Td(2)2(y)| 0),
(b) Ao~ y) = (0 T(a)bl(1)] 0),
(©) e —y) = (0TI (2)(y)] 0,
(d) Ap(z —y) = (0T ()P (y)] 0).
[6 marks]
(iii) By performing the integral over pg, show that A(x —y) = Ag(x — y) where
T — ) — d4p e~ P(z—y) —i
Ma=y) = [ Gz e a
[10 marks]

[Total 30 marks]
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3. (i) A real scalar field operator qg(x) is split into two arbitrary parts,

o(x) = ¢*(x) + ¢~ (2). (1)
Define normal ordering in terms of the arbitrary split of this field.

Define time ordering.
—

Define a contraction Az — y) = ¢(z)d(y).
[8 marks]
(ii) State Wick’s Theorem.
Using Wick’s theorem, write down an expression for the time ordered product
of the scalar field at four distinct locations, i.e. T (qg(xl)gzg(xg)qg(xg)qg(m))

This should be given in terms of the normal ordered products of two and four
field operators, and in terms of the contractions A;; = A(x; —z;). You should
assume the contraction is a c-number but otherwise you should assume the
split of the field is arbitrary.

What condition do we use to fix the choice of ¢*(x) and ¢~ (z)?

For an arbitrary state | 1), find an expression the expectation value

G2, w2, w3, 74) = (V[T (¢(21) P (w2) P (w3)d(4)) [ ) - (2)
in terms of the corresponding two-point function (¢)|T (q%(xl)qg(xgw | ).
[12 marks]
(iii) A real scalar field in the interaction picture is given by
o d3p 1 ~ —lwpt+ip-x ~T Jiwpt—ip-x
tw) = [ i (e i

where w, = ’\/ p?+ mQ‘ and the annihilation and creation operators obey

their usual commutation relations
ap,al] = (2m)%0%(p — q) lap, ag) = [al,al] = 0. (4)

The two-point Wightman function D(z — y) = (0|¢(x)¢(y)|0) is defined in
terms of the vacuum state |0) annihilated by a,, so that a,|0) = 0. This is
given by

EBp 1
D _ [ &P iwpttipa
(t, ) /(2%)32%,6 (5)

By direct substitution find an expression for the four-point Wightman function
W (zy, xg, x3, x4) where

W (@1, 22,23, 24) = (0](21)P(22)P(23)P(24)] 0) , (6)

in terms of the Wightman function D(z) of (5).

Comment on the relationship between your answer for W(xy, z9, x3, 24) in (6)
and your general result for G(xy, z9, x3,24) in (2). [10 marks]

[Total 30 marks]
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4. The scalar Yukawa theory for real scalar field ¢ of mass m and complex scalar
field v with mass M has a cubic interaction with real coupling constant ¢ giving a
Lagrangian density of the form

L= 5(0,0)(0"0) — 3m*6 +(0,0)(0"0) — M1 — g0l (D)o(@)(a) . (1)

In the interaction picture, the field operators take the form

b = [ B e + ) = wlp) = [ Ve

(2m)* /2w (p)

) d’p 1 7 —ipz | A ipw _ _ 2 2
60 = [ s e G 4 @) = 0p) = [V

(3)

where the annihilation and creation operators obey their usual commutation rela-
tions

la(p),a(q)] = (27)**(p—q),  [a(p),a(q)] = [a'(p),a'(g)] =0.  (4)

The b and ¢ annihilation and creation operators obey similar commutation relations
while the different types of annihilation and creation operator always commute e.g.

[i(p),b(q)] = 0.
Consider the case of ¥ — ) scattering with incoming 1 particles of three-

momenta p; and p, while the outgoing ¢ particles have three-momenta q, and gq,.
We will define the matrix element M

M= (fIS]i) = A (0lb(q1)b(q2) Sb' (p1)b' (p2)] 0) (5)

where A = (16Q(p1)Q(p2)Q2(q1)2(g2))*/? for the normalisation of operators and
states used here. The state |0) is the free vacuum state annihilated by all the
annihilation operators a(p), b(p) and ¢(p). All quantities are given in the interaction
picture.

(i) Starting from the form of the fields (or otherwise), derive the relationship
between the matrix element M of (5) and the corresponding Green function,
G(z1, 22, Y1, Ya), for 1h — 1) scattering in Scalar Yukawa Theory of (1), where

Gz, 22,1, 92) = (OTY(20)¥(22)9" (y1)¥" (32) 5] 0) . (6)
[10 marks]
(ii) Define the Feynman rules for the scalar Yukawa theory of (1). [5 marks]

(iii) Draw the Feynman diagrams which contribute to G of (6) up to and including
terms of order g%

For each of these diagrams specify
(a) the symmetry factor,
(b) the number of loop momenta.

[This question continues on the
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For each of the following features identify one diagram of those you have
written down above which contains that feature as a subdiagram

(a) a vacuum diagram,

(b) a contribution to the vacuum expectation value of ¢, i.e. (0|¢]0),
(c) a self-energy correction to the v field propagator.

[15 marks]

[Total 30 marks]

6 End of examination paper



