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1. Consider a single complex scalar �eld � with Lagrangian density L given by

L = (@��
�)(@��)�m2(���)�

g

4
(���)2 : (1)

where m and g are real parameters. The Euler-Lagrange equations are

@�
@L

@ (@��)
�
@L

@�
= 0; @�

@L

@ (@���)
�
@L

@��
= 0 : (2)

(i) Use the Euler-Lagrange equations (2) to �nd the equation of motion for � and

the equation of motion for �� in terms of the �elds, their derivatives, m and

g.

Show that this Lagrangian density L of (1) is invariant under � ! �0 = e i��

where � is an arbitrary real constant, i.e. @�� = 0.

The conserved Noether current associated with this symmetry is

J� = �i(@���)� + i��(@��) : (3)

Show that @�J
� = 0 if the �elds � and �� satisfy their equations of motion.

[10 marks]

(ii) Now consider the non-interacting case where g = 0.

The complex scalar �eld operator in this free theory is given by

�̂(x) =

∫
d3p

(2�)3
1√
2!(p)

(b̂(p)e�ipx + ĉy(p)e+ipx) ; (4)

where px � p�x� and p0 = !(p) = +
√
p2 +m2. The annihilation and cre-

ation operators, b̂(p), b̂y(p), ĉ(p) and ĉy(p), satisfy the usual commutation

relations, as given in the \Useful De�nitions" section at the end of this exam

paper.

By replacing the classical �elds by their quantum �eld operators, �nd an ex-

pression for the conserved charge operator Q̂ =
∫
d3x Ĵ0 in terms of the

annihilation and creation operators.

Interpret Q̂ in terms of the charges of the particles of the theory. [12 marks]

(iii) Show that [Q̂; �̂] = q�̂ and �nd the constant q.

Show that (Q̂)n�̂ = �̂(Q̂+ q)n.

Hence or otherwise, calculate �̂0 = expfi�Q̂g�̂ expf�i�Q̂g and interpret this

result for �̂0 in terms of the phase symmetry of the theory.

Hint: �nd an expression for D̂ where expfi�Q̂g�̂ = �̂D̂. Then manipulate this

result using the Baker-Campbell-Hausdor� formula which states that for any

operators Â and B̂ we have that exp(Â) exp(B̂) = exp(Â+ B̂) if [Â; B̂] = 0.

[8 marks]

[Total 30 marks]
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2. Consider a single real scalar �eld operator �̂(x).

(i) De�ne the normal-ordered product of �elds, here denoted as N(�̂1 : : : �̂n), in

terms of �̂�i , where �̂i = �̂(xi), �̂
+
i = �̂+(xi), �̂

�
i = �̂�(xi) and where

�̂i = �̂+i + �̂�i is a split of the �eld into two arbitrary parts.

De�ne the time-ordered product, T
(
�̂(x1) : : : �̂(xn)

)
, for scalar �elds.

De�ne the contraction �̂(x)�̂(y) between any two of these �elds in terms of

normal-ordered and time-ordered products.

Show that for an arbitrary split of this bosonic �eld we have that

�̂(x)�̂(y) = �(x0 � y 0)
[
�̂+(x); �̂�(y)

]
+�(y 0 � x0)

([
�̂+(y); �̂+(x)

]
+
[
�̂+(y); �̂�(x)

]
+
[
�̂�(y); �̂�(x)

])
(5)

where x0 and y 0 are the time components of the coordinates. [12 marks]

(ii) For the rest of this question assume that we choose to split the �eld as follows

�̂+(x) =

∫
d3p

(2�)3
1√
2!(p)

â(p)e�ipx ; �̂�(x) =

∫
d3p

(2�)3
1√
2!(p)

ây(p)e+ipx ;

p0 = !(p) = +
√
p2 +m2 ; (6)

where the commutation relations for â(p) and ây(p) are given in (12) in the

\Useful De�nitions" section at the end of this exam paper.

For this split, �nd expressions for

(a) D(x; y) =
[
�̂+(x); �̂�(y)

]
,

(b)
[
�̂+(x); �̂+(y)

]
,

(c)
[
�̂�(x); �̂�(y)

]
.

Your answers should be zero or given as integrals over three momenta with

integrands which contain the space-time coordinates and !(p).

Hence �nd an expression for �̂(x)�̂(y) in terms of D(x; y) and theta functions

of time.

Show that

h0jT�̂(x)�̂(y)j 0i = �̂(x)�̂(y) : (7)

[10 marks]

(iii) The propagator �(x � y) may be written as

�(x � y) =

∫
d4p

(2�)4
e�ip(x�y) i

p2 �m2 + i �
; (8)

where � is an in�nitesimal positive real number and the integrations are along

the real axes. Express this in terms of D(x � y) and hence show this form is

identical to �̂(x)�̂(y). [8 marks]

[Total 30 marks]
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3. The scalar Yukawa theory has a real scalar �eld � of mass m and a complex scalar

�eld  with massM with a cubic interaction proportional to a real coupling constant

g, giving a Lagrangian density of the form

L =
1

2
(@��)(@

��)�
1

2
m2�2 + (@� 

y)(@� )�M2 y � g y � : (9)

The �eld operators in the interaction picture are given in equations (13) for �̂ and

(15) for  ̂ in the \Useful De�nitions" section at the end of this exam paper.

(i) State the Feynman rules for calculating the Green functions in coordinate space

of the scalar Yukawa theory of (9). [10 marks]

(ii) Write down the Feynman diagrams which contribute to terms proportional to

g and g2 in the perturbation expansion of Z = h0jSj 0i where S is the S-matrix

for this theory.

Hence show that Z = 1+g2V1+g
2V2+O(g

3) where g2V1 and g
2V2 correspond

to two di�erent diagrams.

Give explicit expressions for V1 and V2 in terms of appropriate propagators. You

need not evaluate any integrations in your expression. [8 marks]

(iii) Write down all the Feynman diagrams which contribute terms up to and includ-

ing g2 in the perturbation expansion of the propagator for the complex �eld  ,

namely �0(z � y) = h0jT
(
 ̂(z) ̂y(y)S

)
j 0i.

Hence show that

�0(z � y) = �(z � y) + g2D1(z � y) + g
2D2(z � y)

+g2�(z � y)V1 + g
2�(z � y)V2 +O(g

3) (10)

where you should identify each of the �ve terms with a di�erent diagram.

Identify �(z � y) in terms of one of the propagators of this theory.

Give explicit expressions for D1(z � y) and D2(z � y) in terms of appropriate

propagators. You need not evaluate any integrations in your expression.

[8 marks]

(iv) Expand �c(z � y) as a series in g up to and including g2 where

�c(z � y) =
1

Z
�0(z � y) : (11)

Your answer should be given in terms of V1, V2, D1, D2, and �.

What diagrams contribute to �c(z � y) in general? Illustrate your answer using

your O(g2) result for �c(z � y). [4 marks]

[Total 30 marks]
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Useful De�nitions

Units

Unless otherwise speci�ed, natural units are used so ~ = c = 1.

Metric

The metric is diagonal with g00 = +1 and g i i = �1 for i = 1; 2; 3.

Annihilation and Creation Operators

The annihilation and creation operators obey the following commutation relations[
âp; â

y
q

]
= (2�)3�3(p � q) ; [âp; âq] =

[
ây
p
; ây

q

]
= 0 : (12)

The vacuum state j 0i is destroyed by any annihilation operator, that is âpj 0i = 0 for all

p.

Fields

In the following expressions px � p�x� = p0t � p:x where p� = (p0; p), x
� = (t; x) and

p:x is the usual three-vector scalar product.

In the interaction picture, a real �eld �̂(x) of mass m has the form

�̂(x) =

∫
d3p

(2�)3
1√
2!(p)

(âpe
�ipx + ây

p
e+ipx) ; (13)

where p0 = !(p) =
∣∣∣√p2 +m2

∣∣∣ : (14)

A complex �eld  ̂(x) of mass M in the interaction picture has the form

 ̂(x) =

∫
d3p

(2�)3
1√

2
(p)
(b̂pe

�ipx + ĉy
p
e ipx) ; (15)

where p0 = 
(p) =
∣∣∣√p2 +M2

∣∣∣ : (16)

Both the b̂p; b̂
y
p
pairs and the ĉp; ĉ

y
p
pairs of annihilation and creation operators obey similar

commutation relations to those of (12) for the âp; â
y
p
pairs. Di�erent types of annihilation

and creation operator always commute e.g.
[
âp; b̂

y
q

]
= 0.
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