

Quantum Electrodynamics Test

Monday, 12th January 2009

Please answer all questions.

All questions are worth 20 marks.

Use a separate booklet for each question. Make sure that each booklet carries your name, the course title, and the number of the question attempted.

1. Consider a massive, non-interacting real scalar field $\phi(x)$. The quantized field can be expanded as

$$\phi(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left(a_{\mathbf{p}} e^{-ip \cdot x} + a_{\mathbf{p}}^\dagger e^{ip \cdot x} \right),$$

where $E_{\mathbf{p}} = \sqrt{\mathbf{p}^2 + m^2}$ and $p^\mu = (E_{\mathbf{p}}, \mathbf{p})$. The operators $a_{\mathbf{p}}$ and $a_{\mathbf{p}}^\dagger$ satisfy the commutation relations

$$[a_{\mathbf{p}}, a_{\mathbf{q}}^\dagger] = (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{q}),$$

while $[a_{\mathbf{p}}, a_{\mathbf{q}}] = [a_{\mathbf{p}}^\dagger, a_{\mathbf{q}}^\dagger] = 0$.

(i) Explain which picture, Schrödinger or Heisenberg, is being used when we write the scalar field operator $\phi(x)$. Why is it more natural to use this picture when considering a relativistic theory? [2 marks]

(ii) Describe how states in the free-field Hilbert space are built using the creation and annihilation operators $a_{\mathbf{p}}$ and $a_{\mathbf{p}}^\dagger$. In particular define the vacuum $|0\rangle$, single-particle $|\mathbf{p}\rangle$ and two-particle $|\mathbf{p}_1, \mathbf{p}_2\rangle$ states.

Show that one can normalize the one-particle states such that

$$\langle \mathbf{p} | \mathbf{q} \rangle = 2E_{\mathbf{p}} (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{q}).$$

By considering the two-particle states, show that the particles are bosons. [7 marks]

(iii) Show that the state

$$|x\rangle = \phi(x) |0\rangle$$

is a superposition of one-particle states and that $\langle x | \mathbf{p} \rangle = e^{-ip \cdot x}$. [3 marks]

(iv) Defining a general superposition of one-particle states

$$|\Psi\rangle = \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_{\mathbf{p}}} \Psi(\mathbf{p}) |\mathbf{p}\rangle,$$

calculate $\Psi(x) = \langle x | \Psi \rangle$ and show that $\Psi(x)$ satisfies the Klein–Gordon equation $(\partial^2 + m^2) \Psi = 0$. [3 marks]

(v) Let $P^\mu = (H, \mathbf{P})$ be the four-momentum operator. Without giving a derivation, give the result of $P^\mu |\mathbf{p}\rangle$. Using this expression, show that

$$\langle x | P^\mu | \Psi \rangle = i\partial^\mu \Psi(x).$$

[5 marks]

Question 2 is on the next page.

2. Consider the free quantum Dirac field $\psi(x)$ with Lagrangian density

$$\mathcal{L} = \bar{\psi} (i\gamma^\mu \partial_\mu - m) \psi,$$

where $\bar{\psi} = \psi^\dagger \gamma^0$.

(i) Treating ψ and $\bar{\psi}$ as independent fields, write down the momentum density π conjugate to ψ .

Give the canonical equal-time anti-commutation relation (ETAR) between ψ and π and show it is equivalent to

$$\{\psi^a(t, \mathbf{x}), \psi_b^\dagger(t, \mathbf{y})\} = \delta^a{}_b \delta^{(3)}(\mathbf{x} - \mathbf{y}),$$

where $a, b = 1, 2, 3, 4$ label the spinor indices. What are the ETAR for ψ with ψ and for ψ^\dagger with ψ^\dagger ?

The fact we take anti-commutation relations is an example of the spin-statistics theorem. What does it imply about the corresponding particle states? What kind of equal-time relations would be required to quantize a non-interacting spin-two field?

[5 marks]

(ii) The Langrangian density \mathcal{L} is invariant under the symmetry $\psi \mapsto \psi' = e^{-i\alpha} \psi$.

Write down the corresponding conserved current and show the corresponding charge is

$$Q = \int d^3x \psi^\dagger \psi.$$

How does Q depend on time?

[3 marks]

(iii) Show that

$$[AB, C] = A\{B, C\} - \{A, C\}B,$$

and hence, using the ETAR, that

$$[Q, \psi(x)] = -\psi(x), \quad [Q, \psi^\dagger(x)] = \psi^\dagger(x).$$

How is this related to the symmetry transformation $\psi \mapsto \psi' = e^{-i\alpha} \psi$?

[6 marks]

(iv) The Hamiltonian associated to \mathcal{L} is

$$H = \int d^3x \bar{\psi} (-i\gamma^i \nabla_i + m) \psi.$$

Given the results of part (iii) show that $[H, Q] = 0$. What does this imply about the possible labeling of states, such as the one-particle states, in the Hilbert space of the theory?

[6 marks]

Question 3 is on the next page.

3. Consider the interacting $\lambda\phi^4$ theory with Lagrangian density

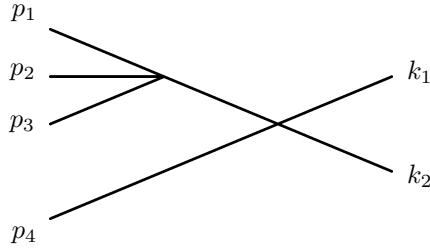
$$\mathcal{L} = \frac{1}{2}\partial_\mu\phi\partial^\mu\phi - \frac{1}{2}m^2\phi^2 - \frac{1}{4!}\lambda\phi^4.$$

In the interaction picture, the S -matrix is given by

$$S = T \exp \left(i \int d^4x : \mathcal{L}_{\text{int}}(x) : \right).$$

(i) Define the free \mathcal{L}_0 and interaction \mathcal{L}_{int} parts of \mathcal{L} . Explain how S can be regarded as a perturbation expansion and write down the first three terms in the expansion. What is that meaning of the symbol “ T ”? [5 marks]

(ii) Consider the scattering of two incoming ϕ particles with momenta k_1, k_2 to four outgoing ϕ particles with momenta p_1, p_2, p_3 and p_4 . Use the position-space Feynman rules to calculate the contribution of the following Feynman diagram to $\langle p_1, p_2, p_3, p_4 | S | k_1, k_2 \rangle$:



At what order in the perturbation expansion does this diagram appear? [5 marks]

(iii) By doing the position-space integrals and using

$$D_F(x - y) = i \int \frac{d^4p}{(2\pi)^4} \frac{e^{-ip \cdot (x-y)}}{p^2 - m^2 + i\epsilon}$$

show that the contribution can be written as

$$\frac{-i\lambda^2}{(k_1 + k_2 - p_4)^2 - m^2 + i\epsilon} (2\pi)^4 \delta^{(4)}(p_1 + p_2 + p_3 + p_4 - k_1 - k_2).$$

What is the physical meaning of the delta-function? [5 marks]

(iv) There are three more connected diagrams similar to that in part (ii) and six further connected diagrams with a different topology, all of which contribute at the same order in λ .

Draw one further diagram of each type and use the *momentum-space* Feynman rules to write down the contribution of each to $\langle p_1, p_2, p_3, p_4 | S | k_1, k_2 \rangle$. [5 marks]