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Solutions 1: Bosonic Annihilation and Creation Operators

1. Boson operator algebra (revision)

(i) [ â†â, â† ] = â†ââ† − â†â†â. But [ â, â† ] = 1⇒ ââ† = 1 + â†â. So we can swap around â† in the first

term: â†ââ† = â†(1 + â†â) and obtain [ â†a, â† ] = â†(1 + â†â) − â†â†â = â†, as required. Similarly

for [ â†â, â ] = −â.

(ii) Let the eigenvalues of â†a be ν with eigenfunctions | ν〉. (I will assume that we have already checked

that â†a is Hermitian so that it has real eigenvalues.) Acting the above commutator between â†â

and â† on an eigenstate | ν〉 gives:

[ â†â, â† ]| ν〉 = â†| ν〉.
The left-hand side is:

â†ââ†| ν〉 − â†(â†â)| ν〉 = â†â â†| ν〉 − νâ†| ν〉 = (â†â− ν) â†| ν〉.
I have used the fact that â†a is a number operator for simplifying the second term. Comparing

with the right-hand side gives:

â†â(â†| ν〉) = (ν + 1)(â†| ν〉)
which says that â†| ν〉 is another eigenstate with eigenvalue ν + 1, i.e. ν + 1 bosons. Similarly, we

can use [ â†â, â ]| ν〉 = −â| ν〉 to show that â| ν〉 is eigenstate with eigenvalue ν−1, i.e. ν−1 bosons.

(iii) By definition, â†â|n〉 = n|n〉. From the given formulae, â†â|n〉 = â†
√
n|n − 1〉 =

√
nâ†|n − 1〉 =√

n
√

(n− 1) + 1| (n− 1) + 1〉 = n|n〉, as required.

(iv) From â|n〉 =
√
n|n− 1〉, we see that a| 0〉 = 0. There is no way to connect to states with negative

n. Indeed, if these operators are to be creation and annihilation operators for a boson, then we do

not want negative eigenvalues. So, the ladder of states starts from n = 0, and n goes up in steps of

unity as we use â† to create the ladder of states.

(v) I will use the second method. It can be tedious but useful if you have forgotten the other expressions.

〈n|ââ†|n〉 = 〈n|(1 + â†â)|n〉 = 〈n|n〉+ 〈n|â†â|n〉 = 1 + n

〈n|â†|n〉 ∝ 〈n||n+ 1〉 = 0

〈n|(â− â†)2|n〉 = 〈n|(ââ− ââ† − â†â+ â†â†)|n〉
= −〈n|(ââ† + â†â)|n〉 = −〈n|(2â†â+ 1)|n〉 = −(2n+ 1)

〈n|âââ†â†|n〉 = 〈n|â(1 + â†â)â†|n〉 = 〈n|ââ†|n〉+ 〈n|ââ†ââ†|n〉
= 1 + n+ 〈n|(1 + â†â)(1 + â†â)|n〉
= 1 + n+ (1 + n)2 = (n+ 1)(n+ 2)

For the last expectation value, in reaching the second line, I have moved the leftmost â† to the left

and the rightmost â to the right.

2. Baker-Campbell-Hausdorf identity.

The Baker-Campbell-Hausdorf identity (BCH) is

exp{Â} exp{B̂} = exp{Â+ B̂ +
1

2
[Â, B̂] +

1

12
[Â, [Â, B̂]]− 1

12
[B̂, [Â, B̂]] + . . .} . (1)
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(i) Let X̂ represent Â or B̂ - we are counting in powers of operator1

exp{Â} exp{B̂} ≈ (1 + Â+
1

2
Â2)(1 + B̂ +

1

2
B̂2) +O(X̂3)

= 1 + Â+ B̂ + ÂB̂ +
1

2
Â2 +

1

2
B̂2 +O(X̂3)

= 1 + Â+ B̂ + ÂB̂ +
1

2
(Â+ B̂)2 − 1

2
ÂB̂ − 1

2
B̂Â+O(X̂3)

= 1 + Â+ B̂ +
1

2
(Â+ B̂)2 +

1

2
[Â, B̂] +O(X̂3)

≈ exp{Â+ B̂ +
1

2
[Â, B̂] + . . .} (2)

(ii) If we set B̂ = −Â then since [Â, Â] = 0 we know that the third term of BCH (1) and all remaining

terms to the right with multiple commutators must be zero. Thus BCH gives us that we always

have that

exp
{
−Â
}

exp
{

+Â
}

= 1 . (3)

This is the definition of the inverse of an operator, i.e. Ŝ−1Ŝ = ŜŜ−1 = 1.

(iii) For Ŝ = exp{iT̂} to be a unitary operator we require that Ŝ† = Ŝ−1. Using T̂ † = T̂ for a hermitian

operator, then from the definition of an exponential of an operator we have that

Ŝ† =
(

exp{iT̂}
)†

=

( ∞∑
n=0

inT̂n

n!

)†
=

∞∑
n=0

(−i)n(T̂ †)n

n!
=

∞∑
n=0

(−iT̂ )n

n!

= exp{−iT̂} = Ŝ−1 (4)

(iv) To show [Â, exp{θÂ}] = 0 expand the exponential and then you have to show that each term

commutes i.e. [Â, Ân}] = 0 for any n. This is simple to show.

The we have that

d

dθ
exp{θÂ} =

∞∑
n=0

1

n!

dθn

dθ
Ân =

∞∑
n=1

1

(n− 1)!
θ(n−1)Ân =

∞∑
m=0

1

m!
θmÂm+1 (5)

= Â exp{θÂ} = exp{θÂ}Â . (6)

3. Canonical transformations of Bosonic operators

(i) We have the linear transformations and commutation relation

Ĉi =
∑
j

UijÂj , D̂i =
∑
j

VijB̂j , [Âi, B̂j ] = cδij . (7)

1More formally, multiply Â and B̂ by the same factor λ. Expand to second order in λ. At the end of calculations, put

λ = 1. This is a useful generic bookkeeping trick.
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Using [â+ b̂, ĉ] = [â, ĉ] + [b̂, ĉ] = and similar identities we have that

[Ĉi, D̂j ] = [
∑
k

UikÂk,
∑
l

VjlB̂l] (8)

(9)

=
∑
kl

UikVjl[Âk, B̂l] =
∑
kl

UikVjlcδkl = c
∑
k

UikVjk (10)

For this to be equal to cδij we require that
∑

k UikVjk = δij . We recognise this as the index notation

form of the matrix relation U.VT = 1I. Thus we require the transpose of V to be the inverse of U.

(ii) If Âi = Â†i and Ĉi = Ĉ†i then we can take the hermitian conjugate of Ĉi =
∑

j UijÂj to give

Ĉ†i =
∑

j U
∗
ijÂ
†
j which is just Ĉi =

∑
j U
∗
ijÂj . Note working with index notation we do not have to

worry about order of vectors and matrices, the notation takes care of that. In this case then the

matrix U must be real.

(iii) As in the previous part we take the complex conjugate of Ĉi =
∑

j UijÂj to find that Ĉ†i =
∑

j U
∗
ijÂ
†
j

which is equivalent to D̂i =
∑

j U
∗
ijB̂j in this case. Comparing we see that we need U∗ = V which

with our original U.VT = 1I limitation for canonical transformations gives us that U† = VT.

4. Bogoliubov transformations: shifts

The canonical commutation relations for[
â, â†

]
= 1 , [â, â] =

[
â†, â†

]
= 0 . (11)

(i) A canonical transformation is one which preserves the commutation relations, e.g. a transformation

from â to b̂ such that b̂ also satisfies (11).

For the transformation

b̂ = c+ â , b̂† = c∗ + â† , (12)

where c is any complex number, we have that[
b̂, b̂†

]
=

[
â+ c, â† + c∗

]
=
[
â, â†

]
+ [â, c∗] +

[
c, â†

]
+ [c, c∗] =

[
â, â†

]
= 1 (13)

where we use the fact that c will always commute with operators. Then an operator always com-

mutes with itself
[
b̂, b†

]
=
[
b̂†, b̂†

]
= 0 are trivial here.

(ii) Let X̂ = c∗â− câ†

(a)

âX̂ = c∗ââ− cââ† = c∗ââ− c(â†â+ 1) =
(
c∗ââ− câ†â

)
− c = X̂â− c . (14)

(b) Suppose

âX̂n = X̂nâ− ncX̂n−1 (15)

is true for some positive integer n. Then

âX̂n+1 = âX̂nX̂ =
(
X̂nâ− ncX̂n−1

)
X̂ = X̂nâX̂ − ncX̂n

= X̂n(X̂â− c)− ncX̂n = X̂n+1â− (n+ 1)cX̂n (16)

So if (15) true for n it is true for (n + 1). As we have shown it is true for n = 1 in (14) it

follows (15) must be true for all positive integers n.
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(iii) Let Ŝ = exp{−X̂} then

âŜ =

∞∑
n=0

â
(−1)nX̂n

n!
= â+

∞∑
n=1

(−1)n(X̂nâ− ncX̂n−1)

n!

=

( ∞∑
n=0

(−1)nX̂nâ

n!

)
+

( ∞∑
n=1

(−1)n−1cX̂n−1

(n− 1)!

)
= e−X̂ â+ c e−X̂ = Ŝ(â+ c)

⇒ Ŝ−1âŜ = â+ c = b̂ (17)

(iv) It follows from (17) that

b̂Ŝ−1| 0a〉 = Ŝ−1âŜŜ−1| 0a〉 = Ŝ−1â| 0a〉 = 0 (18)

Thus | 0b〉 = Ŝ−1| 0a〉 is the vacuum state for the b operators, i.e. | 0b〉 is the vacuum state annihilated

by the b̂ operator. It then follows that

â| 0b〉 = (b̂− c)| 0b〉 = −c| 0b〉 . (19)

as required.

(v) (a) The answer given suggests that to use BCH (1) we should consider

exp{−câ†}. exp{c∗â} = exp{−câ† + c∗â− |c|
2

2
[â†, â] + . . .} (20)

= exp{−câ† + c∗â+
|c|2

2
} (21)

= exp{+c∗â− câ† +
|c|2

2
} (22)

= exp{X̂ +
|c|2

2
} . (23)

This is exact because the commutator [â†, â] = −1 is a c-number so all higher order terms will

be a commutator with a c-number and hence zero. Note that the order of the terms in sum in

this exponential is irrelevant, order only matters in products so we can rearrange to form X̂

as shown. Now we use BCH again to note that the exp{|c|2/2} term is a c-number so we can

factor that out to see that

exp{−câ†}. exp{c∗â} = exp{X̂ +
|c|2

2
} = exp{X̂}. exp{|c|

2

2
} (24)

⇒ Ŝ−1 = exp{+X̂} = exp{−|c|
2

2
} exp{−câ†}. exp{c∗â} (25)

where we again exploit the c-cumber property of the exp{|c|2/2} term. We also note the fact

that Ŝ−1 = (e−X̂)−1 = eX̂ (again proved from BCH (3)).

The original version of the question suggests using a more complicated route as follows:-

exp{câ†}Ŝ−1 = exp{câ† + X̂ + (c/2)[â†, X̂] + . . .}
= exp{c∗â− |c|2/2} = exp{−|c|2/2} exp{c∗â} (26)

where we have used

[â†, X̂] = c∗[â†, â]− c[â†, â†] = −c∗ . (27)
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Because this is a c-number, all the higher order terms in BCH are zero. We also used BCH in

reverse to split off the c-number factor of exp{−|c|2/2} at the end. Then since (exp{câ†})−1 =

exp{−câ†} we have

Ŝ−1 = exp{−câ†} exp{−|c|2/2} exp{c∗â}
= exp{−|c|2/2} exp{−câ†} exp{c∗â} (28)

since exp{−|c|2/2} is a c-number and commutes with everything.

(b) First we have that

exp{c∗â}| 0a〉 =

( ∞∑
n=0

cnân

n!

)
| 0a〉 = | 0a〉+

( ∞∑
n=1

cnân| 0a〉
n!

)
| 0a〉 = | 0a〉 (29)

since the â annihilates the a vacuum ân| 0a〉 = 0 for any positive integer n. Thus

| 0〉b = Ŝ−1| 0a〉 = exp
{
−|c|2/2

}
exp

{
−câ†

}
| 0a〉 (30)

This is of the form â|α〉 = α|α〉 which one definition of a coherent state.

(vi) Using previous result we have

〈0b|â†â| 0b〉 = |â| 0b〉|2 = |c|2|| 0a〉|2 = |c|2 . (31)

A Bose condensate can be thought of as the lowest energy state, the vacuum, which is full of

‘particles’. In this case the | 0b〉 vacuum would represent a condensate of zero momentum bosonic

particles created by the â†. The excitations in the condensate, the physical particles in this situation,

are created by the b̂†.

Symmetry Breaking, Condensates, the Higgs mechanism and Superconductivity

Interestingly we could imagine a situation where the number of a-type bosons was a conserved

quantity, i.e. â†â commutes with the Hamiltonian. Whatever state is the lowest energy state, the

â†â still commutes with the Hamiltonian so the number of a-bosons is always conserved. However

the new ground state | 0b〉, and indeed the b̂† excitations, are quantum superposition of states with

different boson numbers so the picture is quite odd, very quantum.

In general, many different states can acta as vacua, which is the lowest energy depends on the

details of the dynamics of the problem. This is what happens with symmetry breaking. Instead

of the usual empty vacuum state | 0a〉, we are in a situation which has a condensate of particles

(spin zero if we want to keep Lorentz invariance). For the standard model of particle physics our

physical vacuum (lowest energy state) is a condensate of three parts of the Higgs field. These parts

carry no electromagnetic charge but do carry weak-nuclear charges and so the W± and Z0 bosons

interact with the vacuum but the photons do not. In terms of symmetry this vacuum state is not

invariant under the full symmetry group, just the U(1) part associated with electromagnetism. If

a particle travels through a medium which is full of particles and it interacts with those particles,

we would expect it to be scattered and slowed down. It is no wonder then that we find then

W± and Z0 bosons have mass but the photon remains massless. In superconductors the magnetic

fields are excluded because there is not enough energy to create photons in the superconductor
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since the photons have become massive and take more energy to create. In that situation there is a

condensate of Cooper pairs, spin-0 bosons with electric charge 2e and this condensate interacts with

photons. If a photon travels through a material (e.g. glass), it interacts with the electrons in the

material and slows down, the refractive index is greater than one, the speed of light in material is

less than c. So symmetry breaking, the Higgs mechanism, superconductivity, charged condensates

are all different views of the same physical process.

5. Coherent states.

We have

[â, â†] = 1 , â| 0〉 = 0 , â|n〉 =
√
n|n− 1〉 , â†|n〉 =

√
n+ 1|n+ 1〉 . (32)

(i) The annihilation and creation operators are not hermitian â 6= â† so their eigenvalues need not be

real.

(ii) Since â†|n〉 =
√
n+ 1|n + 1〉 we have that |n〉 = (1/

√
n)â†|n − 1〉 which iterating gives us that

|n〉 = (1/
√
n!)(â†)n| 0〉.

(iii) Let |λ〉 =
∑∞

n=0 cn|n〉.
First 〈n|â|λ〉 = 〈n|λ|λ〉 = λcn using the property of eigenstate property of coherent states, â|λ〉 =

λ|λ〉.
Next

〈n|â|λ〉 =

∞∑
m=0

cm〈n|â|m〉 =

∞∑
m=0

cm〈n|
√
m|m− 1〉 = cn+1

√
n+ 1 (33)

Putting these together gives λcn = cn+1

√
n+ 1 so that cn = (λ/

√
n)cn−1. Iterating this gives us

that cn = (λn/
√
n!)c0. Thus we have that

|λ〉 = c0(λ
n/
√
n!)|n〉 =

∞∑
n=0

c0
λn√
n!
.
(â†)n√
n!
| 0〉 = c0

∞∑
n=0

(λâ†)n

n!
| 0〉 = c0e

λâ† | 0〉 (34)

The normalisation is fixed by

1 = 〈λ|λ〉 =
∞∑
n=0

|cn|2 =
∞∑
n=0

∣∣∣∣ λn√n!
c0

∣∣∣∣2 =
∞∑
n=0

(|λ|2)n

n!
|c0|2 = exp{|λ|2}|c0|2 (35)

Thus the normalisation is (up to an arbitrary phase) |c0| = exp{−|λ|2/2} as required.

6. Unitary nature of Canonical Transformations.

Here Ŝ := exp{λ(â†)2} for some real c-number λ and for â† obeying (??). (for instance see Blaizot and

Ripka, p2.2).

(i) Use the definition of the exponential operator as a sum

∂Ŝ

∂λ
=

∂

∂λ

∞∑
n=0

λn(â†)2n

n!
=

∞∑
n=0

nλn−1(â†)2n

n!

=

∞∑
n=1

λn−1(â†)2n

(n− 1)!
=

∞∑
n=1

λn−1(â†)2(n−1)

(n− 1)!
(â†)2

= Ŝ(â†)2 (36)



QFT PS1 Solutions: Bosonic Annihilation and Creation Operators (13/7/16) 7

(ii) Now b̂ := ŜâŜ−1 so

∂b̂

∂λ
=

∂ŜâŜ−1

∂λ
=
∂Ŝ

∂λ
âŜ−1 + Ŝâ

∂Ŝ−1

∂λ

= Ŝ(â†)2âŜ−1 − Ŝâ(â†)2Ŝ−1 = Ŝ[(â†)2, â]Ŝ−1 = −2Ŝâ†Ŝ−1 = −2â†ŜŜ−1

= −2â† (37)

We have used the fact that Ŝ commutes with â†. Also since we must have Ŝ−1 = exp{−λ(â†)2} it

follows that ∂Ŝ−1/∂λ = −(â†)2Ŝ−1.

(iii) Integrate the equation to see that b̂ = ĉ− 2λâ† where ĉ is independent of λ but it may be operator

valued, not a simple c-number. By looking at the boundary condition where λ = 0 we get that

b̂ = â− 2λâ†.

(iv) We must show the state | 0b〉 = Ŝ| 0a〉 is annihilated by the b̂ operator.

b̂| 0b〉 = b̂Ŝ| 0a〉 = ŜâŜ−1Ŝ| 0a〉 = Ŝâ| 0a〉. = 0 (38)

(v) We have that the Fock space states for the a operators, {|n〉a} (all normalised), obey â†|n〉a =√
n!|n〉a. So

| 0b〉 = Ŝ| 0a〉 =
∞∑
n=0

λn(â†)2n| 0a〉
n!

=
∞∑
n=0

λn
√

(2n)!| 2n〉a
n!

(39)

Since the states {|n〉a} are orthogonal we have that

〈0b| 0b〉 = || 0b〉|2 = |Ŝ| 0a〉|2 =
∞∑
n=0

λ2n(2n)!

(n!)2
(40)

Now we have that in the limit of large n we have that

ln(λ2n(2n)!/(n!)2) → 2n ln(λ) + (2n ln(2n)− 2n)− (2n ln(n)− 2n)

= 2n ln(2λ) (41)

Thus we see that the ratio test tells us that the sum in (40) is convergent if λ < 1/2 but divergent

if λ > 1/2.

If we had a complex c-number λ, then the algebra above still holds but for the ratio test tells us

that <(λ) < 1/2 is required for convergence.

What does this lack of convergence mean? It means that we can not represent the Fock space of

the b̂ operators, in terms of a sum of states from the â Fock space. Here the problem is that the

transformation is not unitary.

However when we have an infinite number of different operators involved, e.g. in QFT where the

operators have a momentum label, this ‘problem’ arises even when Ŝ is unitary and leads to the

idea that a Bogolibov transformation can leave you with a valid particle representation (the correct

commutation relations) but one where the two particle pictures are physically different (they are

said to be unitarily inequivalent). This is the mathematical basis of symmetry breaking.
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]7. Hadamard Lemma

The Hadamard Lemma is

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] +

1

3!
[Â, [Â, [Â, B̂]]] + · · · ≡ exp{ad

Â
}B̂. (42)

where Â and B̂ are two operators (or matrices). The ad
Â
≡ [Â, which means take the commutator of Â

with everything to the left of the operator so ad
Â

(Ĉ) ≡ [Â, Ĉ]. The exponential represents the Taylor

series of its argument as in (4).

(i) Suppose [Â, B̂] = cB̂ where c is a c-number (something which commutes with everything else). The

Hadamard Lemma for this special case gives the following:-

eÂB̂e−Â = B̂ + cB̂ +
1

2!
[Â, cB̂] +

1

3!
[Â, [Â, cB̂]] + · · · (43)

= B̂ + cB̂ +
1

2!
c2B̂ +

1

3!
[Â, c2B̂] + · · · (44)

= B̂ + cB̂ +
1

2!
c2B̂ +

1

3!
c3B̂ + · · · (45)

=

(
1 + c+

1

2!
c2 +

1

3!
c3 + · · ·

)
B̂ (46)

= ec B̂ (47)

More formally you can prove by induction that (ad
Â

)nB̂ = cnB̂. Assuming this for n we have that

(ad
Â

)n+1B̂ = (ad
Â

)nad
Â
B̂ = (ad

Â
)ncB̂ = c(ad

Â
)nB̂ = cn+1B̂ . (48)

Since it is true for n = 1, it follows that (ad
Â

)nB̂ = cnB̂ is true for any positive integer n. You now

take

exp{ad
Â
}B̂ =

∞∑
n=0

1

n!
(ad

Â
)nB̂ =

∞∑
n=0

1

n!
cnB̂ = ecB̂ . (49)

(ii) To prove the Hadamard Lemma for this special case you can start by considering ÂnB̂ and rewriting

it in the form B̂Ĉ for some Ĉ. Look at the case n = 1, then n = 2 etc to see the pattern

and then prove this pattern by induction. You should find Ĉ = (Â + c)n. Then use this to

rewrite eÂB̂ in the form B̂D̂ for some form D̂. You should find D̂ = exp{Â + c}. Postmultiply

this expression by exp{−Â} and use Baker-Campbell-Hausdorf as needed, e.g. use BCH to show

exp{Â+ c} = exp{Â} exp{c} and 1 = exp{Â− Â} = exp{Â} exp{−Â} .

For more information on this lemma, other identities for commutators, and the types of mathematical

structures which have these sorts of property, the Wikipedia discussion on Commutators provides a brief

overview.


