## Quantum Field Theory - Xmas Test Jan 2006

Complete all three questions - 2 hours

1. Consider the Lagrangian density for a free real scalar field

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}
$$

(i) Show that the Euler-Lagrange equations give rise to the Klein-Gordon equation (3 marks)

$$
\left(\partial^{2}+m^{2}\right) \phi=0
$$

(ii) Define the momentum density field $\pi$ and derive the Hamiltonian of the field. marks)
(iii) The energy momentum-tensor is given by

$$
T^{\mu \nu}=\partial^{\mu} \phi \partial^{\nu} \phi-\eta^{\mu \nu} \mathcal{L}
$$

Show that $\partial_{\mu} T^{\mu \nu}=0$ using the Euler-Lagrange equations of motion. (4 marks)
(iv) Define four corresponding Noether charges $P^{\mu}$ and show that $P^{0}=H$ (the Hamiltonian). What is the significance of $P^{i}$ ? marks)
(v) Consider now the quantum theory of the scalar field $\phi$. Write down the equal time commutation relations satisfied by the Heisenberg operators $\phi$ and $\pi$. Use them to show that

$$
\begin{aligned}
{\left[P^{0}, \phi(x)\right] } & =-i \partial^{0} \phi(x) \\
{\left[P^{i}, \phi(x)\right] } & =-i \partial^{i} \phi(x)
\end{aligned}
$$

(Do not use the expansion of $\phi$ in terms of creation and annihilation operators. You may also use the fact that $P^{\mu}$ are time independent.)
2. The Dirac field in the Heisenberg picture can be expanded as

$$
\begin{aligned}
& \psi(x)=\int \frac{d^{3} p}{2 \pi^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} \sum_{s=1}^{2}\left(a_{\mathbf{p}}^{s} u^{s}(p) e^{-i p \cdot x}+b_{\mathbf{p}}^{s \dagger} v^{s}(p) e^{i p \cdot x}\right) \\
& \bar{\psi}(x)=\int \frac{d^{3} p}{2 \pi^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} \sum_{s=1}^{2}\left(b_{\mathbf{p}}^{s} \bar{v}^{s}(p) e^{-i p \cdot x}+a_{\mathbf{p}}^{s \dagger} \bar{u}^{s}(p) e^{i p \cdot x}\right)
\end{aligned}
$$

where $p^{0}=E_{\mathbf{p}}$. In addition

$$
\begin{gathered}
(p p-m) u^{r}(p)=0, \quad(p+m) v^{r}(p)=0, \\
u^{r \dagger}(p) u^{s}(p)=2 E_{\mathbf{p}} \delta^{r s}, \quad v^{r \dagger}(p) v^{s}(p)=2 E_{\mathbf{p}} \delta^{r s}
\end{gathered}
$$

and

$$
u^{r \dagger}\left(p^{0}, \mathbf{p}\right) v^{s}\left(p^{0},-\mathbf{p}\right)=0, \quad v^{r \dagger}\left(p^{0}, \mathbf{p}\right) u^{s}\left(p^{0},-\mathbf{p}\right)=0
$$

(i) Define the vacuum state, a single fermion state and a single anti-fermion state. marks)
(ii) Show that the Hamiltonian for the free Dirac field defined by

$$
\int d^{3} x \bar{\psi}(x)\left(-i \gamma^{i} \nabla_{i}+m\right) \psi(x)
$$

can be written in the form

$$
H=\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{s} E_{\mathbf{p}}\left(a_{\mathbf{p}}^{s \dagger} a_{\mathbf{p}}^{s}-b_{\mathbf{p}}^{s} b_{\mathbf{p}}^{s \dagger}\right)
$$

(iii) Calculate $<0|H| 0>$ and briefly comment on the result.
3. The Lagrangian density for an interacting Lorentz invariant quantum field theory can be written $\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}^{\prime}$ where $\mathcal{L}_{0}$ denotes the free Lagrangian density and $\mathcal{L}^{\prime}$ denotes the interaction terms. In the interaction picture, the evolution operator $S \equiv U(\infty)$ (the $S$-matrix) takes the form

$$
\begin{aligned}
S & =\operatorname{Texp}\left[i \int d^{4} x \mathcal{L}^{\prime}(x)\right] \\
& =1+i \int d^{4} x \mathcal{L}^{\prime}(x)+\frac{1}{2}\left(i^{2}\right) \int d^{4} x d^{4} x^{\prime} T\left[\mathcal{L}^{\prime}(x) \mathcal{L}^{\prime}\left(x^{\prime}\right)\right]+\ldots
\end{aligned}
$$

(i) What is the definition of the " $T$ " symbol?
(ii) Naively, the integrand $T\left[\mathcal{L}^{\prime}(x) \mathcal{L}^{\prime}\left(x^{\prime}\right)\right]$ is not Lorentz invariant when $\left(x-x^{\prime}\right)$ is a spacelike four-vector. Why is this not the case?
(iii) Assume now that $\mathcal{L}^{\prime}(x)=-(\lambda / 4!) \phi(x)^{4}$.
(a) Using Wick's theorem, which may be quoted without proof, write down the three types of terms that appear at order $\lambda$ (precise numerical coefficients are not required).
(4 marks)
(b) Draw a representative Feynman diagram corresponding to each of these three terms that contribute to the scattering of two $\phi$ particle to two $\phi$ particles. (4 marks)
(iv) Consider the process of $e^{-}$and $e^{+}$annihilating to give rise to two $\phi$ particles in Yukawa theory. Let $e^{-}$have momentum $p$ and $\operatorname{spin} r, e^{+}$have momentum $p^{\prime}$ and spin $r^{\prime}$ and the two $\phi$ particles have momentum $k$ and $k^{\prime}$. Draw the two Feynman diagrams that give a contribution to $i \mathcal{M}$ at order $g^{2}$ and evaluate both of them using the Feynman rules (ignoring the overall signs).

