

Quantum Electrodynamics Test

Monday, 8th January 2007, 2.00 pm – 4.00 pm

Attempt all three questions.

Question 1 is worth 20 marks.
Questions 2 and 3 are worth 10 each.

Question (1)

Consider a massive, non-interacting complex scalar field $\phi(x)$ with Lagrangian density

$$\mathcal{L} = \partial_\mu \phi \partial^\mu \phi^\dagger - m^2 \phi \phi^\dagger.$$

The quantum field can be expanded as

$$\phi(x) = \int \frac{d^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} (a_p e^{-ip \cdot x} + b_p^\dagger e^{ip \cdot x}), \quad (1)$$

where $E_p = \sqrt{\mathbf{p}^2 + m^2}$ and the four-vector p is given by $p^\mu = (E_p, \mathbf{p})$ with $x^\mu = (t, \mathbf{x})$.

1(a) If you treat $\phi(x)$ and $\phi^\dagger(x)$ as independent fields, what is the momentum density $\pi(x)$ conjugate to $\phi(x)$?

Explain which picture, Schrödinger or Heisenberg, is being used when we write the scalar field operator $\phi(x)$. Why is it more natural to use this picture when considering a relativistic theory?

Write down the equal-time commutation relations between $\phi(t, \mathbf{x})$ and $\pi(t, \mathbf{y})$.

[3 marks]

1(b) Assume that the operators a_p , a_p^\dagger , b_p and b_p^\dagger satisfy the commutation relations

$$[a_p, a_q^\dagger] = [b_p, b_q^\dagger] = (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{q}),$$

while all other commutators vanish.

Using the expansion (1), show that these relations imply the equal time commutation relations between $\phi(t, \mathbf{x})$ and $\pi(t, \mathbf{y})$.

[5 marks]

1(c) Show that \mathcal{L} is invariant under the transformation $\phi(x) \mapsto e^{-i\alpha} \phi(x)$.

The corresponding Noether charge can be written as

$$Q = \int \frac{d^3 p}{(2\pi)^3} (a_p^\dagger a_p - b_p^\dagger b_p).$$

Calculate $[Q, \phi(x)]$ and hence show that $i\alpha Q$ generates the infinitesimal variation $\delta\phi(x) = -i\alpha\phi(x)$.

[6 marks]

1(d) Describe how states in the free-field Hilbert space are built using the creation and annihilation operators a_p , a_p^\dagger , b_p and b_p^\dagger .

In particular define the vacuum, single particle and single anti-particle states. (You need not worry about fixing the normalisations of the states.) Show that these are all eigenstates of Q and give the eigenvalues.

[6 marks]

Question (2)

Consider the Lagrangian density for a free classical Dirac field $\psi(x)$

$$\mathcal{L} = i\bar{\psi}\gamma^\mu\partial_\mu\psi - m\bar{\psi}\psi,$$

where the gamma matrices γ^μ satisfy $\gamma^\mu\gamma^\nu + \gamma^\nu\gamma^\mu = 2\eta^{\mu\nu}\mathbf{1}_4$ and $\mathbf{1}_4$ is the 4×4 identity matrix, while $\bar{\psi} = \psi^\dagger\gamma^0$. In the Weyl realisation, the gamma matrices are given in terms of 2×2 blocks

$$\gamma^0 = \begin{pmatrix} 0 & \mathbf{1}_2 \\ \mathbf{1}_2 & 0 \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}, \quad (2)$$

where $\mathbf{1}_2$ is the 2×2 identity matrix and σ^i are the Pauli matrices satisfying $[\sigma^i, \sigma^j] = 2i\epsilon^{ijk}\sigma^k$.

2(a) Treating $\psi(x)$ and $\bar{\psi}(x)$ as independent fields show that the Euler–Langrange equations for $\bar{\psi}(x)$ give the Dirac equation

$$i\gamma^\mu\partial_\mu\psi - m\psi = 0, \quad (3)$$

while the Euler–Langrange equations for $\psi(x)$ give the conjugate equation

$$i(\partial_\mu\bar{\psi})\gamma^\mu + m\bar{\psi} = 0.$$

Show that if $\psi(x)$ satisfies the Dirac equation then

$$(\partial_\mu\partial^\mu + m^2)\psi = 0. \quad (4)$$

[3 marks]

2(b) Consider the positive and negative frequency plane wave solutions $\psi(x) = u(p)e^{-ip\cdot x}$ and $\psi(x) = v(p)e^{ip\cdot x}$, where $p^0 > 0$.

Using the results (3) and (4) show that $p^2 = m^2$ and that

$$(p^\mu\gamma_\mu - m)u(p) = 0, \quad (p^\mu\gamma_\mu + m)v(p) = 0.$$

Consider the rest frame where $p^\mu = (m, \mathbf{0})$. Using the realisation (2) of the gamma matrices, show that the general solution $u(m, \mathbf{0})$ to the first condition above can be written as

$$u(m, \mathbf{0}) = \begin{pmatrix} \xi \\ \xi \end{pmatrix},$$

where ξ is an arbitrary two-component column vector.

[4 marks]

Question (2) continues on next page \Rightarrow

Question (2) continued

2(c) Recall that Lorentz transformations Λ act on $\psi(x)$ by $\psi(x) \mapsto \Lambda_{1/2}\psi(\Lambda^{-1}x)$. For an infinitesimal Lorentz transformation $\Lambda^\mu{}_\nu \simeq \delta^\mu{}_\nu + \omega^\mu{}_\nu$ we have

$$\Lambda_{1/2} \simeq \mathbf{1}_4 - \frac{1}{2}i\omega_{\mu\nu}S^{\mu\nu},$$

where $S^{\mu\nu} = \frac{1}{4}i(\gamma^\mu\gamma^\nu - \gamma^\nu\gamma^\mu)$. Spatial rotations are generated by $\mathbf{J} = (S^{23}, S^{31}, S^{12})$.

Given the realisation (2) show that

$$\mathbf{J} = \begin{pmatrix} \mathbf{S} & 0 \\ 0 & \mathbf{S} \end{pmatrix}$$

where $S^i = \frac{1}{2}\sigma^i$. Hence show that, under an infinitesimal rotation with parameters $\mathbf{t} = (\omega_{23}, \omega_{31}, \omega_{12})$, the infinitesimal action on $\psi(x)$ leads to

$$\xi \mapsto \xi - i(\mathbf{t} \cdot \mathbf{S})\xi,$$

implying that ξ is in the spin- $\frac{1}{2}$ representation.

[3 marks]

Question (3)

Consider the interacting theory with Lagrangian density

$$\mathcal{L} = \frac{1}{2}\partial_\mu\phi\partial^\mu\phi - \frac{1}{2}m^2\phi^2 - \frac{1}{4!}\lambda\phi^4.$$

In the interaction picture, the S -matrix is given by

$$S = T \exp \left(i \int d^4x : \mathcal{L}_{\text{int}}(x) : \right).$$

3(a) Define the free Lagrangian \mathcal{L}_0 and the interaction part \mathcal{L}_{int} .

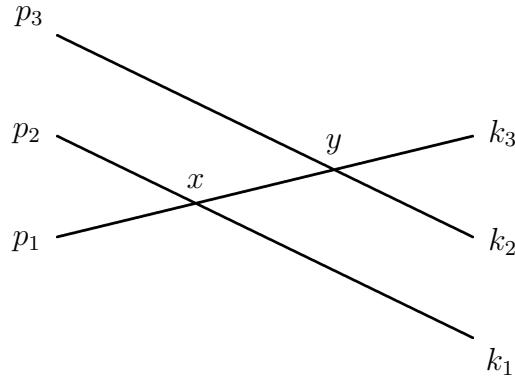
Explain how S can be described as a perturbation expansion and write down the first three terms in the expansion. Briefly explain the meaning of the symbol “ T ”.

What is that meaning of the normal ordering denoted by “ $: : :$ ”? What are $: a_{\mathbf{k}} a_{\mathbf{p}}^\dagger :$ and $: a_{\mathbf{p}}^\dagger a_{\mathbf{k}} :$?

[4 marks]

3(b) Consider the scattering of three incoming ϕ particles with momenta k_1 , k_2 and k_3 to three outgoing particles with momenta p_1 , p_2 and p_3 .

Use the position space Feynman rules to calculate the contribution of the following Feynman diagram to $\langle p_1, p_2, p_3 | S | k_1, k_2, k_3 \rangle$.



[2 marks]

3(c) By doing the x and y integrals and using

$$D_F(x - y) = i \int \frac{d^4p}{(2\pi)^4} \frac{e^{-ip \cdot (x-y)}}{p^2 - m^2 + i\epsilon}$$

show that the contribution can be written as

$$\frac{-i\lambda^2}{(p_1 + p_2 - k_1)^2 - m^2 + i\epsilon} (2\pi)^4 \delta^{(4)}(p_1 + p_2 + p_3 - k_1 - k_2 - k_3).$$

What is the physical meaning of the delta-function?

Draw a second Feynman diagram which contributes to the scattering at the same order in λ .

[4 marks]