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1. Note that in this question we do not use natural units so ~ and the speed of light c

are not set equal to one.

Consider a ring of N identical balls labelled by n, where n = 0, 1, 2, . . . , (N − 1), all

of mass m. In equilibrium the ball labelled n is at position na along the ring. The

displacement of ball n from it’s equilibrium position is denoted by un with associated

momenta are pn. The quantum dynamics of the balls is given by the Hamiltonian

Ĥ =

N−1∑
n=0

[
p̂2n
2m

+
mω20

2
(ûn+1 − ûn)2

]
(1)

The ring means we use periodic boundary conditions: ûN = û0 and p̂N = p̂0. Here

ûn and p̂n are Hermitian operators which obey

[ûm, p̂n] = i~δn,m , [ûm, ûn] = [p̂m, p̂n] = 0 . (2)

Wavenumbers are labelled k , p, q etc. These lie in the first Brillouin zone and take

values k = 2πm/(Na) with m an integer lying between −(N/2) < m ≤ +(N/2).

The sums over wavenumbers,
∑

k , are taken over all allowed wavenumbers in this

range. You may assume that

N−1∑
n=0

e ikna = Nδk,0 ,
∑
k

e ikna = Nδn,0 . (3)

(i) In one sentence, state why must ûn and p̂n be Hermitian operators?

Suppose we define Ûk and P̂k through

ûn =
1√
N

∑
k

Ûke
ikna p̂n =

1√
N

∑
k

P̂ke
ikna . (4)

Show that the operators Ûk and P̂k satisfy

Û†k = Û−k , [Ûp, P̂q] = i~δp+q,0 , [Ûp, Ûq] = 0 . (5)

For the rest of the question you may assume that P̂ †k = P̂−k and [P̂k , P̂q] = 0.

[8 marks]

(ii) Show that the Hamiltonian operator may be written as (ignoring terms inde-

pendent of k)

Ĥ =
∑
k

[
1

2m
P̂−k P̂k +

mω2k
2

Û−k Ûk

]
(6)

where you must give an expression for ωk in terms of ω0, a and k . [8 marks]

(iii) We define the annihilation and creation operators as

âk =
1√
2

(
`k
~
P̂k −

i

`k
Ûk

)
, â†k =

1√
2

(
`k
~
P̂ †k +

i

`k
Û†k

)
(7)

where `k =

(
~
mωk

)1/2
. (8)
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You may assume that [âp, â
†
q] = δp,q and [âp, âq] = [â†p, â

†
q] = 0.

Show that, up to k independent terms, the Hamiltonian Ĥ of (6) may be

rewritten as

Ĥ =
1

2

∑
k

~ωk
(
â†k âk + âk â

†
k

)
. (9)

Hint: you may start from (9) and work towards (6). [8 marks]

(iv) Consider the continuum limit where N → ∞ and a → 0. Show that the

Hamiltonian may be written in the form

Ĥ =
1

2

∫
dx


(
∂φ̂(t, x)

∂t

)2
+ c2

(
∂φ̂(t, x)

∂x

)2 (10)

where the field φ̂(t, x) has units of
√
ma.

Find an expression for c in terms of ω0 and a. [6 marks]

[Total 30 marks]
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2. Consider a set of single real bosonic field operator φ in the interaction picture and

with mass m. The field operator is split into two parts φ(x) = φ+(x) + φ−(x) as

follows

φ+(x) =

∫
d3p

(2π)3
1√
2ω

â(p)e−ipx , φ−(x) =

∫
d3p

(2π)3
1√
2ω

â†(p)e+ipx ,

p0 = ω = +
√
p2 +m2 , (1)

where [
â(p), â†(q)

]
= (2π)3δ3(p − q) , [â(p), â(q)] =

[
â†(p), â†(q)

]
= 0 . (2)

(i) Show that [
φ+(x), φ+(y)

]
=
[
φ−(x), φ−(y)

]
= 0 . (3)

Define the normal ordered product of fields, here denoted as N(φ(x1) . . . φ(xn)),

in terms of φ±.

Give an expression for N(φ(x)φ(y)) in terms of φ±.

Consider the vacuum state where â(p)| 0〉 = 0 for all i and p. Show that for the

φ± split given in (1) all vacuum expectation values of normal ordered products

are zero, i.e.

〈0|N(φ(x1) . . . φ(xn))| 0〉 = 0 . (4)

[7 marks]

(ii) Define the time-ordered product, T (φ(x1) . . . φ(xn)), for scalar fields.

Define the contraction φ(x)φ(y) between any two of these fields in terms of

normal-ordered and time-ordered products.

Show that

φ(x)φ(y) = θ(x0 − y 0)
[
φ+(x), φ−(y)

]
+ θ(y 0 − x0)

[
φ+(y), φ−(x)

]
(5)

where x0 and y 0 are the time components of the coordinates. [7 marks]

(iii) Find an explicit form for the contraction φ(x)φ(y) = ∆(x − y) in terms of the

coordinate difference x−y , the mass m, and an integral over three-momentum

(a four-momentum representation is not required) . [8 marks]

(iv) State Wick’s theorem for arbitrary numbers of several different scalar fields.

Write down an expression for the time-ordered product of a single scalar field

φ evaluated at four different coordinates T1234 = T (φ(x1)φ(x2)φ(x3)φ(x4)).

This should be given in terms of the normal-ordered products of fields and in

terms of the appropriate contractions φ(x)φ(y) = ∆(x − y).

Hence give the vacuum expectation value of the time-ordered products of four

fields in terms of ∆(x − y). [8 marks]

[Total 30 marks]
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3. Consider the production of a φ particle of mass m from a ψ-ψ̄ pair (each of mass

M) in the scalar Yukawa theory with interactions defined as follows.

The scalar Yukawa theory for real scalar field φ of mass m and complex scalar

field ψ with mass M has a cubic interaction with real coupling constant g giving a

Lagrangian density of the form

L =
1

2
(∂µφ)(∂µφ)−

1

2
m2φ2 + (∂µψ

†)(∂µψ)−M2ψ†ψ − gψ†(x)ψ(x)φ(x) . (1)

In the interaction picture, the field operators take the form

φ(x) =

∫
d3p

(2π)3
1√
2ωp

(ape
−ipx + a†pe

+ipx) , p0 = ωp =
∣∣∣√p2 +m2

∣∣∣ ≥ 0 , (2)

ψ(x) =

∫
d3p

(2π)3
1√
2Ωp

(bpe
−ipx + c†pe

ipx) , p0 = Ωp =
∣∣∣√p2 +M2

∣∣∣ ≥ 0 , (3)

where the annihilation and creation operators obey their usual commutation relations[
ap, a

†
q

]
= (2π)3δ3(p − q) , [ap, aq] =

[
a†p, a

†
q

]
= 0 . (4)

The b and c annihilation and creation operators obey similar commutation relations

while the different types of annihilation and creation operator always commute e.g.[
ap, b

†
q

]
= 0.

(i) What is the relevant matrix element M?

Starting from the form of the fields (or otherwise), derive the relationship

between the matrix elementM and the corresponding Green function G (which

you will have to define) for this ψψ̄ → φ production process in scalar Yukawa

Theory. [10 marks]

(ii) Define the Feynman rules in coordinate space for scalar Yukawa theory of (1).

[5 marks]

(iii) Draw the Feynman diagrams for the Green function in coordinate space which

correspond to contributions to M up to and including O(g3).

For each of these diagrams specify

(a) the symmetry factor,

(b) the number of loop momenta.

[15 marks]

[Total 30 marks]
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