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Problem Sheet 5: Generic Interacting Quantum Field Theory
Comments on these questions are always welcome. For instance if you spot any typos or feel the wording

is unclear, drop me an email at T.Evans at the usual Imperial address.

Note: problems marked with a ∗ are the most important to do and are core parts of the course. Those

without any mark are recommended. It is likely that the exam will draw heavily on material covered in

these two types of question. Problems marked with a ! are harder and/or longer. Problems marked with

a ] are optional. For the exam it will be assumed that material covered in these optional ] questions has

not been seen before and such optional material is unlikely to be used in an exam.

Here operators are written without ‘hats’ so you will need to deduce what is an operator from the context.

Unless otherwise stated, operators and states are in the interaction picture.

∗1. The Interaction Picture Evolution Operator U(t2, t1)

The relationship between the Schrödinger and Interaction pictures is given by

|ψ, t〉I = exp{+iH0,St} |ψ, t〉S , (1)

OI(t) = exp{+iH0,St}OS exp{−iH0,St} . (2)

The evolution of interaction picture states is found through the interaction picture evolution operator

U(t2, t1) where

|ψ, t2〉I = U(t2, t1) |ψ, t1〉I . (3)

(i) Show that the U operator satisfies the following conditions:

(a) U(t, t) = 1

(b) U(t2, t1)U(t1, t0) = U(t2, t0)

(c) It is unitary, i.e. [U(t2, t1)]
† U(t2, t1) = 1

(d) [U(t2, t1)]
† = U(t1, t2) (note the order of arguments).

(ii) Starting from the Schrödinger equation

i
d

dt
|ψ, t〉S = HS |ψ, t〉S (4)

show that

|ψ, t〉I = exp{+iH0,St} exp{−iHSt} |ψ, t = 0〉S . (5)

Starting from (10) we might guess that

(This is wrong!) |ψ, t〉I = exp{−iHint,St} |ψ, t = 0〉S (This is wrong!) (6)

where Hint,S = HS −H0,S. Why is is not generally true?

(iii) Instead, show that the Schrödinger equation (9) implies that

i
d

dt
|ψ, t〉I = Hint,I(t) |ψ, t〉I , (7)

i
d

dt
U(t, t0) = Hint,I(t) U(t, t0) . (8)
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(iv) By writing the evolution of |ψ, t〉I in (12) in terms of infinitesimal positive time steps ε, show that

for t2 > t1

U(t2, t1) = T

(
exp{−i

∫ t2

t1

dt′ Hint,I(t
′)}
)
, if t2 > t1 . (9)

The Baker-Campbell-Hausdorf identity (BCH) is

exp{Â} exp{B̂} = exp{Â+ B̂ +
1

2
[Â, B̂] +

1

12
[Â, [Â, B̂]]− 1

12
[B̂, [Â, B̂]] + . . .} (10)

The additional terms in the . . . represent terms containing all possible combinations of Â and B̂

operators in all possible multiple commutators. For instance at the next order the terms have

four operators in all possible triple commutators e.g. it contains [Â, [Â, [Â, B̂]]] and so forth. Each

multiple commutator is multiplied by a known c-number.

Why do we not need to use this relation in the derivation of the solution (14)? That is show that

T
(

exp{Â} exp{B̂}
)

= T
(

exp{Â+ B̂}
)

(11)

where Â and B̂ are some operators defined at a specific time. Show this to second order in the

operators.

Optional : convince yourself that (16) works to all orders.

(v) Optional : What is the form for U(t2, t1) when t2 < t1? This needs to be given in terms of some

exponential of an integral
∫ t2
t1
dt′ Hint,I(t

′) similar to (14). You can either repeat the proof above

for this case or try to argue for any form you guess.

∗2. Contractions

(i) For bosonic fields, a contraction is defined and denoted as

φ1φ2 = ∆12 = T(φ1φ2)−N(φ1φ2) (12)

where φ1 = φ1(x1) and φ2 = φ2(x2) are any two bosonic1 fields. Here N(. . .) is general normal

ordering where, for a given split of fields φi = φ+i + φ−i , φ+i are moved to the right of all φ−i .

More specifically the normal ordering operator N indicates the following algorithm. You replace any

φi by (φ+i + φ−i ) and expand until you have a sum of terms in which each term is a product of φ±i .

In each term, you switch the order of any pair of neighbouring fields so a (. . . φ+i φ
−
j . . .) becomes

(. . . φ−j φ
+
i . . .). You repeat these swaps until there are no more φ+i φ

−
j neighbouring pairs. Note

this means that the order of the plus parts of the fields, φ+i , is unchanged relative to themselves,

likewise the minus parts φ−i . The only changes are in the relative order of plus and minus parts of

the fields.

Time ordering, T(. . .), moves fields so that each field has later (earlier) time operators to the left

(right)2.

1Fermionic fields have some extra signs in these definitions.
2For simplicity it is best to set the times of all operators to be distinct taking any equal time limits at the end of the

calculation as needed. This will make no difference to any physical quantity.
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Show that for an arbitrary split of bosonic fields we have that

φ1φ2 = ∆12 = θ(t1 − t2)
[
φ+1 , φ

−
2

]
+ θ(t2 − t1)

([
φ+2 , φ

+
1

]
+
[
φ+2 , φ

−
1

]
+
[
φ−2 , φ

−
1

])
(13)

Hence show that a contraction is symmetric only if we split the field such that[
φ+2 , φ

+
1

]
+
[
φ−2 , φ

−
1

]
= 0 . (14)

Assuming (19) is true, give the simplified form for the contraction φ1φ2 = ∆12.

(ii) For the remainder of this question consider the standard definition of normal ordering (denoted in

this course with : . . . :) where annihilation (creation) operators are put to the right (left) so that

〈0| : (any fields) : | 0〉 = 0.

Show that for this choice of split, we have the following proeprties

(a) [φ+1 , φ
−
2 ] ∝ 1̂I i.e.s this a c-number which commutes with everything.

(b) Equation (19) is true.

(c) the two-point normal ordering is symmetric under interchange of the fields under the ordering,

i.e.

: φ1φ2 :=: φ2φ1 : . (15)

(iii) Consider a theory with a real scalar field φ of mass m and a complex scalar field ψ of mass M .

The scalar Yukawa theory is one example but the details of any interaction are not relevant in this

question. Start from the fields in the interaction picture

φ̂(x) =

∫
d3p

(2π)3
1√

2ω(p)
(âpe

−ipx + â†pe
+ipx) , p0 = ω(p) =

∣∣∣√p2 +m2
∣∣∣ , (16)

ψ̂(x) =

∫
d3p

(2π)3
1√

2Ω(p)
(b̂pe

−ipx + ĉ†pe
ipx) , p0 = Ω(p) =

∣∣∣√p2 +M2
∣∣∣ , (17)

where the annihilation and creation operators obey the usual commutation relations[
âp, â

†
q

]
= (2π)3δ3(p− q) , [âp, âq] =

[
â†p, â

†
q

]
= 0 . (18)

Use the definition of a contraction (17) to show that the value for each of following contractions is

as given (assuming standard normal ordering)

φ(x)φ(y) = ∆m(x− y) =

∫
d4k

(2π)4
e−ik(x−y)

i

k2 −m2 + iε
(19)

φ(x)ψ(y) = 0 (20)

φ(x)ψ†(y) = 0 (21)

ψ(x)ψ(y) = 0 (22)

ψ†(x)ψ†(y) = 0 (23)

ψ(x)ψ†(y) = ∆M (x− y) =

∫
d4k

(2π)4
e−ik(x−y)

i

k2 −M2 + iε
(24)

ψ†(x)ψ(y) = ∆M (y − x) =

∫
d4k

(2π)4
e+ik(x−y)

i

k2 −M2 + iε
(25)
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∗3. Wick’s theorem for four bosonic fields

(i) Using Wick’s theorem, write down an expression for the time ordered product of four scalar3 fields

T1234 = T (φ1φ2φ3φ4), where φi = φi(xi). This should be given in terms of the normal ordered

products of two and four fields, denoted N(fields), and in terms of the contractions

∆ij = T (φiφj)−N (φiφj) (assumed to be c-numbers). Do this for generic (any) normal ordering.

(ii) Consider some general expectation value G1234 = 〈T (φ1φ2φ3φ4)〉. Assuming that normal ordering

has been defined such that the relevant expectation values of any normal product are zero, i.e.

〈N(fields)〉 = 0, find an expression for G1234 in terms of ∆ij = 〈T (φiφj)〉.

(iii) For the typical definitions of normal ordering, all the terms in Wick’s theorem are symmetric under

interchange of fields. So without loss of generalisation you may choose t1 > t2 > t3 > t4. Assume

that we have only one real scalar field φ(x) = φi(x) for all i, but that the coordinates of the four

terms are still distinct. We will consider the vacuum expectation value,

G1234 = 〈0|T (φ(x1)φ(x2)φ(x3)φ(x4)) | 0〉 . (26)

Substitute the form for the interaction picture field into this expression and verify directly that we

obtain the result found in the previous part.

]4. Normal Ordering for Thermal Expectation Values

This question illustrates one example where a different normal ordering is used.

In typical high energy experiments at colliders such as CERN, the inputs and outputs are one, two or a

few physical particles added to the quantum vacuum. However there are many situations where we are

interested in processes taking place in a background of many particles e.g. condensed matter problems,

in the early universe or in heavy ion collisions at CERN (see the ALICE experiment). To deal with

such situations with many particles we need to combine QFT with the ideas of statistical mechanics and

thermodynamics, a topic known as Thermal Field Theory (or Finite Temperature Field Theory). In

this question we will look at a the simplest type of Green functions used in Thermal Field Theory, two

point functions for a free field.

The expectation values 〈. . .〉 in this question are now thermal expectation values where

〈Ô〉 =
1

Z
Tr{e−βĤÔ} , Z = Tr{e−βĤ} . (27)

where β = 1/(KT ) is the inverse temperature4. Here Tr{. . .} indicates a sum over all states in any basis,

i.e.

Tr{O} ≡
∑
n

〈n|O|n〉 . (28)

By way of comparison ‘normal’ QFT , based on the vacuum expectation values, is for few particles and

is obtained as the zero temperature limit of thermal field theory, β →∞.

3For this question, bosonic fields behave exactly as scalar fields so the result is more general.
4Here T is the temperature and, guess what, we set K = 1 in relativistic thermal field theory to define our temperatures

in natural units.
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(i) Consider a single quantum harmonic oscillator with the usual annihilation and creation operators

â† and â so the Hamiltonian may be written as Ĥ = ωâ†â (ignoring constants which are not relevant

here). The states are the usual normalised Fock space energy/number eigenstates

|n〉 =
1√
n!

(â†)n| 0〉 . (29)

Show that Z = Tr{e−βĤ} = (1− e−βω)−1.

By taking an appropriate derivative of Z show that

〈â†â〉 =
1

Z
Tr{e−βĤ â†â} (30)

is the Bose-Einstein distribution.

Using commutators or otherwise calculate

〈ââ†〉 =
1

Z
Tr{e−βĤ ââ†} . (31)

Why are 〈ââ〉 and 〈â†â†〉 both zero?

(ii) Normal ordering in normal QFT (zero temperature QFT) is indicated here by : . . . :, and is defined

such that annihilation (creation) operators are moved to the right (left) of creation (annihilation)

operators5.

Compare 〈0| : ââ† : | 0〉 and 〈: ââ† :〉.

!]5. Normal Ordering for Thermal Field Theory

The answers are for this question are in Thouless, Phys.Rev. 107 (1957) 4 for non-relativistic fields and

Evans and Steer, Nucl.Phys.B, 474 (1996) 481–496 (online as arXiv:hep-ph/96012686) for relativistic

fields.

Thermal expectation values are defined as in (32). Note that we are working with a continuous momen-

tum labelling the different states so we need to remember that the normalisation for these continuous

momentum space p states is

〈np|nq〉 = (2π)3δ3(p− q)δnp,nq . (32)

where |np〉 is the normalised state obtained by acting â†p np times on the vacuum state for the oscillator

associated with mode p..

(i) Consider a single real scalar field φ(x) in the interaction picture as given in (21). The Hamiltonian

is then just Ĥ =
∫
d3kâ†kâk where we can ignore any (infinite) constants.

Using (36) and (35) or otherwise, find the thermal Wightman function

Dβ(x− y) = 〈φ(x)φ(y)〉 =
1

Z
Tr{e−βĤφ(x)φ(y)} , (33)

5To be more precise if asked explicitly for a definition, as you might want to be in an exam, we should also note that

within the set of annihilation operators, their relative order is maintained. Likewise for the creation operators.
6See http://arxiv.org/abs/hep-ph/9601268.
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where the Tr is a generalisation to QFT of (33). Hint: you should find that the expression factorises

into a product over different momenta p, each term of a familiar form for a bosonic state of energy

ωp.

Compare this thermal Wightman function Dβ with the form used in zero temperature QFT, i.e.

D(x− y) = 〈0|φ(x)φ(y)| 0〉.

(ii) Suppose we split our field using a general linear split of the annihilation and creation parts. That

is we define

φ̂+(x) =

∫
d3p

(2π)3
1√

2ω(p)
((1− fp)âpe−ipx + gpâ

†
pe

+ipx) , (34)

φ̂−(x) =

∫
d3p

(2π)3
1√

2ω(p)
(fpâpe

−ipx + (1− gp)â†pe+ipx) , (35)

where p0 = ω(p) =
∣∣∣√p2 +m2

∣∣∣ as before. Here fp =≡ f(p) and gp =≡ g(p) are two functions to

be determined.

Now write down 〈N(φ(x)φ(y))〉 in terms of fp, gp and where N is normal ordering which moves φ̂+

to the right of all φ̂− but which maintains the relative order within the set of φ̂+ and which also

maintains the relative order within the set of φ̂−.

(iii) Demand that 〈N(φ(x)φ(y))〉 = 0 and hence show that functions f and g satisfy

fpgp = −n(ωp) , (1− fp)(1− gp) = 1 + n(ωp) . (36)

Hence show that there are two possible solutions

fp = −n+ s
√
n(n+ 1) , gp = −n− s

√
n(n+ 1) , s = ±1 . (37)

(iv) Find the time-ordered two point Green function for a real scalar field in Thermal Field Theory (i.e.

the replacement for our usual Feynman propagator in perturbation theory) by using the definition

that ∆β(x− y) = 〈T(φ(x)φ(y))〉. Compare with the zero temperature case.


