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Solutions 2: Classical Field Theory

1. Maths note

(i) The periodic condition requires un = un+N . This means that each plane wave in the Fourier

decomposition of un must also have this period, i.e. eikn = eik(n+N) = eikneikN for all n. This

means that we must have

eikN = 1⇒ k =
2π

N
m for integer m. (1)

Given the periodicity of the function, there are only N degrees of freedom for the function. In

the function is defined for all n, provided that we define its value at N points, for example,

u0, u1, . . . , uN−1. We must have the same number of degrees of freedom in the Fourier coeffi-

cients Uk. The above condition gives us an infinite number of possible m’s. The extra condition we

need to impose is that these plane waves are independent of each other. We note that two different

wavevectors k and k +G may give the same values at all the discrete points:

eikn = ei(k+G)n if G = 2π × integer (2)

So, we have to restrict k values to an interval of 2π on the k-axis. Conventionally, we pick the first

Brillouin zone −π < k ≤ π. For odd N , k = 2πm/N for m = (N − 1)/2, (N − 1)/2− 1, . . . ,−(N −
1)/2. For even N , m = N/2, N/2 − 1, . . . ,−N/2 + 1 for even N . (There is a choice of keeping

m = N/2 or m = −N/2 — they represent the same wave.)

This gives N allowed values of k, consistent with the total degrees of freedom.

(ii) Let K = k + q. The allowed wavevectors are of the form: k = (2π/N)m and q = (2π/N)n for

integers m and n. Each of them is confined to the first Brillouin zone. So, K can be in the range

−2π < K ≤ 2π.

Use the result for a geometric series:

S =
N−1∑
n=0

eiKn =
N−1∑
n=0

(eiK)n =
1− eiKN

1− eiK
(3)

For these allowed wavevectors, the numerator is zero: 1− eiKN = 1− e2πi(m+n) = 1− 1 = 0. This

means that the sum S should vanish too, except in the case when the denominator also vanishes:

eiK = 1. Then, we can simply go back to the original series and note that all the terms are equal

to unity and so the sum must be N .

The case of eiK = 1⇒ K = 0 or 2π. The former case occurs if k = −q. The latter case occurs only

when k = q = π and is only possible for a chain with an even number of atoms. However, since

q = ±π represents the same wave [un ∼ e±iπn = (−1)n changing sign from atom to atom], we can

regard this case as k = −q = π too.

So, the series S is given by Nδk+q,0 for the allowed k’s for the periodic discrete function.
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2. Periodic Potential and Mass Gap

Consider N particles, with positions rn and momenta pn (n = 0, 1, . . . , (N − 1)) confined to lie in a

ring length L = Na. The particles interact pairwise with the interaction energy for the n-th and m-th

particles being U(rn − rm) = U(rm − rn). They also each interact with a periodic external potential of

the form V (rn) = V (rn + a).

This setup could be realised in principle for alkali atoms such as are used for studies of BEC.

The particles are then the furthest distance apart so minimising the pairwise interaction (assumed repul-

sive). They will then lie in a minimum of the external potential V .

If we had a more complicated U e.g. with several minima, then more complicated situations are possible.

The full Hamiltonian is

H =

N−1∑
n=0

[
p2n
2m

+ U(rn+1 − rn) + V (rn)

]
(4)

If we transform to deviations from the equilibrium then we have that rn = na + un. The momenta are

unchanged by a constant shift in coordinate. Thus

H =
N−1∑
n=0

[
p2n
2m

+ U(un+1 − un + a) + V (un + na)

]
(5)

As (un+1 − un) � 1 for small oscillations we can use a Taylor expansion on the U term around x = a

where x = rn+1 − rn = un+1 − un + a. Thus

U(x) = U(a) + x
∂U(x)

∂x

∣∣∣∣
x=a

+
x2

2

∂2U(x)

∂x2

∣∣∣∣
x=a

+ . . . (6)

Substituting just to this second order we find that

N−1∑
n=0

U(rn+1 − rn) = NU(a) + U ′(a)

N−1∑
n=0

(un+1 − un) +
U ′′(a)

2

N−1∑
n=0

(un+1 − un)2 (7)

The linear term sums to zero as the linear push and pull from neighbours cancels. This just leaves us

with a constant (irrelevant for dynamics) and the quadratic term of the form (mω2
D/2)

∑N−1
n=0 (un+1−un)2

where.

mω2
D =

∂2U(x)

∂x2

∣∣∣∣
x=0

. (8)

Doing the same for the V term we expand around one of the equilibrium positions

V (x+ na) = V (na) + x
∂V (x)

∂x

∣∣∣∣
x=na

+
x2

2

∂2V (x)

∂x2

∣∣∣∣
x=na

+ . . . (9)

However because we have periodicity V (x+ na) = V (x) for all n. Thus we can write this as

V (x+ na) = V (0) + x
∂V (x)

∂x

∣∣∣∣
x=0

+
x2

2

∂2V (x)

∂x2

∣∣∣∣
x=0

+ . . . (10)

In the Hamiltonian this gives

N−1∑
n=0

V (rn) = NV (0) + V ′(0)

N−1∑
n=0

un +
V ′′(0)

2

N−1∑
n=0

u2n (11)
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The constant again does not effect dynamics. To minimise the other energy terms we know the ground

state has all particles stationary and separated from each other by distance a. The V is a periodic

potential so must have minima and maxima (unless it is constant in which case the following argument

still works) separated by na. It may have qna minima for some positive integer q but we can always shift

all our particles by the same amount until they each sit at a point where V is at its lowest value. This

rotation does not effect the U term as we keep the spacing constant. The kinetic energy is still zero and

can not be any lower. Thus we are lowering V as much as we can and so we have a global minimum

for the energy. This is the ground state. We choose to measure deviations from this point and have

chosen our coordinates so that V (na) is a minimum. Thus V ′(na) is zero and V ′′(na) > 0 as we are at a

minimum of V . Due to periodicity we have that V ′′(na) = V ′′(0) for any n so we have in the Hamiltonian

a contribution of the form

N−1∑
n=0

V (rn) = NV (0) +
V ′′(0)

2

N−1∑
n=0

u2n (12)

We therefore define

mΩ2 =
∂2V (x)

∂x2

∣∣∣∣
x=0

. (13)

Substituting into (14) gives the required answer

Ĥ =

N−1∑
n=0

[
p2n
2m

+
mω2

D

2
(un+1 − un)2 +

mΩ2

2
u2n

]
+N(U(0) + V (0)) (14)

For a model of lattice vibrations in a physical material, we would not have an external potential, V = 0,

so then we expect Ω = 0.

3. Harmonic Ring: Normal modes

(i) Rather than the potentials of the form discussed in the previous question, we can imagine this to

be a system of balls lying in a ring and each connected to their nearest neighbour by a spring of

natural frequency ωD.

We could add a spring to a fixed point with natural frequency Ω provided these are at zero tension

when the balls are at rn = na. However such terms are not included in this question.

(ii) We decompose un into different periodic components:

un =
1√
N

∑
k

Uke
ikna for n = 0, . . . , N. (15)

Periodic boundary conditions: uN = u0 ⇒ we need eikNa = eik(0)a = 1 for every Fourier component

k. Therefore, k = 2πm/Na.

Discrete n: un does not change value if we add 2π to ka. In other words, two Fourier modes eikna

and eik
′na are the same at all integer n if k′ − k =(integer)×2π/a. So, we can restrict the k-values

to any window of width 2π/a in k-space. We can choose the ‘first Brillouin zone’: −π/a < k < π/a.

This restricts the values of m above to between ±N/2.

The following identities are needed

N−1∑
n=0

eikna = Nδk,0 ,
∑
k

eikna = Nδn,0 . (16)
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You can prove them by using the result for a finite geometric series that

N−1∑
n=0

xn =
1− xN

1− x
. (17)

Prove this by using a binomial expansion for the denominator on the right hand side. Then compare

the two series obtained by multiplying by 1 or xN in the numerator. Comparing terms of same

order of x you see only the terms on the left hand side survive, the rest cancel out.

(iii) Using the identity from (16) we find that∑
n

(un)2 =
1

N

∑
n

∑
k

Uke
ikna

∑
q

Uqe
iqna =

1

N

∑
k,q

UkUq
∑
n

ei(k+q)na (18)

=
1

N

∑
k,q

UkUqNδk+q,0 =
∑
k

UkU−k . (19)

In the same way we show that
∑

n(pn)2 =
∑

k PkP−k.

We just need to evaluate the potential energy contribution to the Hamiltonian which is

V = mω2
∑N

n=1(un − un−1)2/2. So consider

N∑
n=1

(un − un−1)2 =
1

N

N∑
n=1

∑
kq

Uk(e
inka − ei(n−1)ka)Uq(eiqna − eiq(n−1)a)

=
∑
kq

UkUq(1− e−ika)(1− e−iqa)
N∑
n=1

1

N
ein(k+q)a

=
∑
kq

UkUq(1− e−ika)(1− e−iqa)δk+q,0

=
∑
k

UkU−k(1− e−ika)(1− eika)

I have used the identity in (16) in obtaining the third line from the second. So, we see that

ω2
k = ω2(eika − 1)(e−ika − 1) = 2ω2(1− cos ka) = 4ω2 sin2(ka/2). (20)

4. Harmonic Ring: Quantisation

(i) To quantise we “put hats on everything”. That is impose the usual commutation relations on ûn
and p̂n, define Ûk and P̂k exactly as in the classical case but we need to find the commutation

relations for these variables.

The Û †k = Û−k and P̂ †k = P̂−k relations are equivalent to those found for the Fourier coefficients of

real quantities. The equivalent statement is that the position operators are hermitian, ûn = û†n. So

consider

ûn =
1√
N

∑
k

Ûke
+ikna (21)

⇒ ûn = û†n =
1√
N

∑
k

Û †ke
−ikna (22)

=
1√
N

∑
k

Û †−ke
+ikna (23)
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where we have changed variables in the last sum. Comparing (or more formally doing an inverse

Fourier transform) we see that Û †k = Û−k as required. The proof of P̂ †k = P̂−k is identical.

If we invert

ûn =
1√
N

∑
k

Ûke
ikna p̂n =

1√
N

∑
k

P̂ke
ikna . (24)

we find

Ûk =
1√
N

N−1∑
n=0

ûne
−ikna P̂k =

1√
N

N−1∑
n=0

p̂ne
−ikna . (25)

Then for the commutator we have

[Ûk, P̂q] = [
1√
N

∑
n

ûne
−ikna,

1√
N

∑
m

p̂me
−iqma] (26)

=
1

N

∑
n,m

e−ia(kn+qm)[ûn, p̂m] (27)

=
1

N

∑
n,m

e−ia(kn+qm)i~δn,m (28)

=
i~
N

∑
n

e−ian(k+q) = i~δp+q,0 (29)

Next we have

[Ûk, Ûq] = [
1√
N

∑
n

ûne
−ikna,

1√
N

∑
m

ûme
−iqma] (30)

=
1

N

∑
n,m

e−ia(kn+qm)[ûn, ûm] = 0 (31)

as [ûn, ûm] = 0.

The [P̂k, P̂q] = 0 proof is identical, just swap û to p̂ and Û to P̂ .

Note that the set of operators {ûn, p̂n} obey the same commutation relations as the set of operators

{Ûk, P̂k}. This is an example of a canonical transformation. However it is important to note

that the conjugate pairs are ûn and p̂n for the same n, and Ûk and P̂−k for the same k. In the

latter case the notation used here pairs the Û and P̂ operators with opposite sign. That is merely

a convention coming from our choice of definition of our Fourier transforms.

(ii) The parameter

lk =

(
~

mωk

)1/2

(32)

does indeed have units of length making â dimensionless.

By taking the Hermitian conjugate we find

âk =
1√
2

(
lk
~
P̂k −

i

lk
Ûk

)
, (33)

⇒ â†k =
1√
2

(
lk
~
P̂ †k +

i

lk
Û †k

)
. (34)
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Using Û †k = Û−k and P̂ †k = P̂−k, we then find that

[âp, â
†
q] =

[
1√
2

(
lp
~
P̂p −

i

lp
Ûp

)
,

1√
2

(
lq
~
P̂−q +

i

lq
Û−q

)]
(35)

=
1

2

lp
lq

i

~

[
P̂p, Û−q

]
− 1

2

lq
lp

i

~

[
Ûp, P̂−q

]
= δp,q (36)

We use (29) and the fact that the other two terms zero since [Ûk, Ûq] = [P̂k, P̂q] = 0.

(iii) Using (33) and (34) we could take sums and difference to find an expressions for Ûk and P̂k. In fact

we need to work with â+k and â†−k.

It is simple to work backwards if you know that we want a more symmetric form

Ĥ =
∑
k 6=0

~ωk
(
â†kâk +

1

2

)
(37)

=
1

2

∑
k 6=0

~ωk
(
â†kâk + âkâ

†
k

)
(38)

Now just substitute (33) and (34) into (38) to see that

â†kâk =
1√
2

(
lk
~
P̂ †k +

i

lk
Û †k

)
1√
2

(
lk
~
P̂k −

i

lk
Ûk

)
, (39)

=
1

2

(
l2k
~2
P̂−kP̂k −

i

~
P̂−kÛk +

i

~
Û−kP̂k +

1

(lk)2
Û−kÛk

)
(40)

Likewise for the second term but the operators are the other way round.

âkâ
†
k =

1

2

(
l2k
~2
P̂kP̂−k −

i

~
ÛkP̂−k +

i

~
P̂kÛ−k +

1

(lk)2
ÛkÛ−k

)
(41)

The terms don’t quite match up until we remember that in the Hamiltonian we have a sum over

all k so we can match k from the first term (40) with the −k contribution from the second (41). So

we find that

â†+kâ+k + â−kâ
†
−k =

1

2

(
l2k
~2
P̂−kP̂k −

i

~
P̂−kÛk +

i

~
Û−kP̂k +

1

(lk)2
Û−kÛk

)
+

1

2

(
l2k
~2
P̂−kP̂k −

i

~
Û−kP̂k +

i

~
P̂−kÛk +

1

(lk)2
Û−kÛk

)
(42)

=

(
l2k
~2
P̂−kP̂k +

1

(lk)2
Û−kÛk

)
(43)

=

(
1

~mωk
P̂−kP̂k +

mωk
~

Û−kÛk

)
(44)

using the form of lk from (32). Now we find that

Ĥ =
∑
k 6=0

~ωk
(
â†kâk +

1

2

)
(45)

=
1

2

∑
k 6=0

(
1

m
P̂−kP̂k +mω2

kÛ−kÛk

)
(46)

as required.
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5. Non-Linear equations of motion

The Euler-Lagrange equations are
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0 (47)

Given the Lagrangian L = 1
2(∂µφ).(∂µφ)− 1

2m
2φ2 − λφ4 we have that

∂L
∂φ

= −m2φ − 4λφ3,

(
∂L

∂(∂µφ)

)
= ∂µφ (48)

Thus the equation of motion is

∂µ∂µφ+m2φ+ 4λφ3 = 0 (49)

as given.

Suppose φ1 and φ2 are two solutions of (50) so that

∂µ∂µφi +m2φi + 4λφ3i = 0, i = 1, 2 (50)

Then substituting aφ1 + bφ2 into (50) we have that

0 = ∂µ∂µ(aφ1 + bφ2) +m2(aφ1 + bφ2) + 4λ(aφ1 + bφ2)
3, (51)

= a
(
∂µ∂µφ1 −m2φ1

)
+ b

(
∂µ∂µφ2 −m2φ2

)
+4a3λφ31 + 4b3λφ32 + 12a2bλφ21φ2 + 4ab2λφ1φ

2
2, (52)

and using the solutions (50) we have that

0 = 4a(1− a2)λφ31 + 4b(1− b2)λφ32 + 12a2bλφ21φ2 + 4ab2λφ1φ
2
2, (53)

which is clearly non-zero for general solutions unless λ = 0.

Thus the terms higher than quadratic in the fields in the Lagrangian, higher than liner in the re-

sulting equations of motion, do indeed spoil linearity. They represent the interactions, particle cre-

ation/destruction terms. On the other hand the free parts can be treated as linear, so particles far apart,

where interactions are essentially negligible, can be treated as linear. We can add as many free particle

solutions together to represent initial or final states provided we think of them as separated by distances

much greater than the characteristic interaction length scale.

6. Complex Scalar Field Equation of Motion

(i) We have

L =
1

2

{
∂µφi∂

µφi −m2φiφi
}

=
1

2

(
∂µφ1∂

µφ1 −m2φ21
)

+
1

2

(
∂µφ2∂

µφ2 −m2φ22
)
. (54)

That is we have two copies of the usual Lagrangian for a single real scalar field. The Euler–Langrange

equations for multiple fields (in a relativistic context) are

∂L
∂φi

= ∂µ

(
∂L

∂(∂µφi)

)
(55)

That is for each independent field component, here each value of the index i = 1, 2, we apply the

usual relativistic form of the Euler-Lagrange equations to find

∂2φ1 +m2φ1 = 0 , ∂2φ2 +m2φ2 = 0 (56)
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since
∂L
∂φi

= −m2φi
∂L

∂(∂µφi)
= ∂µφi (57)

(ii) We have that

Φ(x) =
1√
2

(φ1(x) + iφ2(x)) , Φ∗(x) =
1√
2

(φ1(x)− iφ2(x)) . (58)

We can invert (add and subtract the two equations) to see that

φ1(x) =
1√
2

(Φ(x) + Φ∗(x)) , φ2(x) =
1√
2i

(Φ(x)− Φ∗(x)) . (59)

Substitute and you find

L = (∂µΦ∗)(∂µΦ)−m2Φ∗Φ . (60)

(iii) Treating Φ and Φ∗ as independent variables we have

∂L
∂Φ

= −m2Φ∗ ,
∂L

∂(∂µΦ)
= ∂µΦ∗ ,

∂L
∂Φ∗

= −m2Φ ,
∂L

∂(∂µΦ∗)
,= ∂µΦ (61)

so that the Euler–Lagrange equations read

(∂2 +m2)Φ = 0 , (∂2 +m2)Φ∗ = 0 (62)

(iv) Adding and subtracting the equations (62) gives the same equations as we found for the pair of real

fields in (57).

(v) If we write Φ̇ = ∂0Φ then

L = Φ̇∗Φ̇−∇Φ∗ ·∇Φ−m2Φ∗Φ (63)

Then by definition

Π :=
∂L
∂Φ̇

= Φ̇∗ Π∗ :=
∂L
∂Φ̇∗

= Φ̇ (64)

and the Hamiltonian density is given by

H = ΠΦ̇ + Π∗Φ̇∗ − L (65)

= Π∗Π + ∇Φ∗ ·∇Φ +m2Φ∗Φ (66)

7. Conserved currents: Complex Scalar Field

The dynamics of a complex scalar (spin 0) field Φ(x) is described by the Lagrangian density

L = (∂µΦ∗)(∂µΦ)− V (Φ∗Φ) (67)

where V is some arbitrary potential.

(i) First |Φ|2 is invariant (even if θ not a constant)

Φ→ Φ′ = eiθΦ⇒ Φ∗Φ→ Φ′
∗
Φ′ = (eiθΦ)∗.eiθΦ = e−iθΦ∗.eiθΦ = Φ∗.Φ . (68)

The derivative term is invariant only if ∂µθ = 0

∂µΦ→ ∂µΦ′ = ∂µ(eiθΦ) = (∂µe
iθ)Φ + eiθ(∂µΦ) (69)

= i(∂µθ)e
iθΦ + eiθ(∂µΦ) = eiθ (i(∂µθ)Φ + (∂µΦ)) = eiθ(∂µΦ) (70)

Hence ∂µΦ → eiθ(∂µΦ) and so ∂µΦ∗ → e−iθ(∂µΦ∗) so together we have that (∂µΦ∗)(∂µΦ) is

invariant.
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(ii) The Euler-Lagrange equations are given by

0 = ∂µ
∂L

∂∂µΦ∗
− ∂L
∂Φ∗

. (71)

Here we have

∂L
∂Φ∗

= Φ
dV (z)

dz

∣∣∣∣
z=|φ|2

(72)

∂L
∂∂µΦ∗

= ∂µΦ (73)

so the equations of motion are

0 = ∂µ∂
µΦ− V ′(|Φ|2)Φ . (74)

Variation with respect to Φ and its derivative give the complex conjugate of this equation of motion.

(iii) Consider ∂µJµ where the fields satisfy the equations of motion (74) then

∂µJµ = ∂µ (Φ∗(∂µΦ))− (c.c.) (75)

= (∂µΦ∗)(∂µΦ) + Φ∗(∂µ∂µΦ)− (c.c.) (76)

= (∂µΦ∗)(∂µΦ) + Φ∗(V ′(|Φ|2)Φ)− (c.c.) (77)

= (∂µΦ∗)(∂µΦ) + |Φ|2.V ′(|Φ|2)− (c.c.) (78)

using the equation of motion (74) to remove the double derivative. Now the explicit terms are

clearly real so they are cancelled by the complex conjugate terms (those in the (c.c.) bracket), so

we have that ∂µJµ = 0 for any potential V .


