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Solutions 1: Bosonic Annihilation and Creation Operators

1. Boson operator algebra (revision)

(1) [aTa aT] = ataal — atata. But [a, aT] = 1= aal =1+ ala. So we can swap around af in the first
term: ataal = aT( + aTa) and obtain [aTa aT] = aT( + aTa) — alata = af, as required. Similarly
for [aTa,a] = —a.

(ii) Let the eigenvalues of ata be v with eigenfunctions |v). (I will assume that we have already checked
that ata is Hermitian so that it has real eigenvalues.) Acting the above commutator between ata
and at on an eigenstate |v) gives:

lata, al]|v) = at|v).
The left-hand side is:

aTaaT| v) — aT(aTa)| v) = ata aT| v) — VaT| v) = (C;Td —v) c;T| V).
I have used the fact that ata is a number operator for simplifying the second term. Comparing
with the right-hand side gives:

ataat|v) = (v + 1)(al| v))
which says that aAT\ v) is another eigenstate with eigenvalue v + 1, i.e. v + 1 bosons. Similarly, we
can use [c;Td, a]|v) = —alv) to show that a| v) is eigenstate with eigenvalue v —1, i.e. v — 1 bosons.

(iii) By definition, ata|n) = n|n). From the given formulae, ata|n) = aty/n|n — 1) = /nal|n — 1) =

Vvny/(n—1)+ 1] (n — 1) + 1) = n|n), as required.

(iv) From a|n) = y/n|n — 1), we see that a|0) = 0. There is no way to connect to states with negative
n. Indeed, if these operators are to be creation and annihilation operators for a boson, then we do
not want negative eigenvalues. So, the ladder of states starts from n = 0, and n goes up in steps of
unity as we use al to create the ladder of states.

(v) Iwill use the second method. It can be tedious but useful if you have forgotten the other expressions.

(nlaat|n) = (n|(1+ata)|n) = (n|n)+ (nlata|n) =1 +n
(nlat|n) o (n|n+1)=0
(n|(a@—a?n) = (n|(aq— aat —ata + atat)|n)
—(n|(aa’ + ata)|n) = —(n|(2ata + 1)|n) = —(2n + 1)
(nlaaatat|n) = (nla(l +afa)al|n) = (nlaal|n) + (n|aataat|n)

= 1+n+ (n|(1+ata)(1 + ata)| n)
= 1+n+1+n)?=n+1)(n+2)

For the last expectation value, in reaching the second line, I have moved the leftmost at to the left
and the rightmost a to the right.

2. Baker-Campbell-Hausdorf identity.
The Baker-Campbell-Hausdorf identity (BCH) is

|4, B] +

~ ~ ~ ~ 1
exp{A} exp{B} = exp{A+ B + B
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(i) Let X represent Aor B - we are counting in powers of operator!

. N 1 1~ .
exp{A}exp{B} =~ (1+A+ 521\2)(1 + B+ §B2) + O(X3)

= 1+A+§+ﬁ§+§(A+B)2—%XE—%EXJFO()??’)
o1 o~ A 1 ~ ~ ~
= 1+A+B+§(A+B)2+§[A,B]+O(X3)
- a1~ -
o exp{A+B+§[ Bl + ...} (2)

(ii) If we set B = —A then since [A, A] = 0 we know that the third term of BCH (1) and all remaining
terms to the right with multiple commutators must be zero. Thus BCH gives us that we always
have that

exp{—g} exp{—kg} =1. (3)
This is the definition of the inverse of an operator, i.e. S7185 = 851 =1.

(iii) For S = exp{iT} to be a unitary operator we require that ST = $~1. Using 71 = T for a hermitian
operator, then from the definition of an exponential of an operator we have that

A~

ST = (exp{z’T})Jr
Nt . .

T L (=)M(THY S (—iT)"

- (Z n! > :Z()n(‘)zz( n!)

n=0 n=0
= exp{—iT}=5"" (4)

(iv) To show [A,exp{#A}] = 0 expand the exponential and then you have to show that each term
commutes i.e. [4, A"}] = 0 for any n. This is simple to show.

The we have that

oo

d ~ 1do" +, = 1 P U BN

_ A — T AT — (n—l)An _ L mAm+1

ap P04} nzon! a9 ; CEk mzom!e (5)
= Aexp{0A} = exp{0A}A. (6)

3. Canonical transformations of Bosonic operators

(i) We have the linear transformations and commutation relation

Ci=) UyA;j, Di=) ViyBj, [ABj]=cby. @
j J

"More formally, multiply A and B by the same factor A. Expand to second order in A. At the end of calculations, put
A = 1. This is a useful generic bookkeeping trick.
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Using [a + b, é] = [a,¢] + [b, ¢] = and similar identities we have that

[Ci, D] = > UnAr, > ViBl] (8)
2 l
(9)
= Z Ui ViilAg, Bl = Z UirVjicop = CZ Ui Vik (10)
Kl il %

For this to be equal to ¢d;; we require that ), UV, = d;5. We recognise this as the index notation
form of the matrix relation U.VT = 1. Thus we require the transpose of V to be the inverse of U.

(i) If A; = A\I and C; = @T then we can take the hermitian conjugate of C; = > UijA\j to give
CZT =2 UZA\; which is just C; = >, Uj;A;. Note working with index notation we do not have to
worry about order of vectors and matrices, the notation takes care of that. In this case then the
matrix U must be real.

(iii) Asin the previous part we take the complex conjugate of Ci = > Uijﬁj to find that @T =2 U;;;l\;
which is equivalent to D; = ) ; U3 B;j in this case. Comparing we see that we need U* =V which
with our original U.VT = 1 limitation for canonical transformations gives us that Ut = VT.

4. Bogoliubov transformations: shifts
The canonical commutation relations for
[a,&*] -1, [a,a]= [a*,a*} —0. (11)

(i) A canonical transformation is one which preserves the commutation relations, e.g. a transformation
from @ to b such that b also satisfies (11).

For the transformation
b=c+a, b =c¢* +al, (12)

where ¢ is any complex number, we have that

[B, iﬂ] _ [d—i—c, af +C*} _ [a,cﬂ +[a, ¢ + [c, a*} Yl et = [a,cﬂ —1 (13)
where we use the fact that ¢ will always commute with operators. Then an operator always com-
mutes with itself [13, bT] = [ET, IA)T} = 0 are trivial here.

(i) Let X = c*a — cal

(a)

aX = c*aa — caal = c*aa — c(ata + 1) = (c*&& — cd%) —c=Xa—c (14)
(b) Suppose
aX" = X"a —neX" (15)
is true for some positive integer n. Then
aX"™ = aX"X = <)?”& - nc)?”_1> X = X"aX — neX"
= X"(Xa—c)—neX" = X" — (n+1)cX” (16)

So if (15) true for n it is true for (n + 1). As we have shown it is true for n = 1 in (14) it
follows (15) must be true for all positive integers n.
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(iii)

(iv)

(v)

Let S = exp{—X} then

| |
=0 n: it n:
[e'e) E [e'e) E
—1)"X"4 —1)nlexn-l
I R o
n=0 n=1
= e Xatce X =5a+c)

= S7'aS = a+c=>b (17)
It follows from (17) that
bS710,) = S7'aSS7Y0,) = S7al0,) =0 (18)

Thus | 05) = 57| 0,) is the vacuum state for the b operators, i.e. | 0,) is the vacuum state annihilated
by the b operator. It then follows that

al0y) = (b— )| 0p) = —c| 0y) . (19)
as required.

(a) The answer given suggests that to use BCH (1) we should consider

2
exp{—ca'}.exp{c*a} = exp{—ca+c*a— |02‘[&T, al+ ...} (20)

~F * A |C|2
= exp{—ca' +c*a+ 7} (21)

* A ~F |C‘2
= exp{+c'a—ca' + 7} (22)

~ ’C 2

= exp{X + 7} (23)
This is ezact because the commutator [af,a] = —1 is a c-number so all higher order terms will

be a commutator with a c-number and hence zero. Note that the order of the terms in sum in
this exponential is irrelevant, order only matters in products so we can rearrange to form X
as shown. Now we use BCH again to note that the exp{|c|?/2} term is a c-number so we can
factor that out to see that

el R o2
exp{—ca'}.exp{c’a} = exp{X + ’2} = exp{X}. exp{|2‘} (24)
= St —exp{+X} = exp{—|2‘} exp{—ca'}. exp{c*a} (25)

where we again exploit the c-cumber property of the exp{|c|?/2} term. We also note the fact
that 71 = (e=X)~! = X (again proved from BCH (3)).
The original version of the question suggests using a more complicated route as follows:-
exp{cal}S" = exp{cal + X + (¢/2)[a’, X] + ...}
= explcta — [e2/2} = exp{—|c2/2} exp{ca} (26)

where we have used

~

[af, X] = ¢*[a',a] — cla’,al] = —¢*. (27)
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Because this is a c-number, all the higher order terms in BCH are zero. We also used BCH in
reverse to split off the c-number factor of exp{—|c|?/2} at the end. Then since (exp{ca’})~! =
exp{—ca'} we have

A~

St = exp{—ca'} exp{—|c|?/2} exp{cta}
= exp{—|c|?/2} exp{—ca'} exp{c*a} (28)
since exp{—|c|?/2} is a c-number and commutes with everything.

(b) First we have that

exp{c"a}0,) = (ZCZ?">|OQ>=|OG>+<ZW>\oa>=oa> (29)

n=0 n=1

since the @ annihilates the a vacuum a"|0,) = 0 for any positive integer n. Thus

10}, = $7104) = exp {—[cl?/2} exp {~cal } |0) (30)

This is of the form a| &) = a|a) which one definition of a coherent state.

(vi) Using previous result we have

(Osla’al 0p) = la] 0p)[* = |e]?|| 0a)[* = |cf*. (31)

A Bose condensate can be thought of as the lowest energy state, the vacuum, which is full of
‘particles’. In this case the |0p) vacuum would represent a condensate of zero momentum bosonic
particles created by the af. The excitations in the condensate, the physical particles in this situation,
are created by the bt

Symmetry Breaking, Condensates, the Higgs mechanism and Superconductivity

Interestingly we could imagine a situation where the number of a-type bosons was a conserved
quantity, i.e. a'a commutes with the Hamiltonian. Whatever state is the lowest energy state, the
ata still commutes with the Hamiltonian so the number of a-bosons is always conserved. However
the new ground state | 05), and indeed the bt excitations, are quantum superposition of states with
different boson numbers so the picture is quite odd, very quantum.

In general, many different states can acta as vacua, which is the lowest energy depends on the
details of the dynamics of the problem. This is what happens with symmetry breaking. Instead
of the usual empty vacuum state |0,), we are in a situation which has a condensate of particles
(spin zero if we want to keep Lorentz invariance). For the standard model of particle physics our
physical vacuum (lowest energy state) is a condensate of three parts of the Higgs field. These parts
carry no electromagnetic charge but do carry weak-nuclear charges and so the W+ and Z° bosons
interact with the vacuum but the photons do not. In terms of symmetry this vacuum state is not
invariant under the full symmetry group, just the U(1) part associated with electromagnetism. If
a particle travels through a medium which is full of particles and it interacts with those particles,
we would expect it to be scattered and slowed down. It is no wonder then that we find then
W* and Z° bosons have mass but the photon remains massless. In superconductors the magnetic
fields are excluded because there is not enough energy to create photons in the superconductor
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since the photons have become massive and take more energy to create. In that situation there is a
condensate of Cooper pairs, spin-0 bosons with electric charge 2e and this condensate interacts with
photons. If a photon travels through a material (e.g. glass), it interacts with the electrons in the
material and slows down, the refractive index is greater than one, the speed of light in material is
less than c. So symmetry breaking, the Higgs mechanism, superconductivity, charged condensates
are all different views of the same physical process.

5. Coherent states.
We have
[a,a']=1, al0)=0, an)=+vnln-1), afln)=vVn+1ln+1). (32)

(i) The annihilation and creation operators are not hermitian a # at so their eigenvalues need not be
real.

(ii) Since af|n) = v/n + 1|n + 1) we have that |n) = (1/y/n)a’|n — 1) which iterating gives us that
|n) = (1/Vnl)(a")"]0).

(iii) Let |A) => "7y cnln).
First (n|a] A\) = (n|A| A\) = Ac¢y, using the property of eigenstate property of coherent states, a| A\) =
Al A).
Next

[ee] o0
(nlal Ay = em(nlalm) = emlnly/mlm —1) = cor1v/n +1 (33)
m=0 m=0

Putting these together gives Ac,, = ¢p+1v/n + 1 so that ¢, = (A\/y/n)c,—1. Iterating this gives us
that ¢, = (\*/v/n!)co. Thus we have that

n e A @b o e
|A) = co( /m>|n>—n§c@m.m|o>—conzz0 —10) = 0| 0) (34)

The normalisation is fixed by

1= (AN Z len]? =

Thus the normalisation is (up to an arbitrary phase) |co| = exp{—|A|?/2} as required.

00 2

2l =S P o eyl (39)

n=0

6. Unitary nature of Canonical Transformations.

Here S := exp{A(a)?} for some real c-number X and for a obeying (??). (for instance see Blaizot and
Ripka, p2.2).

(i) Use the definition of the exponential operator as a sum

09 A" aT 2n nA"L(af)2
2N 8>\Z Z nl
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(i)

(iii)

(iv)

Now b := SaS~! so

O _ 05aSTt 08 .y o 057
) ) W)Y )
= S@@ah%ast — Sa(a"?5~ = §[(a")?, 4] = —28a7 S = —2a1 857!
= —2a (37)

We have used the fact that S commutes with af. Also since we must have S~1 = exp{—\(a')?} it
follows that S~ /OX = —(af)25—1.

Integrate the equation to see that b=¢—2X\al where ¢ is independent of A but it may be operator
valued, not a simple c-number. By looking at the boundary condition where A\ = 0 we get that
b=a—2xal.

We must show the state |0,) = 5|0,) is annihilated by the b operator.

~

bl 0p) = bS5|0,) = 5aS5715]0,) = Sa|0,). =0 (38)

We have that the Fock space states for the a operators, {|n),} (all normalised), obey af|n), =

V! n)a. So

. & n&'l' 2n "
0 =$j0g) = 3 S0

: n!
A/ (2n)!] 2n),
n!
n=0
Since the states {|n),} are orthogonal we have that
. A% (2n)!
(061 05) = [|05)* = [S]04)* = —ng (40)
= (n!)
Now we have that in the limit of large n we have that
In(A%"(2n)!/(n))?) — 2nIn(\) + (2n1n(2n) — 2n) — (2nln(n) — 2n)
= 2nln(2)) (41)

Thus we see that the ratio test tells us that the sum in (40) is convergent if A < 1/2 but divergent
if A>1/2.

If we had a complex c-number A, then the algebra above still holds but for the ratio test tells us
that R(A) < 1/2 is required for convergence.

What does this lack of convergence mean? It means that we can not represent the Fock space of
the b operators, in terms of a sum of states from the a Fock space. Here the problem is that the
transformation is not unitary.

However when we have an infinite number of different operators involved, e.g. in QFT where the
operators have a momentum label, this ‘problem’ arises even when S is unitary and leads to the
idea that a Bogolibov transformation can leave you with a valid particle representation (the correct
commutation relations) but one where the two particle pictures are physically different (they are
said to be unitarily inequivalent). This is the mathematical basis of symmetry breaking.



QFT PS1 Solutions: Bosonic Annihilation and Creation Operators (13/7/16) 8

7. Hadamard Lemma

The Hadamard Lemma is

B = B+ (4B + o A, [A,[A, B]]] + -+~ = exp{ad g} 5. (42)

where A and B are two operators (or matrices). The ad ; = [ﬁ, which means take the commutator of A
with everything to the left of the operator so ad 7(C') = [4,C]. The exponential represents the Taylor
series of its argument as in (4).

(i) Suppose [g, E] = ¢B where ¢ is a c-number (something which commutes with everything else). The
Hadamard Lemma for this special case gives the following:-

is A 1
e"Be™ = B+c¢B+— [A ¢B] + ) (4, [4,cB] + (43)
1

= B—l—cB—l——c2B—|— [A ?B] + (44)
= B+cB+—cQB+§c3B+ (45)
= (1 ! ! B 46
= +c+ Ec +§c + - (46)
= ¢°B (47)

More formally you can prove by induction that (ad g)”é = c"B. Assuming this for n we have that

(ad)"t'B = (ad;)"ad;B = (ad;)"cB = c(ad;)"B = "' B. (48)
Since it is true for n = 1, it follows that (ad g)"é = ¢"B is true for any positive integer n. You now
take
. 00 [e'9) 1 R R
exp{ad;}B = Z) (ad 3 "B z:O i "B =e°B. (49)
n n

(ii) To prove the Hadamard Lemma for this special case you can start by considering A"B and rewriting
it in the form BC for some C. Look at the case n = 1, then n = 2 etc to see the pattern
and then prove this pattern by induction. You should find C = (A\ + ¢)”. Then use this to
rewrite A B in the form BD for some form D. You should find D = exp{A + ¢}. Postmultiply
this expression by exp{— A} and use Baker-Campbell-Hausdorf as needed, e.g. use BCH to show
exp{A + ¢} = exp{A} exp{c} and 1 = exp{A — A} = exp{A} exp{—A} .

For more information on this lemma, other identities for commutators, and the types of mathematical
structures which have these sorts of property, the Wikipedia discussion on Commutators provides a brief
overview.



