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1. In this question we will consider fields in a non-interacting theory. All the fields are
in the Interaction picture which coincides with the Heisenberg picturer for such free
theories. The forms for the field operators along with the commutation relations
for annihilation and creation operators are given in the “Useful Definitions” section
at the end of this exam paper.

(i) Generalise the form of a single scalar field ¢ in the Interaction picture given in
equation (13) and the corresponding annihilation and creation operator com-
mutator relations, (17), for the case of a pair of non-interacting free real scalar
fields ¢; and ¢ sharing the same mass m.

Calculate the four Wightman functions Dj;(x — y) = (0|$i(x)$;(¥)|0) (i,j =
1, 2) for two fields in terms of an integral over three-momentum, the dispersion
relation w, and the difference in the space-time coordinates x and y.

Show that these are zero or that they can be expressed in terms of one function
D(x — y) where we have

d*p 1

P = | Grpzalp)

—iw(p)t+ip-x . (1)

Find expressions for the following Wightman functions for the complex scalar
field ®(x) = % (¢1(x) + ig2(x)) in terms of D(x — y) of (1)

(@) Dalx = y) = (0|®(x)®(y)]0),

(b) Da(x - y) = (0/&()¥(y)| 0}
() Delx—y) = (OB (x)(y)|0)
(4) Dolx — y) = (01&1(x)d1(y)|0)

[14 marks]

(ii) Calculate the vacuum expectation value of the following time-ordered products
in terms of D(x — y) of (1)

(b) Ag(x —y) = (0] TH(x)®F(y)|0)
(€) Ac(x —y) = (0TS (x)d(y)|0),
(d) Ap(x —y) = (0]THF(x)d(y)| 0)

[6 marks]
(iii) By performing the integral over po, show that A(x — y) = Ag(x — y) where

Alx —y) = /ﬁ R — (2)
(2m)* p? — m? + e
[10 marks]

[Total 30 marks]
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2. In this question all states and operators are in the Interaction picture.

States in the Interaction picture evolve as |, t) = U(t, ty)| ¥, to) where

d
Ut ) = Hu()U(t Do) (3)

and Hi(t) is the interaction part of the full Hamitonian operator. A solution of (3)
IS .
U(t,s)=T (exp{—i/ dt' Hint(t’)}) (4)
S

where T(...) indicates the operators are time-ordered.

(i) Show that, for an arbitrary state |1), we have

lim (@IU(t.5)[0) = ($2)(0) (5)
where |0) is the free vacuum and | Q) is the vacuum for the fully interacting
theory. [8 marks]

(ii) For a real scalar field ¢, the free propagator My and the full propagator I, are
defined as
Mo(z—y) = (O[T ((2)$(y)S) 10), (6)
Ne(z—y) = (QIT (¢(2)(y)S) |, (7)
where the S-matrix is given by S = U(+o0, —o0).
Show that 1
N(z—y) = EHO(Z — y) where Z = (0]|5]0). (8)
[6 marks]

(iii) Consider a theory of a single real scalar field ¢ with Feynman propagator A and
an interaction Hamiltonian given by

Hie = / Px ' (x) (9)

By using Wick’s theorem (which you may quote without proof) or otherwise,
find an expression for Z in terms of A and the Feynman propagator A(x) up
to and including first order in . [6 marks]

(iv) Find an expression for the free propagator Mo(z — y) defined in (6) up to and
including first order in A. This should be given in terms of A and A.
[6 marks]

(v) By using your expressions for Z and lNMy(z — y), derive an explicit expression for
the full propagator M. (7) to first order in A, in terms of A and A.

Interpret your result in terms of the different types of Feynman diagram which
contribute to Z, Mg and .. [4 marks]

[Total 30 marks]
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3. The scalar Yukawa theory for real scalar field ¢ of mass m and complex scalar
field 4 with mass M has a cubic interaction with real coupling constant g giving a
Lagrangian density of the form

L= LOu)(0"8) — g + (@)(%) — MUY — g (P(x)o() . (10)

The field operators in the interaction picture are given in equations (13) for ¢ and
(15) for 9 in the “Useful Definitions” section at the end of this exam paper.

Consider the case of ¥y — 1 scattering with incoming 1 particles of three-
momenta p; and p, while the outgoing 9 particles have three-momenta q; and qs.
We will define the matrix element M

M = (f|S]i)=A <O\B(ql)B(q2)SBT(p1)BT(p2)] 0) (11)

where A = (16Q(p1)Q(p2)2(q1)2(g2))Y? for the normalisation of operators and
states used here. The state |0) is the free vacuum state annihilated by all the
annihilation operators a(p), b(p) and &(p), see the “Useful Definitions” section at
the end of this exam paper which includes their commutation relations in (17). All
quantities are given in the interaction picture.

(i) Starting from the form of the fields (or otherwise), derive the relationship
between the matrix element M of (11) and the corresponding Green function,
G(z1, 22, y1, y2), for Py — 1 scattering in Scalar Yukawa Theory of (10),

where
Gz 2,01, %0) = OTP(2)P(2)9" (1) %' (12)S10). (12)
[10 marks]
(ii) Define the Feynman rules in coordinate space for the scalar Yukawa theory of
(10). [5 marks]

(iii) Draw the Feynman diagrams which contribute to G of (12) up to and including
terms of order g2.

For each of these diagrams specify

(a) the symmetry factor,
(b) the number of loop momenta.

For each of the following features identify one diagram of those you have
written down above which contains that feature as a subdiagram

(a) a vacuum diagram,
(b) a contribution to the vacuum expectation value of ¢, i.e. (0|¢|0),
(c) a self-energy correction to the 4 field propagator.

[15 marks]

[Total 30 marks]
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Useful Definitions
Units

Unless otherwise specified, natural units are used so i = ¢ = 1.

Metric

The metric is diagonal with ¢g°° = +1 and g = —1 for i = 1, 2, 3.

Fields

In the following equations px = p*x, = pot — p.x where p, = (po, p), x, = (t,x) and p.x
is the usual three vector scalar product. The properties of the annihilation and creation
operators are given below.

In the interaction picture, a real field ¢(x) of mass m has the form

3
B(x) = / (d” L (3,67 4 aleor), (13)

2m)° /2w (p)
where  po = w(p) = ‘\/p2 + mQ‘ : (14)

A complex field 9)(x) of mass M in the interaction picture has the form

2 _ d°p 1 2 _ipx | At Aipx
P(x) = /(27r)3 ) (bpe 'P* + Cle'™), (15)

where  po = Q(p) = ‘\/p2 + M2’ . (16)

Annihilation and Creation Operators

The annihilation and creation operators obey the following commutation relations
(4, 8)) = @2m)*6*(p—a),  [4,,4,) = [3}, )] =0. (17)

Both the b, b' pair and the ¢ and &' pair of annihilation and creation operators obey similar
commutation relations to those of the 4 and &' pair. Different types of annihilation and
creation operator always commute e.g. [4,, bf] = [4,, by] = 0.

The vacuum state | 0) is destroyed by any annihilation operator, e.g. 4,/0) =0 .
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