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Problem Sheet 5: Generic Interacting Quantum Field Theory
Comments on these questions are always welcome. For instance if you spot any typos or feel the wording
is unclear, drop me an email at T.Evans at the usual Imperial address.

Note: problems marked with a x are the most important to do and are core parts of the course. Those
without any mark are recommended. It is likely that the exam will draw heavily on material covered in
these two types of question. Problems marked with a ! are harder and/or longer. Problems marked with
a f are optional. For the exam it will be assumed that material covered in these optional f questions has
not been seen before and such optional material is unlikely to be used in an exam.

Here operators are written without ‘hats’ so you will need to deduce what is an operator from the context.
Unless otherwise stated, operators and states are in the interaction picture.

x1. The Interaction Picture Evolution Operator U (ta,t1)

The relationship between the Schrédinger and Interaction pictures is given by

[, t)r = exp{+iHost} [¢,1)s, (1)
O1(t) = exp{+iHost} Osexp{—iHpst}. (2)

The evolution of interaction picture states is found through the interaction picture evolution operator
U(ta,t1) where

[ t2)r = Ulta, ta) |9, t1)1- (3)

(i) Show that the U operator satisfies the following conditions:

(a) Ut,t)=1

(b) Ulta,t1)U(t1,t0) = U(t2,to)

(c) It is unitary, i.e. [U(tQ,tl)]T Ulta,t1) =1
)

(d) [U(ta,t1)]" = U(t1,t2) (note the order of arguments).

(ii) Starting from the Schrodinger equation

d
i1 t)s = Hs 9. t)s (4)
show that
Y, t)1 = exp{+iHogst}exp{—iHst} |1,t =0)g. (5)
Starting from (10) we might guess that
(This is wrong!) |, t)1 = exp{—iHintst} [¢,t =0)s (This is wrong!) (6)
where Hiy s = Hs — Hys. Why is is not generally true?

(iii) Instead, show that the Schrédinger equation (9) implies that

PO = Hana(0) 10,00 ")

U t0) = Hia(t) ULt 10). ®)
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(iv) By writing the evolution of |¢,t); in (12) in terms of infinitesimal positive time steps €, show that
for t9 >ty

to
U(tg, tl) =T <6Xp{—i/ dt, Hjnt7l(t/)}> s if tQ > tl . (9)
t

1

The Baker-Campbell-Hausdorf identity (BCH) is

1
12

1

(A, B) + 5[4 [A,B)] - 5[B.[A B +...} (10)

DO | =

exp{A} exp{B} = exp{A + B +

The additional terms in the ... represent terms containing all possible combinations of A and B
operators in all possible multiple commutators. For instance at the next order the terms have
four operators in all possible triple commutators e.g. it contains [ﬁ, [ﬁ, [ﬁ, E]]] and so forth. Each
multiple commutator is multiplied by a known c-number.

Why do we not need to use this relation in the derivation of the solution (14)? That is show that
T (exp{g} exp{é}) =T (exp{ﬁ—k E}) (11)

where A and B are some operators defined at a specific time. Show this to second order in the
operators.

Optional: convince yourself that (16) works to all orders.

(v) Optional: What is the form for U(ts,t1) when ¢y < ¢17 This needs to be given in terms of some
exponential of an integral fttf dt’ Hine1(t') similar to (14). You can either repeat the proof above

for this case or try to argue for any form you guess.

*2. Contractions

(i) For bosonic fields, a contraction is defined and denoted as

1
P12 = A1z = T(p192) — N(p162) (12)

where ¢1 = ¢1(z1) and ¢ = ¢o(x2) are any two bosonic! fields. Here N(...) is general normal
ordering where, for a given split of fields ¢; = gi)zr + 5, gb;r are moved to the right of all ¢; .

More specifically the normal ordering operator N indicates the following algorithm. You replace any
¢; by (¢ + ¢; ) and expand until you have a sum of terms in which each term is a product of qbfc.
In each term, you switch the order of any pair of neighbouring fields so a (... quQS; ...) becomes
(... qb;gi);r ...). You repeat these swaps until there are no more gb;rqb; neighbouring pairs. Note
this means that the order of the plus parts of the fields, gi):r, is unchanged relative to themselves,
likewise the minus parts ¢, . The only changes are in the relative order of plus and minus parts of
the fields.

Time ordering, T(...), moves fields so that each field has later (earlier) time operators to the left
(right)2.

!Fermionic fields have some extra signs in these definitions.
2For simplicity it is best to set the times of all operators to be distinct taking any equal time limits at the end of the
calculation as needed. This will make no difference to any physical quantity.
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(iii)

Show that for an arbitrary split of bosonic fields we have that

—

1o = A1z = O(t1 —t2) [07, 05| +0(t2 —t1) ([¢3, 01 ] + [03. 07 + [¢5.07])  (13)
Hence show that a contraction is symmetric only if we split the field such that

(03, 01] + [¢2,07] = 0. (14)

—
Assuming (19) is true, give the simplified form for the contraction ¢;¢2 = Ajs.

For the remainder of this question consider the standard definition of normal ordering (denoted in
this course with : ... :) where annihilation (creation) operators are put to the right (left) so that
(0| : (any fields) : |0) = 0.

Show that for this choice of split, we have the following proeprties

(a) [¢7, 5] o 1i.e.s this a c-number which commutes with everything.

(b) Equation (19) is true.

(c) the two-point normal ordering is symmetric under interchange of the fields under the ordering,
ie.

DO102 =1 dadr ¢ (15)

Consider a theory with a real scalar field ¢ of mass m and a complex scalar field ¥ of mass M.
The scalar Yukawa theory is one example but the details of any interaction are not relevant in this
question. Start from the fields in the interaction picture

n d3p 1 ~_—ipT ~ ipx _ _
Pp(z) = /sz(m(%e +ale™™), py=uw(p) = ‘\/p2+m2‘7 (16)

P d3p 1 7 ,—ipx | At ipx _ _
i(z) = /W\/m(bpe T ébe™), po = Qp) = [Vp? + M2 (17)

where the annihilation and creation operators obey the usual commutation relations
lap,a}] = @) —a),  [apaq] = [af,a}] = 0. (18)

Use the definition of a contraction (17) to show that the value for each of following contractions is
as given (assuming standard normal ordering)

— 4 . i
P()p(y) = An(z—y)= / (;lﬁl; S_Zk(:c_y)m (19)
cb('jﬁlb(y) =0 (20)
¢(x)yf(y) = 0 (21)
Y(x)(y) = 0 (22)
PH@)yf(y) = 0 (23)
— 4 ) 7
Vet = Aule—u) = [ g e (24)
1 4 i
PH@)(y) = Auly—2)= / (;lﬁ]; eﬂk(m*y)m (25)
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*3. Wick’s theorem for four bosonic fields

(i) Using Wick’s theorem, write down an expression for the time ordered product of four scalar® fields
Ti234 = T (p1¢2¢304), where ¢; = ¢;(x;). This should be given in terms of the normal ordered
products of two and four fields, denoted N(fields), and in terms of the contractions
Aij =T (¢i¢;) — N (¢i¢;) (assumed to be c-numbers). Do this for generic (any) normal ordering.

(ii) Consider some general expectation value G134 = (T (¢1P20304)). Assuming that normal ordering
has been defined such that the relevant expectation values of any normal product are zero, i.e.
(N (fields)) = 0, find an expression for G234 in terms of Ay; = (T (¢i¢;))-

(iii) For the typical definitions of normal ordering, all the terms in Wick’s theorem are symmetric under
interchange of fields. So without loss of generalisation you may choose t; > t3 > t3 > t4. Assume
that we have only one real scalar field ¢(x) = ¢;(x) for all 4, but that the coordinates of the four
terms are still distinct. We will consider the vacuum expectation value,

Grasa = (0T (d(21)9(22)p(23)d(74)) | 0) - (26)

Substitute the form for the interaction picture field into this expression and verify directly that we
obtain the result found in the previous part.

4. Normal Ordering for Thermal Expectation Values

This question illustrates one example where a different normal ordering is used.

In typical high energy experiments at colliders such as CERN, the inputs and outputs are one, two or a
few physical particles added to the quantum vacuum. However there are many situations where we are
interested in processes taking place in a background of many particles e.g. condensed matter problems,
in the early universe or in heavy ion collisions at CERN (see the ALICE experiment). To deal with
such situations with many particles we need to combine QFT with the ideas of statistical mechanics and
thermodynamics, a topic known as Thermal Field Theory (or Finite Temperature Field Theory). In
this question we will look at a the simplest type of Green functions used in Thermal Field Theory, two
point functions for a free field.

The expectation values (...) in this question are now thermal expectation values where

(B) = %Tr{efﬂff OV, 7 =T Py, (27)

where 8 = 1/(KT) is the inverse temperature*. Here Tr{...} indicates a sum over all states in any basis,
ie.

Tr{O} = Z(n!(’ﬂ ny. (28)

By way of comparison ‘normal’ QFT | based on the vacuum expectation values, is for few particles and
is obtained as the zero temperature limit of thermal field theory, 8 — oc.

3For this question, bosonic fields behave exactly as scalar fields so the result is more general.
“Here T is the temperature and, guess what, we set K = 1 in relativistic thermal field theory to define our temperatures
in natural units.
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(i) Consider a single quantum harmonic oscillator with the usual annihilation and creation operators

a' and @ so the Hamiltonian may be written as H = wé'a (ignoring constants which are not relevant
here). The states are the usual normalised Fock space energy/number eigenstates

|n) = —=(a")"[0). (29)

2~

Show that Z = Tr{e #H} = (1 — e=Pw)~1,
By taking an appropriate derivative of Z show that

(ata) = %Tr{e_ﬁﬁ ata) (30)

is the Bose-Einstein distribution.
Using commutators or otherwise calculate

(aaty = %Tr{e_ﬁﬁ aa'}. (31)

Why are (aa) and (afa') both zero?

(ii) Normal ordering in normal QFT (zero temperature QFT) is indicated here by : ... :, and is defined
such that annihilation (creation) operators are moved to the right (left) of creation (annihilation)
operators5 .

Compare (0] : aa’ : |0) and (: aa' :).

115. Normal Ordering for Thermal Field Theory

The answers are for this question are in Thouless, Phys.Rev. 107 (1957) 4 for non-relativistic fields and
Evans and Steer, Nucl.Phys.B, 474 (1996) 481-496 (online as arXiv:hep-ph/9601268%) for relativistic
fields.

Thermal expectation values are defined as in (32). Note that we are working with a continuous momen-
tum labelling the different states so we need to remember that the normalisation for these continuous
momentum space p states is

(npl ng) = (2m)°6%(P — @)dn,m, - (32)
where | n,) is the normalised state obtained by acting d;r, n, times on the vacuum state for the oscillator
associated with mode p..

(i) Consider a single real scalar field ¢(z) in the interaction picture as given in (21). The Hamiltonian
is then just H = [ d?’de&k. where we can ignore any (infinite) constants.

Using (36) and (35) or otherwise, find the thermal Wightman function

Dl —y) = (@)6(w) = 5 Tele P o(x)o(y)} ()

5To be more precise if asked explicitly for a definition, as you might want to be in an exam, we should also note that
within the set of annihilation operators, their relative order is maintained. Likewise for the creation operators.
5See http://arxiv.org/abs/hep-ph/9601268.
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(i)

(iii)

(iv)

where the Tr is a generalisation to QFT of (33). Hint: you should find that the expression factorises
into a product over different momenta p, each term of a familiar form for a bosonic state of energy
Wp-

Compare this thermal Wightman function Dg with the form used in zero temperature QFT, i.e.

D(z —y) = (0[(x)¢(y)] 0).

Suppose we split our field using a general linear split of the annihilation and creation parts. That
is we define

n o d3p 1 . a efipx &T e ipx
¢+($) B / (271')3 20)(p) ((1 fp) P +gp P ' )’ (34)
b 7d3p 41 H T ~ ipx
o (@) = / (2m)3 2w(p) Uptpe e Qp)aL€+ : ()

where py = w(p) = )\/pQ + mZ‘ as before. Here f, == f(p) and g, == g(p) are two functions to
be determined.

Now write down (N(¢(z)¢(y))) in terms of f,, g, and where N is normal ordering which moves ot
to the right of all (Z;_ but which maintains the relative order within the set of g5+ and which also
maintains the relative order within the set of gZS_.

Demand that (N(¢(z)¢(y))) = 0 and hence show that functions f and g satisfy
fpgp = —nlwp) , (1= fp)(L —gp) =1+ n(wp). (36)

Hence show that there are two possible solutions
fp=-—-n+sy/nn+1), gp=-—n—syn(n+1), s==£1. (37)

Find the time-ordered two point Green function for a real scalar field in Thermal Field Theory (i.e.
the replacement for our usual Feynman propagator in perturbation theory) by using the definition
that Ag(z —y) = (T(¢(z)¢(y))). Compare with the zero temperature case.



