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Solutions 5: Bosonic Interacting Quantum Field Theory

1. The Interaction Picture Evolution Operator U (ta,t1)

The relationship between the Schrédinger and Interaction pictures is given by

|w7 t>I = exp{+iH0,St}|¢7 t>S 5 (1)
Or(t) = eXp{—H'Host} Osg eXp{—iH(Lst} . (2)

The evolution of interaction picture states is found through the interaction picture evolution operator
U(ta,t1) where

[ita)r = Ulta, t1)|,t1)r. (3)

(i) Show that the U operator satisfies the following conditions:

(a) This is clearly needed as |1, t)1 = |1, )1

U(t,t)=1. (4)
(b) From the definition of U in (3) we have
|¢7t2>1 = U(t27t1)’¢7t1>17 (5)
[ty = Ulta,to)|, to)r, (6)
[, ta)r = Ultz, to), to)r- (7)

Substituting (5) into (6) and comparing to (7) gives us the result
Ulta, t1)U(t1,to) = Ulta, to) . (8)

(¢) We need the normalisation of states to be time independent so that {1, ta| 1, t2)1 = 1 (¥, t1] ¥, t1)1.
Taking the hermitian conjugate of (3) we have that

1, ta] = 1(,t1] .[U(te, t1)]! (9)

so that
1, ta] 1, ta)1r = 1(0, 1 |[U (ta, t1)]7.U (b2, t1) b, t1)1 = 1(h, ta| b, t1)1 - (10)

This demands the unitary condition that
[U(ta, t)]T .U (t2,t1) = 1. (11)

(d) If we set to = tg in (8) we get that U(to,t1)U(t1,t0) = Ul(to,to) = 1 using the identity (4).
Comparing this with (11) we arrive at

Ut t1)]" = U(ts,ta) . (12)

(ii) The Schrédinger equation defines all the time-evolution in the Schrdodinger picture which lies in
their states

d
i%w,ﬂs = Hs |9, t)s . (13)
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(iii)

(iv)

This tells us that
[, t)s = exp{—ilst} [¢,t =0)s, (14)
as we can check by substituting this into (13). Substituting (14) into (1) gives us
1Y, t)1 = exp{+iHost}exp{—iHst} |¢,t = 0)g, (15)
From this we deduce that
[, t)r = exp{—iHinst} [¢,t =0)s iff [Hs, Hog]=0 (16)
but this is not generally true. (EFS: What is happening if this is true?)

To make progress we have to do this in infinitesimal steps which we can do by producing a differential
equations. Substitute in [, t)g = exp{—iHost}|1, )1 from (1) to the left hand side of (13) to find

PSt)s = i (exp{—iHost} [4 1)) a17)
= Hoge oSt th +ie 052 [y, 1y (13)

The right hand side of (13) gives us Hg|v,t)s = Hgexp{—iHo st} |1, )1 noting the order carefully
as Hg and Hpg do not commute. Put these two sides of the Schrodinger equation together gives

. d i )
ie HO'St@ 4, 1)1 + Hoge Host |y t); = Hgexp{—iHost} |¢,t)1 (19)
o d . .
= ie HO’Sta [, t)1 = —Hosexp{—iHost} [¢,t)1 + Hsexp{—iHost} |1,(20)
= (Hs — Hog)exp{—iHost} |1, )1 (21)
- Hint,S eXp{—iHO,St} Wﬂfh (22)
d . . .
= pn |, t)1 = —iexp{+iHygst}Hinsexp{—iHogst} |1, )1 (23)
d .
i [, t)1 = —iHine1(t) [, t) (24)

where we have used the definition of an interaction picture operator in (2) to produce the Hiyt 1(t)
factor. Thus we have

d
i, thr = Hine1(t) [, )1 (25)
Substituting in the definition of U from (3) then gives us
d
’L%U(t, to) = H‘mtJ(t)U(t, t()) . (26)

From (25) we have for infinitesimal e (not necessarily positive just yet) that

(st =t & Hina(t) bt (27)
= i, t+er1 ~ i, )+ eHing1(t) [¢, t)1 (28)
= v, t+e1 ~ |, )1 —ieHine 1(t) ¥, t)1 = (1 — ieHine 1(2)) |9, )1 (29)
= Y, t+e)1 ~ exp{—ieHin1(t)} [V, 0)1. (30)
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Note that Hin,1(t) is an operator so it is vital that we are careful with the order. Now we iterate
to find that

[t +2€)1 ~ exp{—ieH1(t + €)} exp{—ieHn1(t)} [, )1 (31)

and then
|, t+ Ne)1 ~ exp{—ieHin1(t+ (N — 1)€)} exp{—ieHint1(t + (N — 2)€)} (32)
... exp{—ieHing,1(t + €)} exp{—ieHine,1(¢)} [¢, )1 (33)

Again note we are being very careful with operator ordering. This may be written in a short hand
notation as a product

(N-1)
|t + Neyy ~ T H exp{—ieHin 1(t +ne)} | |1, t)1. (34)

n=0

as the time-ordering operator T encode the operator ordering we need provided that ¢ > 0. This
notation only works in this case which will be useful only if to > 1 in our U(t2,¢1) of (3).

Now we need the identity proved in the next part that the time ordering operator takes care of all
the operator ordering issues so that we can write T(eef) = T(e(4*+5)). We find that

(N-1)

W, t+ Neyp ~ T |exp{—i > eHumea(t+ne)} | [t (35)
n=0

Taking the limit € — 0" with N = (t5 — t)/¢, we arrive at the key result

[Y,ta)1 = T <6Xp{—i/t2 dt’ Hint,l(t/)}> 19, )1 - (36)

t

Looking at the definition of U in (3) we see that we have

Ul(te,t1) =T (exp{—z’ ;2 dt' Hint,I(t’)}> . (37)

The Baker-Campbell-Hausdorf identity (BCH) is

~ ~ ~ o~ 1 o~ s 1 ~ ~ = 1 ~ ~ =
exp{A} exp{B} = exp{A + B + 5[14, B] + E[A’ [4, B]] — E[B’ [A,B]| +...} (38)
The additional terms in the ... represent terms containing all possible combinations of A and B

operators in all possible multiple commutators, multiplied by a known c-number.
Second order proof:
Consider two operators, A and B. The expansion of ee? to second order is
elef = (1+A+%A2+...)(1+B+%Bz+...) (39)
= 1+A+B+%A2+AB+%BQ+... (40)
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Then compare this to the expansion of eA+5
1
exp{A+ B} = 1+(A+B)+§(A+B)2+... (41)
= 1+A+B+%(A2+AB+BA+BQ)+.... (42)

We note that the order of the terms is important if, as for many operators, A and B do not commute.
The difference between these expressions is the commutator which is the first non-trivial term in
the BCH expression (38). That is

exp(A+ B+ 5[4 B} = 1+(A+B)+ (A+B+ [AB+.. (43)
= 1+A—|—B+%(A2—|—AB+BA—I—BQ)+%[A,B]—I—... (44)
= 1+A+B+%A2+AB+%B+.... (45)
agrees with (40) to second order as the BCH formula (38) says it should.
However we also note that a time-ordering operator changes (42) to
T(exp{A+B}) = T <1+A+B+;(A2+AB+BA+BQ)+...> (46)
= 1+A+B+%A2+T(AB)+%B2+.... (47)

as this overrides any operator ordering in the expression. Note that only the AB term has any
ordering issue at this order. Likewise

1 1
T (etef) = T((1+A+2A2+...)(1+B+232+...)) (48)
1 1
= 1+A+B+§A2+T(AB)+§B2+... (49)
So now there is complete agreement between (49) and (42) and we have that up to second order

1 1
T(exp{A+B}) = T(e*e®)=1+A+B+ 5A? + T(AB) + 5192 + ... (50)

All orders proof:

Essentially the issue of operator ordering is encoded in the commutators in the BCH expression of
(38). However we see that

T([A,B]) =T(AB) — T(BA) (51)
but because the T specifies the ordering T (AB) = T(BA) and so T ([A,B]) = 0. This will
guarantee the commutator corrections in the BCH expression give zero e.g. when we expand out
the exponential in (38), so we arrive at the conclusion that

T (exp{;l\} exp{é}) =T (eXp{A\—i— E}) . (52)

As we have written out the derivation of the form of U(te,t1) in detail for the case to > t1, we can
just pick this up from where we used the time ordering. So we can start from the expression in (33)
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which is valid for any to and ;. It is the next line, (34), which we must change for the case ¢t < ;.

So suppose that ¢ < 0 then we have in terms of an infinitesimal n = —e > 0 that we must write
(N=1)
[t —=Npy ~ T ] exo{+inHumei(t —nn)} | [, 01 (53)
n=0

Here T is the anti-time-ordering operator, that is T(AB) = 0(t, — t,) BA + 0(t, — t,) AB where t,
is the time associated with operator A and t; is the time associated with operator B. So T puts

the operator in order of their time with operators at the earliest times on the left.

Another way to see this is to realise that U(t1,t2)U(t2,t1) = 1 from (8). So if t3 > t; we have the
largest times in the middle of the expression so we must have U(t1,%2) ordered in the opposite way
from U (t1,t2) (and also with a minus sign difference in the exponential) in order for cancellation
to occur.

2. Contractions

(i) For bosonic fields, a contraction is defined and denoted as

—
P192 = A1z = T[p192] — N[¢162] (54)
where ¢1 = ¢1(x1) and ¢o = ¢o(x2) are any two bosonic! fields. Here NJ...] is general normal

ordering where, for a given split of fields ¢; = qﬁj + ¢, d)j are moved to the right of all ¢,
switching terms as few times as possible.

Nigigo] = Nl(@] +¢1)(3 + )= |75 + $adl  +6103 + 16y [ (55)
(order changed)

Time ordering moves fields with latest times to the left.

Tlp1¢2] = T[(¢] + 07 )(d3 +¢3)] = 0(t1 —t2) (¢ ¢3 + 6T d5 +d1 05 +d1d3)  (56)
+0(ty — t1) (65 ¢F + ¢ 0F + b3 07 + b3 07) . (57)

Substituting (55) and (57) into (54) gives

bron = A1y = Bt — 1) (01,05 ] +0(t2 —t1) ([03. 07 ] + [¢5,61] + [¢3,97]) - (58)

—
The same argument works if we consider ¢o¢1 so we deduce that

bro1 = Aoy = O(ty — 1) (03,01 ] +0(t1 — t2) ([0]. 03] + [61, 03] + [¢1.¢2]) - (59)

— —
Comparing the two expressions (58) and (59) we see we have a symmetric contraction ¢1¢s = ¢2¢1

only if the term with a commutator of two plus parts cancels the commutator with two minus parts,
i.e. for splits of the fields where
[63,67] + [¢5, 1] =0 (60)

for all times.

!Fermionic fields have some extra signs in these definitions.
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(ii) For the remainder of this question we will consider the standard definition of normal ordering
(denoted with : ... :) where annihilation (creation) operators are put to the right (left) so that
(0| : (any fields) : |0) = 0.

(a) we have to show that [¢], ¢5] 1i.e. this a c-number which commutes with everything. The
commutator [(ﬁ, ¢5 | will be proportional to commutators of annihilation operators (coming
from ¢) and creation operators (these are just in ¢, ) as that is how the standard normal
ordering is defined. So the operator part of this commutator will always be proportional to
[@ip, &Ijq] = §;;6%(p — q) i.e. a c-number. Hence whatever scalar (or indeed bosonic) fields we
use here e.g. relativistic, non-relativistic, the commutator is not an operator, it is just some
number, often defined in terms of integrals.

(b) We now need to show that equation (60) is true here, i.e. that [¢F, 0] + [¢5,¢7 ] = 0. The
same approach just used works here. Since now the + parts of fields are always pure annihi-
lation operators they will always commute with each other, whether they are commutators of
the 4 parts of the same or different fields. So we will have [qﬁ;, qbﬂ = 0 for our chosen field
split. Similar argument for the minus parts tells us [(152_ , qﬁl_] = 0. So we see each term in (60)
is zero and the sum is therefore zero.

(c) We showed above that the difference of the normal ordered products of two scalar (or bosonic)
fields is proportional to [qb;r, gbﬂ + [gb;, gbf] = 0 of (60). We have just shown this is zero for
our chosen split, the standard normal ordering, it follows that

L o1(x) o = Pa(x)1 - . (61)

(iii) The fields we have are in the interaction picture and they are given by

A 3 . .
0@) = [ e e )y = wlp) = |V (@)

2w(p)
N d3p 1 N . .
g) = [ ZP (bt el po =0 :‘\/2+M2‘, 63
60 = [ s g o e =) = [V (63)
where the annihilation and creation operators obey the usual commutation relations
[ap,a;} =238 (p—q),  lap iq) = [a;,ag] ~0. (64)

For the standard split used in QFT we find that

dgp 1 —ipT
— dSP 1 ipT
o= / Gy e e (66)

For the complex fields we have to be careful with the notation, distinguish the hermitian conjugate
operator (denoted with a dagger t) from the plus symbol (4) used to indicate the annihilation
operator parts. The split for the field ¢ in terms of €, of (63) is

YH(z) = /d3plb e -0 (67)
= (27r)3 \/m D } pO - P>
d3p 1 .
— _ t +ipx —
Vv (x) /(2#)3 0, cpe , po = Qp. (68)
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The split for the hermitian conjugate field ¥ is (now the notation is getting a little clumsy)

3 .

'@ = [ G ™ =, (69)
3 .

(wT)*(x) = /(;l:))?’\/zlﬁpreﬂpx? po=yp. (70)

Note that the hermitian conjugate of the ‘positive’ part of 1, that is ((¢") )T, is not ¥.

Now from (60) we find the following results

(a)

$()o(y) = O(zo—wo) [¢7(2),6™ ()] +0(yo — o) [¢" (), ¢ (2)] (71)

Now use (65) and (66) to find

. - dp diq 1 1 it ;
[¢+(-T)>¢ (y)] - / (271')3 (271')3 \/ﬂm e~ PTFiqy [ap,aq:| (72)
d’p 1 —iwp(zo—yo)+ip-(z—y)
/ o . (73)

Now we need to use the standard tricks used for the energy integrations in the complex plane
used for two-point functions. Here we need to see that

+o00 ezt )
/ dz ———— = —27if(t)e ™" (74)
—00 z—w+t1e

where € is the usual infinitesimal but positive real parameter and w is real and positive. To
prove this you need to see that you can only close the contour with the upper semicircle at
infinity (so with positive imaginary part) when ¢ < 0 and then this part picks up no pole inside
the contour and is zero. For t > 0 you have to close the contour in the lower half plane which
then picks up the pole at z = w — ie though you are going around the pole in the negative
sense giving a factor of —2i.

Using this on the t = (z9 — yo) dependent terms in (73) we can rewrite our expression as an
integral over z = pg as follows

. B 1 +o0 e—izt d3p 1 —ip-(z—y)
9(950 - yO) [(b (JE), ¢ (y)] = % dz 2 —w + i€ (271')3 2% e (75)
—00 p
dlp 1 ¢ —ip(z—y)
/ (2m)4 2wp po — w + i€ ¢ (76)

where we have also changed variables from p to —p exploiting the fact that wy, is independent
of this change.

For the second term of (71) is identical except we have z and y switched round.

— dp 1 i ; d* 1 i '
_ —ip(z—y) p —irly—z)
o(2)o(y) / LR —— + / (@) %oy o — 0 ic ¢ (77)
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If we change variables in the second term, switching p* to —p*, then we find

b@)oly) — / (d4p ! L) / (d4p ! ! e~ PE78)

2m)4 2wy po — w + € 2m)* 2wp —po — w + i€

dp 1 i i ,
- —ip(z—y) 79
/(27r)42wp (po—w+ie+—p0—w+ie>e (79)
d'p i —2w + 2ie ip(e—y)
= 5 3 — P , e (80)
(2m)* 2wp \ (po — w + i€)(—po — w + i€)

In the numerator w > m > 0 is assumed so we can always drop the infinitesimal here. This
leaves use with

1 B d4p 7 —2w —ip(z—y)
o(z)py) = /(2ﬂ)4 2y (_(p0)2 e 2.6)2) e (81)

d'p i —ip(z—y)
— ip(z 9
/ )t ((p0)2 ~ o~ Ziew - > ¢ (82)

Now the €2 term is negligible while the 2ew = ¢ is infinitesimal, real and positive (not negligible

at the pole of course). However we can relabel this € as e (it has the usual properties) giving
us

[ 4 7 .
bb) = [ (o) Y = Ble ()

Note: I will use the same A,, notation for propagators in both position and momenta with
the arguments indicating which is meant, i.e. it is clear which form is meant for A,,(z — y)
and Ay, (p — q).

(b) Here

0 = o(=)¥(y) (84)

as ¢ and ¢ fields have different types of annihilation and creation operators (i.e. they represent
different types of particle). Thus all the commutators of any parts of these fields always
commute.

(¢) The previous argument applies here too

0 = o(2)¥(y) (85)
(d) Here we have from (60) that
D) = 6(t) [T (2).0 )] +6(—t) [¥H (), ¥ ()] (36)

Again by inspection we see that from (67) and (68) that ¢/ and ¢~ contain different types of
annihilation and creation operators, b’s in 1™ and ¢’s in ¥~

(e) The argument for the previous parts works here too.

0 = it (87)
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(f) We start from

G (y) = O — o) [0 (@), @) W)] + 00 — w0) [ (). v~ @)]  (88)

Now use (67), and (70) we find that

d’p d3q 1 1 N
+ T~ — —ipzrtiqy |, pt
@ 0] = [ G e T ] e
dp 1 _io (zo—yo)+ip-(z—y)
- / @20, ¢ ' )
For the second term in (88), using (68) and (69) we get
dp dq 1 1 —
A+ - _ —iprtiqy |
(sz)) (y)7¢ (l’)} /(271‘)3 (27‘(’)3 mme [CP’CQ] (91)
dp 1 _io (zo—yo)+ip-(z—y)
(2 X (3 T . 2
/ (2m)3 2 © (52)

These two forms are identical to those found for the real scalar field contraction of (71) which
gave us the two terms (73) and (77) except w is replaced by . So we can immediately deduce
that

— d*k , 1
t — A —y) = i G 93
Vi) = Aule—y) = [ G et (93)
Note: I will use the same Aj; notation for propagators in both position and momenta with
the arguments indicating which is meant, i.e. it is clear which form is meant for Ays(z — y)
and Aps(p — q).

(g) We just have to note our result above in (61) to see that with the standard normal ordering
definition the contractions are symmetric so that

PH@)(y) =vWvi(y) = Auly—=) (94)

which is exactly the same as (88) except the space-time arguments are reversed.

The contraction is symmetric in our standard choice of normal ordering for vacuum expectation
values. This means the order of the field and its hermitian conjugate in the definition of the
contraction is irrelevant provided we label the coordinates appropriately. Equation (94) is
correctly labelled with the y and x swapped compared to (93) above.

However for complex (and real) scalar fields the propagator is in fact completely symmetric
A(x —y) = A(y — x). You can show this explicitly by switching each component of the
four k, = —k; integration variables in turn (remembering to set the range of integration
appropriately).

3. Wick’s theorem for four bosonic fields
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[
(i) Let ¢; = ¢i(x;), D12 = P12, N2 = N(¢1¢2), Niasa = N(d1d2¢3¢4), etc., then for four scalar (or

(i)

(iii)

indeed bosonic) fields Wick’s theorem states that

Ti234a = T (P12¢304) = N (P1d2p304)
[ 1 1
+N <¢>1¢2¢3¢4> +N <¢1¢>2¢3¢4> +N <¢1¢2¢3¢4>

1 1 1
+N <¢1¢2¢3¢4) +N <¢1¢2¢3¢4> +N <¢1¢2¢3¢4)

— —— ] [— ]
+N <¢>1¢2¢3¢4> +N <¢1¢2¢3¢4> +N <¢1¢>2¢3¢4> (95)
= DNigs
+A12N334 + A13Nag + A14No3
+A23N14 + A4 N1z + A34N1o
+A12A34 + A13A04 + A14A03 (96)

Whenever normal ordering has been defined such that expectation values of any normal product
are zero, i.e. (N(fields)) = 0. Then when we take expectation values of a time ordered product, and
if we use Wick’s theorem any term containing a normal ordered operator will be zero so only terms
which are products of contractions A;; = (T (¢i¢;)) will survive. In this case we will just pick up
the last term

Giaza = (T (p1d2304)) = A12Aszq + A13Aos + A1sAo3 (97)

For the usual vacuum expectation values we want to define our normal ordering in terms of the
usual split into annihilation parts for ¢ and creation parts in ¢~ as given in (65) and (66). We
can substitute this in to our expression for a vacuum expectation value of the time-ordered product
of four fields with 1 > to > t3 > t4

G = (O[T (9le1)ole)0(a3)6(21)) |0) = Olo()s(e)olzs)olx 0 (99
- Ppi 1
- :Hg/ (2m)° V2
X<O|(ale—imx1 -l—aJ{erlm)(aQe_ip?x?-}-a;e"‘im%)
.(a3e—ip3x3+a£e+ipsx3)(a4e—ip4x4_‘_a:rle+ip4x4)’0> (99)

where a; = ap,. Now for a single operator a, the only non-zero answers must come from terms with
two annihilation operators a; and two creation operators at. Otherwise we will have in initial and
final states with different numbers of quanta and hence the overlap will be zero.

So writing A; = a;je 5%, and exploiting that a;|0) = 0 and <O|a;r = 0, then we have using the
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commutation relations (64) that

(0] A1 (A + AD) (A + A Afj0) = (100)
— (0]4; 424841 0)
+(0]A4; AL Az A% 0) (101)

= (0l4; (4fA; + 8 (p2 — py)e 22729 Al 0)
+(0] (A5 A1 + 8 (pr — pa)e 117220 ) Ay 4] 0) (102)
= (0] (b + 8 (01 — py)e™ ™77 ) A AL 0) 4+ 5% (py — pa)e2(7277) (0] 4, Al 0)

+8%(p1 — pa)e~ P E1=22) (0] A3 AT | 0) (103)
= 53(]91 - p3)e_ipl(x1_x3)53(p2 - p4)e_ip2(x2_x4)

+53(p2 _ p3)€7ip2(127$3)53(p1 _ p4)e*ip1(ff1*x4)

+53(p1 _ p2)e—ip1($1—z2)53(p3 N p4)€—ip3(z3—x4) (104)

An inspection for the form of the propagator shows that for ¢; > to we have that

EBp 1 .
Ayg = D(x1 — 229) —/(27:))3 20 ¢ plriez) (105)

and likewise for other combinations. This makes it clear what we have in (104) are just the terms
found above in (97), so indeed we have that

Gi23s = A12Aszg+ A3 + A14Ag3 (106)

4. Normal Ordering for Thermal Expectation Values

The expectation values here, (...), are now thermal expectation values where
~ 1 P .
(0) = ZTr{e*ﬁH(’)}, Z = Tr{e P} (107)

and § = 1/(KT) is the inverse temperature. Here Tr{...} indicates a sum over all states in any basis,

ie. Tr{O} =3, (n|O|n).

(i) We have a single quantum harmonic oscillator with the usual annihilation and creation operators '
and & and a Hamiltonian H = wa'a. The states are the usual normalised Fock space energy /number
eigenstates

(@ 0). (108)

|n) =

2~



QFT PS5 Solutions: Bosonic Interacting Quantum Field Theory (22/11/18) 12
This gives that

o0

Z = Tr{e_ﬂﬁ} = Z<n| exp(—Bwa’a)| n) (109)

n=0

= > (n] ) (~pwala)"|n) (110)

n=0 m=0
00

= > (nl Y (=Bwn)"|n) (111)

n=0 m=0
= > (e n) (112)
n=0
_ ;(e—ﬁw)” (113)
1

Note we used the binomial expansion of (1 —x)~! and the normalisation of the states.

We can calculate (afa) directly as above or use the usual trick with partition functions and recognise

that
(@tay = %(ﬁ) _ %% _ ddﬁTr{eﬂﬁ} _ —i;;lg (115)
)
e Bw
- 2 (=)
= ui_jfm) (118)
e — [ =) (119)
This is the Bose-Einstein distribution as should have been expected
Using the commutator [@,a] = 1 we have that
(@t = (@fa+1) = 14— — oty +n(w) = — (120)

(1)~ (P 1) =)
We can see that (aa) and (afat) both zero because all the terms in the sum under the trace are of
the form (n|aa|n) o< (n|n —2) = 0 and (n|a‘a’|n) o (n|n +2) = 0.

(ii) Here we will use the notation : ... : to indicate the ‘usual’ ‘traditional’ normal ordering as used
in QFT based around vacuum expectation values — zero temperature QFT. This normal ordering
:...:1s defined such that annihilation (creation) operators are moved to the right (left) of creation
(annihilation) operators?.

Clearly
(0] : aal : |0) = (0]aTal0) =0 (121)

2To be more precise, as you might want to be in an exam if asked explicitly for a definition, we should also note that
within the set of annihilation operators, their relative order is maintained. Likewise for the creation operators.
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but from above we have that
1

(-aa' 2y = (ata) = @)

£0. (122)

So the traditional normal ordering : ... : while perfectly well defined in thermal field theory will
turn out not to simplify the calculations. In thermal field theory it is best to work with a different
normal ordering, see Thouless, Phys.Rev. 107 (1957) 4 or Evans and Steer, Nucl.Phys.B, 474 (1996)
481-496 arXiv:hep-ph/96012683.

5. Normal Ordering for Thermal Field Theory

(i) Consider a single real scalar field ¢(x), defined as usual as

P> +m?|,

R 3
Hz) = / TP e et po = wlp) = (123)

(27)% \/2w(p)

where a, and d;r, are the usual annihilation and creation operators obeying standard commutation
relations. The Hamiltonian is then just H= / d3k:d;2&k. Note we can ignore any (infinite) constants
because this represents a shift in the zero of energy. Equilibrium statistical mechanics does not
depends on the zero of energy e.g. you can include rest mass energy or not and it does not make
any difference to the statistical mechanics.

The thermal Wightman function is given as follows:-

Dle—y) = (G@)ow) = 5Tele P o(x)o()}. (124)
= l r e_ﬁﬁ
B ZT{ /277 3 /2w(p / q)
(ape™ ™" + aLeW)(aqe*wy + afeti) | (125)

We can generalise the result that (aa) and (a'a') are both zero to see that (apag) and (apaq) are
always zero as the bra and kets will have different numbers of p and q states even if p = q. For
instance if p # q then

1 ~
(apig) = Tr{eMapig} (126)
1 o L oo o
- 7 Z(np’e_ﬁapapdp’nﬁ Z<nq‘€_ﬁaqaqdq|”q>
Nnp= nq=0
oo
< 11 (Zwre‘ﬁ‘“‘“ln») (127)
r#p,q \nr=0
1 o L o o
oo | S ety 1) | (3 (nglePata g — 1)
np=0 nq=0
[e.e]
< 11 (Zmrle‘ﬁ‘““"lnr)) : (128)
r#p,q \nr=0

3See http://arxiv.org/abs/hep-ph/9601268.
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The exp(—papap) terms do not alter particle number of the states so the terms with a, and a4
always involve overlaps between (n|n—1) = 0. If p = q then we will have one term of (n|n—2) = 0.
The same applies to all the other cases for thermal expectation values of pairs of annihilation and

creation operators when p # q.

In fact we can see the only cases where the thermal expectation values of a pair of annihilation and
creation operators is non-zero is when then are a number operator, i.e. the two cases

(ahaq) = nlwp)(2m)’6°(p —q), (129)
(apal) = (1+n(wy) (2m)°6°(p — q) (130)

where we have used (120) and (119) and written the answer in terns of the Bose-Einstein distribution
defined as n(w,) = (¢ — 1)~1. Note the normalisation for these continuous momentum space p
states and operators is now

<np| nq> = (27T)353(p - Q)(snp,nq . (131)

and so forth. It is sometimes easier to do this calculation in discrete momentum space and take the
continuum limit at the end but we would have to change the notation and definitions used in this

course.
So we can reduce this thermal Wightman function to
d’p d’q 1

Dg(z—y) = /(%)3 (27)3 \/2w(p)2w(q)

_ / d’p d3q 1
(2m)3 (2m)3 /2w (p)2w(q)
X (n(w)(27)26%(p — @)e™ T 4 (14 n(w,)) (27)5° (p — q)ePE) (133)
d3p 1

Dsw—y) — / G o (M) (14 ) ) (134)

(apal)e Py 4 (af ag)etiPriay (132)

Note that if we take § — oo we get the usual Wightman function we encountered in zero temperature

QFT, i.e.
d3p 1
(2m)% 2w(p)

We split our field using a general linear split of the annihilation and creation parts as follows

D~ ) = Olo@ow)|0) = [ el (135)

4 = d?’ip; — £ )ane T aletive
@ = @ gy (e e, o
b d3p 1 A e ipT ~ ipx
¢ (z) = /Ww(fpape 4—(1—gp)a;[,e+ ), (137)

where py = w(p) = ‘\/pQ + mQ‘ as usual. Here f, == f(p) and g, == g(p) are two functions to
be determined.

We have from the definition of normal ordering that if ¢; = ¢(x) and ¢2 = ¢(y) the as in (55) we
have that

N(@(2)p(y)) = (673 + 301 + 13 + b1 07) (138)
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For instance the first term is

3
<¢i*'¢;‘> — </(dpl ((1 —fp)&peﬂpx—i-g aT +zpz)

2m)3 2w(p)
d3q 1 B o gy dTe iy
X /(27r)32w(q)((1 fo)age™ " + gqale” )> (139)
_ / Bp &3 1
(2m)* (27) \/2w(p)2w(q)
X ((1 - fp)gq<dp&31>€+iqyiim +gp(1 — fq)<&1,dq>efiqy+im> (140)
d3p 1 iny—z Cin(yn
= /(%)3 5(p) ((1—fp)gp(1+n(wp))e+ W=2) 4 g,(1 — fp)n(wy)e P ))(141)

The remaining terms are

6300) = jp Fogp(1 + (e wy@+u—%xrﬁwm%wWW”ymm
<¢1_¢;> = d o, p <fp9p 1+ n(w etrlv=e) 4 + (1 —gp)(1 = fp)n(wp)eiip(yim)ylllg)
(61 ¢3) = (p <fp (1= gp)(1+ n(wp))e +ip(y—w) | gp(1 — fp)n(wp)e—ip(y—x)>(144)

(iii) We now demand that (N(4(z)¢(y))) = 0. This gives us the following

3
0 = [ g (= a1+ )t ) g (1= f e )
+ (o901 + ()™ + (1= g,)(1 = fyn(w, “MfU
+ (fogp(1+ nlwp))e =) 4 (1= g,) (1= fy)n(wp)e P02
- (Fo(1 = gp) (1 + )P0 4 g, (1~ f)n(w, w@xﬂ (145)
_ /d%l
~ ) e ae)

[€+ip(y_m) (1= fp)gp(1 +n(wp)) + (1 — gp) (1 = fp)n(wp)
+fpgp(L +n(wp)) + fp(1 = gp) (1 +n(wp)))
+e~PW=) (9p(1 = fp)n(wp) + fpgp(1 4+ n(wp))
+(1 = gp)(1 = fp)n(wp) + gp(1 — fp)n(wp))] (146)
_ / dp 1
(2m)? 2w(p)

[P0 (1 (1= f,)(1 = gy) + () + €70 (frg, +n(wy))|  (147)

So we require that
fogp = —n(wp) (1= fp)(1—gp) =1+ n(wp). (148)

These have two solutions

fp=—n+synn+1), gp=-—n—syn(n+1), s==1. (149)
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(iv) Perturbation theory works formally in thermal field theory exactly as before.
If we choose a field split such that the thermal expectation value of a pair of normal ordered fields

is zero then from the definition of the contraction we still have that

(To(x)d(y)) = (o(z)o(y)) (150)
Exactly as before, this leads to (see (58))
Ba)ow) = Bt — 1) [oF.05] + 02— 1) ([6F .61 ] + [05.07] + [65.67]) . (15)
where ¢1 = ¢(z) and ¢ = ¢(y) here.

Only when we substitute in the specific form for the split to be used in thermal theory do we find
the new form for the propagator to be used in perturbation theory of thermal field theory.

We could calculate the contraction directly as that will give us our thermal propagator for the
Feynman rules as the contraction has the same form as in (54) and (58). By choosing the split
such that the thermal expectation value of normal ordered products is zero we will find the correct
propagator to use in perturbation theory.

However it is easier just to find the expectation value of the time-ordered product of two interaction
picture fields directly. This is simply given in term of the thermal Wightman function (134)

Ag(z—y) = (To(x)o(y)) (152)
= 0(zo —yo)Ds(x —y) + 0(yo — x0) Dy — ) (153)

4
= Bolo =)+ [ () 5 - mt)e e (155)

where Ag(x — y) is our usual Feynman propagator i.e. for zero temperature field theory. Using our
previous results for Ag(z — y) we have that

4 7 .
Moo= = [t (o D@56 — ) e (156)
Balp) = e + )20 51 = ) (157)

So we see that the thermal correction to our usual propagator only comes from physical on-shell
particles weighted by the Bose-Einstein factor. These correspond to the effects of propagating
through a heat bath at inverse temperature 8 of real physical particles (i.e. no virtual energy
fluctuations, their energies are always equal to wy).



