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Solutions 5: Bosonic Interacting Quantum Field Theory

1. The Interaction Picture Evolution Operator U(t2, t1)

The relationship between the Schrödinger and Interaction pictures is given by

|ψ, t〉I = exp{+iH0,St}|ψ, t〉S , (1)

OI(t) = exp{+iH0,St}OS exp{−iH0,St} . (2)

The evolution of interaction picture states is found through the interaction picture evolution operator

U(t2, t1) where

|ψ, t2〉I = U(t2, t1)|ψ, t1〉I . (3)

(i) Show that the U operator satisfies the following conditions:

(a) This is clearly needed as |ψ, t〉I = |ψ, t〉I.

U(t, t) = 1 . (4)

(b) From the definition of U in (3) we have

|ψ, t2〉I = U(t2, t1)|ψ, t1〉I , (5)

|ψ, t1〉I = U(t1, t0)|ψ, t0〉I , (6)

|ψ, t2〉I = U(t2, t0)|ψ, t0〉I . (7)

Substituting (5) into (6) and comparing to (7) gives us the result

U(t2, t1)U(t1, t0) = U(t2, t0) . (8)

(c) We need the normalisation of states to be time independent so that I〈ψ, t2|ψ, t2〉I = I〈ψ, t1|ψ, t1〉I.
Taking the hermitian conjugate of (3) we have that

I〈ψ, t2| = I〈ψ, t1| .[U(t2, t1)]† (9)

so that

I〈ψ, t2|ψ, t2〉I = I〈ψ, t1|[U(t2, t1)]†.U(t2, t1)|ψ, t1〉I = I〈ψ, t1|ψ, t1〉I . (10)

This demands the unitary condition that

[U(t2, t1)]† .U(t2, t1) = 1 . (11)

(d) If we set t2 = t0 in (8) we get that U(t0, t1)U(t1, t0) = U(t0, t0) = 1 using the identity (4).

Comparing this with (11) we arrive at

[U(t2, t1)]† = U(t1, t2) . (12)

(ii) The Schrödinger equation defines all the time-evolution in the Schrödinger picture which lies in

their states

i
d

dt
|ψ, t〉S = HS |ψ, t〉S . (13)
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This tells us that

|ψ, t〉S = exp{−iHSt} |ψ, t = 0〉S , (14)

as we can check by substituting this into (13). Substituting (14) into (1) gives us

|ψ, t〉I = exp{+iH0,St} exp{−iHSt} |ψ, t = 0〉S , (15)

From this we deduce that

|ψ, t〉I = exp{−iHint,St} |ψ, t = 0〉S iff [HS, H0,S] = 0 (16)

but this is not generally true. (EFS: What is happening if this is true?)

(iii) To make progress we have to do this in infinitesimal steps which we can do by producing a differential

equations. Substitute in |ψ, t〉S = exp{−iH0,St}|ψ, t〉I from (1) to the left hand side of (13) to find

i
d

dt
|ψ, t〉S = i

d

dt
(exp{−iH0,St} |ψ, t〉I) (17)

= H0,Se
−iH0,St |ψ, t〉I + ie−iH0,St

d

dt
|ψ, t〉I (18)

The right hand side of (13) gives us HS|ψ, t〉S = HS exp{−iH0,St} |ψ, t〉I noting the order carefully

as HS and H0,S do not commute. Put these two sides of the Schrödinger equation together gives

ie−iH0,St
d

dt
|ψ, t〉I +H0,Se

−iH0,St |ψ, t〉I = HS exp{−iH0,St} |ψ, t〉I (19)

⇒ ie−iH0,St
d

dt
|ψ, t〉I = −H0,S exp{−iH0,St} |ψ, t〉I +HS exp{−iH0,St} |ψ, t〉I(20)

= (HS −H0,S) exp{−iH0,St} |ψ, t〉I (21)

= Hint,S exp{−iH0,St} |ψ, t〉I (22)

⇒ d

dt
|ψ, t〉I = −i exp{+iH0,St}Hint,S exp{−iH0,St} |ψ, t〉I (23)

d

dt
|ψ, t〉I = −iHint,I(t) |ψ, t〉I (24)

where we have used the definition of an interaction picture operator in (2) to produce the Hint,I(t)

factor. Thus we have

i
d

dt
|ψ, t〉I = Hint,I(t) |ψ, t〉I . (25)

Substituting in the definition of U from (3) then gives us

i
d

dt
U(t, t0) = Hint,I(t)U(t, t0) . (26)

(iv) From (25) we have for infinitesimal ε (not necessarily positive just yet) that

i

ε
(|ψ, t+ ε〉I − |ψ, t〉I) ≈ Hint,I(t) |ψ, t〉I (27)

⇒ i|ψ, t+ ε〉I ≈ i|ψ, t〉I + εHint,I(t) |ψ, t〉I (28)

⇒ |ψ, t+ ε〉I ≈ |ψ, t〉I − iεHint,I(t) |ψ, t〉I = (1− iεHint,I(t)) |ψ, t〉I (29)

⇒ |ψ, t+ ε〉I ≈ exp{−iεHint,I(t)} |ψ, t〉I . (30)
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Note that Hint,I(t) is an operator so it is vital that we are careful with the order. Now we iterate

to find that

|ψ, t+ 2ε〉I ≈ exp{−iεHint,I(t+ ε)} exp{−iεHint,I(t)} |ψ, t〉I (31)

and then

|ψ, t+Nε〉I ≈ exp{−iεHint,I(t+ (N − 1)ε)} exp{−iεHint,I(t+ (N − 2)ε)} (32)

. . . exp{−iεHint,I(t+ ε)} exp{−iεHint,I(t)} |ψ, t〉I . (33)

Again note we are being very careful with operator ordering. This may be written in a short hand

notation as a product

|ψ, t+Nε〉I ≈ T

(N−1)∏
n=0

exp{−iεHint,I(t+ nε)}

 |ψ, t〉I . (34)

as the time-ordering operator T encode the operator ordering we need provided that ε > 0. This

notation only works in this case which will be useful only if t2 > t1 in our U(t2, t1) of (3).

Now we need the identity proved in the next part that the time ordering operator takes care of all

the operator ordering issues so that we can write T(eAeB) = T(e(A+B)). We find that

|ψ, t+Nε〉I ≈ T

exp{−i
(N−1)∑
n=0

εHint,I(t+ nε)}

 |ψ, t〉I . (35)

Taking the limit ε→ 0+ with N = (t2 − t)/ε, we arrive at the key result

|ψ, t2〉I = T

(
exp{−i

∫ t2

t
dt′ Hint,I(t

′)}
)
|ψ, t〉I . (36)

Looking at the definition of U in (3) we see that we have

U(t2, t1) = T

(
exp{−i

∫ t2

t1

dt′ Hint,I(t
′)}
)
. (37)

(v) The Baker-Campbell-Hausdorf identity (BCH) is

exp{Â} exp{B̂} = exp{Â+ B̂ +
1

2
[Â, B̂] +

1

12
[Â, [Â, B̂]]− 1

12
[B̂, [Â, B̂]] + . . .} (38)

The additional terms in the . . . represent terms containing all possible combinations of Â and B̂

operators in all possible multiple commutators, multiplied by a known c-number.

Second order proof :

Consider two operators, A and B. The expansion of eAeB to second order is

eAeB = (1 +A+
1

2
A2 + . . .)(1 +B +

1

2
B2 + . . .) (39)

= 1 +A+B +
1

2
A2 +AB +

1

2
B2 + . . . (40)
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Then compare this to the expansion of eA+B

exp{A+B} = 1 + (A+B) +
1

2
(A+B)2 + . . . (41)

= 1 +A+B +
1

2
(A2 +AB +BA+B2) + . . . . (42)

We note that the order of the terms is important if, as for many operators, A and B do not commute.

The difference between these expressions is the commutator which is the first non-trivial term in

the BCH expression (38). That is

exp{A+B +
1

2
[A,B]} = 1 + (A+B) +

1

2
(A+B)2 +

1

2
[A,B] + . . . (43)

= 1 +A+B +
1

2
(A2 +AB +BA+B2) +

1

2
[A,B] + . . . (44)

= 1 +A+B +
1

2
A2 +AB +

1

2
B + . . . . (45)

agrees with (40) to second order as the BCH formula (38) says it should.

However we also note that a time-ordering operator changes (42) to

T (exp{A+B}) = T

(
1 +A+B +

1

2
(A2 +AB +BA+B2) + . . .

)
(46)

= 1 +A+B +
1

2
A2 + T(AB) +

1

2
B2 + . . . . (47)

as this overrides any operator ordering in the expression. Note that only the AB term has any

ordering issue at this order. Likewise

T
(
eAeB

)
= T

(
(1 +A+

1

2
A2 + . . .)(1 +B +

1

2
B2 + . . .)

)
(48)

= 1 +A+B +
1

2
A2 + T(AB) +

1

2
B2 + . . . (49)

So now there is complete agreement between (49) and (42) and we have that up to second order

T (exp{A+B}) = T
(
eAeB

)
= 1 +A+B +

1

2
A2 + T(AB) +

1

2
B2 + . . . (50)

All orders proof :

Essentially the issue of operator ordering is encoded in the commutators in the BCH expression of

(38). However we see that

T ([A,B]) = T (AB)− T (BA) (51)

but because the T specifies the ordering T (AB) = T (BA) and so T ([A,B]) = 0. This will

guarantee the commutator corrections in the BCH expression give zero e.g. when we expand out

the exponential in (38), so we arrive at the conclusion that

T
(

exp{Â} exp{B̂}
)

= T
(

exp{Â+ B̂}
)
. (52)

(vi) As we have written out the derivation of the form of U(t2, t1) in detail for the case t2 > t1, we can

just pick this up from where we used the time ordering. So we can start from the expression in (33)
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which is valid for any t2 and t1. It is the next line, (34), which we must change for the case t2 < t1.

So suppose that ε < 0 then we have in terms of an infinitesimal η = −ε > 0 that we must write

|ψ, t−Nη〉I ≈ T

(N−1)∏
n=0

exp{+iηHint,I(t− nη)}

 |ψ, t〉I . (53)

Here T is the anti-time-ordering operator, that is T(AB) = θ(ta − tb)BA+ θ(tb − ta)AB where ta
is the time associated with operator A and tb is the time associated with operator B. So T puts

the operator in order of their time with operators at the earliest times on the left.

Another way to see this is to realise that U(t1, t2)U(t2, t1) = 1 from (8). So if t2 > t1 we have the

largest times in the middle of the expression so we must have U(t1, t2) ordered in the opposite way

from U(t1, t2) (and also with a minus sign difference in the exponential) in order for cancellation

to occur.

2. Contractions

(i) For bosonic fields, a contraction is defined and denoted as

φ1φ2 = ∆12 = T[φ1φ2]−N[φ1φ2] (54)

where φ1 = φ1(x1) and φ2 = φ2(x2) are any two bosonic1 fields. Here N[. . .] is general normal

ordering where, for a given split of fields φi = φ+
i + φ−i , φ+

i are moved to the right of all φ−i ,

switching terms as few times as possible.

N[φ1φ2] = N[(φ+
1 + φ−1 )(φ+

2 + φ−2 )] =

φ+
1 φ

+
2 + φ−2 φ

+
1︸ ︷︷ ︸

(order changed)

+φ−1 φ
+
2 + φ−1 φ

−
2

 . (55)

Time ordering moves fields with latest times to the left.

T[φ1φ2] = T[(φ+
1 + φ−1 )(φ+

2 + φ−2 )] = θ(t1 − t2)
(
φ+

1 φ
+
2 + φ+

1 φ
−
2 + φ−1 φ

+
2 + φ−1 φ

−
2

)
(56)

+θ(t2 − t1)
(
φ+

2 φ
+
1 + φ−2 φ

+
1 + φ+

2 φ
−
1 + φ−2 φ

−
1

)
. (57)

Substituting (55) and (57) into (54) gives

φ1φ2 = ∆12 = θ(t1 − t2)
[
φ+

1 , φ
−
2

]
+ θ(t2 − t1)

([
φ+

2 , φ
+
1

]
+
[
φ+

2 , φ
−
1

]
+
[
φ−2 , φ

−
1

])
. (58)

The same argument works if we consider φ2φ1 so we deduce that

φ2φ1 = ∆21 = θ(t2 − t1)
[
φ+

2 , φ
−
1

]
+ θ(t1 − t2)

([
φ+

1 , φ
+
2

]
+
[
φ+

1 , φ
−
2

]
+
[
φ−1 , φ

−
2

])
. (59)

Comparing the two expressions (58) and (59) we see we have a symmetric contraction φ1φ2 = φ2φ1

only if the term with a commutator of two plus parts cancels the commutator with two minus parts,

i.e. for splits of the fields where [
φ+

2 , φ
+
1

]
+
[
φ−2 , φ

−
1

]
= 0 (60)

for all times.
1Fermionic fields have some extra signs in these definitions.
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(ii) For the remainder of this question we will consider the standard definition of normal ordering

(denoted with : . . . :) where annihilation (creation) operators are put to the right (left) so that

〈0| : (any fields) : | 0〉 = 0.

(a) we have to show that [φ+
1 , φ

−
2 ] ∝ 1̂I i.e. this a c-number which commutes with everything. The

commutator [φ+
1 , φ

−
2 ] will be proportional to commutators of annihilation operators (coming

from φ+
1 ) and creation operators (these are just in φ−2 ) as that is how the standard normal

ordering is defined. So the operator part of this commutator will always be proportional to

[âip, â
†
ijq] = δijδ

3(p− q) i.e. a c-number. Hence whatever scalar (or indeed bosonic) fields we

use here e.g. relativistic, non-relativistic, the commutator is not an operator, it is just some

number, often defined in terms of integrals.

(b) We now need to show that equation (60) is true here, i.e. that
[
φ+

2 , φ
+
1

]
+
[
φ−2 , φ

−
1

]
= 0. The

same approach just used works here. Since now the + parts of fields are always pure annihi-

lation operators they will always commute with each other, whether they are commutators of

the + parts of the same or different fields. So we will have
[
φ+

2 , φ
+
1

]
= 0 for our chosen field

split. Similar argument for the minus parts tells us
[
φ−2 , φ

−
1

]
= 0. So we see each term in (60)

is zero and the sum is therefore zero.

(c) We showed above that the difference of the normal ordered products of two scalar (or bosonic)

fields is proportional to
[
φ+

2 , φ
+
1

]
+
[
φ−2 , φ

−
1

]
= 0 of (60). We have just shown this is zero for

our chosen split, the standard normal ordering, it follows that

: φ1(x)φ2 :=: φ2(x)φ1 : . (61)

(iii) The fields we have are in the interaction picture and they are given by

φ̂(x) =

∫
d3p

(2π)3

1√
2ω(p)

(âpe
−ipx + â†pe

+ipx) , p0 = ω(p) =
∣∣∣√p2 +m2

∣∣∣ , (62)

ψ̂(x) =

∫
d3p

(2π)3

1√
2Ω(p)

(b̂pe
−ipx + ĉ†pe

ipx) , p0 = Ω(p) =
∣∣∣√p2 +M2

∣∣∣ , (63)

where the annihilation and creation operators obey the usual commutation relations[
âp, â

†
q

]
= (2π)3δ3(p− q) , [âp, âq] =

[
â†p, â

†
q

]
= 0 . (64)

For the standard split used in QFT we find that

φ+(x) =

∫
d3p

(2π)3

1√
2ωp

ap e
−ipx , p0 = ωp , (65)

φ−(x) =

∫
d3p

(2π)3

1√
2ωp

a†p e
+ipx , p0 = ωp . (66)

For the complex fields we have to be careful with the notation, distinguish the hermitian conjugate

operator (denoted with a dagger †) from the plus symbol (+) used to indicate the annihilation

operator parts. The split for the field ψ in terms of Ωp of (63) is

ψ+(x) =

∫
d3p

(2π)3

1√
2Ωp

bp e
−ipx , p0 = Ωp , (67)

ψ−(x) =

∫
d3p

(2π)3

1√
2Ωp

c†p e
+ipx , p0 = Ωp . (68)
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The split for the hermitian conjugate field ψ† is (now the notation is getting a little clumsy)

(ψ†)+(x) =

∫
d3p

(2π)3

1√
2Ωp

cp e
−ipx , p0 = Ωp , (69)

(ψ†)−(x) =

∫
d3p

(2π)3

1√
2Ωp

b†p e
+ipx , p0 = Ωp . (70)

Note that the hermitian conjugate of the ‘positive’ part of ψ†, that is ((ψ†)+)†, is not ψ+.

Now from (60) we find the following results

(a)

φ(x)φ(y) = θ(x0 − y0)
[
φ+(x), φ−(y)

]
+ θ(y0 − x0)

[
φ+(y), φ−(x)

]
(71)

Now use (65) and (66) to find

[
φ+(x), φ−(y)

]
=

∫
d3p

(2π)3

d3q

(2π)3

1√
2ωp

1√
2ωq

e−ipx+iqy
[
ap, a

†
q

]
(72)

=

∫
d3p

(2π)3

1

2ωp
e−iωp(x0−y0)+ip·(x−y) . (73)

Now we need to use the standard tricks used for the energy integrations in the complex plane

used for two-point functions. Here we need to see that∫ +∞

−∞
dz

e−izt

z − ω + iε
= −2πiθ(t)e−iωt (74)

where ε is the usual infinitesimal but positive real parameter and ω is real and positive. To

prove this you need to see that you can only close the contour with the upper semicircle at

infinity (so with positive imaginary part) when t < 0 and then this part picks up no pole inside

the contour and is zero. For t > 0 you have to close the contour in the lower half plane which

then picks up the pole at z = ω − iε though you are going around the pole in the negative

sense giving a factor of −2πi.

Using this on the t = (x0 − y0) dependent terms in (73) we can rewrite our expression as an

integral over z = p0 as follows

θ(x0 − y0)
[
φ+(x), φ−(y)

]
=

1

2πi

∫ +∞

−∞
dz

e−izt

z − ω + iε

∫
d3p

(2π)3

1

2ωp
e−ip·(x−y) (75)

=

∫
d4p

(2π)4

1

2ωp

i

p0 − ω + iε
e−ip(x−y) (76)

where we have also changed variables from p to −p exploiting the fact that ωp is independent

of this change.

For the second term of (71) is identical except we have x and y switched round.

φ(x)φ(y) =

∫
d4p

(2π)4

1

2ωp

i

p0 − ω + iε
e−ip(x−y) +

∫
d4p

(2π)4

1

2ωp

i

p0 − ω + iε
e−ip(y−x) (77)
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If we change variables in the second term, switching pµ to −pµ, then we find

φ(x)φ(y) =

∫
d4p

(2π)4

1

2ωp

i

p0 − ω + iε
e−ip(x−y) +

∫
d4p

(2π)4

1

2ωp

i

−p0 − ω + iε
e−ip(x−y)(78)

=

∫
d4p

(2π)4

1

2ωp

(
i

p0 − ω + iε
+

i

−p0 − ω + iε

)
e−ip(x−y) (79)

=

∫
d4p

(2π)4

i

2ωp

(
−2ω + 2iε

(p0 − ω + iε)(−p0 − ω + iε)

)
e−ip(x−y) (80)

In the numerator ω ≥ m > 0 is assumed so we can always drop the infinitesimal here. This

leaves use with

φ(x)φ(y) =

∫
d4p

(2π)4

i

2ωp

(
−2ω

−(p0)2 + (ω − iε)2

)
e−ip(x−y) (81)

=

∫
d4p

(2π)4

(
i

(p0)2 − ω2 − 2iεω − ε2

)
e−ip(x−y) (82)

Now the ε2 term is negligible while the 2εω = ε′ is infinitesimal, real and positive (not negligible

at the pole of course). However we can relabel this ε′ as ε (it has the usual properties) giving

us

φ(x)φ(y) =

∫
d4p

(2π)4

(
i

(p0)2 − ω2 + iε

)
e−ip(x−y) = ∆m(x− y) (83)

Note: I will use the same ∆m notation for propagators in both position and momenta with

the arguments indicating which is meant, i.e. it is clear which form is meant for ∆m(x − y)

and ∆m(p− q).

(b) Here

0 = φ(x)ψ(y) (84)

as ψ and φ fields have different types of annihilation and creation operators (i.e. they represent

different types of particle). Thus all the commutators of any parts of these fields always

commute.

(c) The previous argument applies here too

0 = φ(x)ψ†(y) (85)

(d) Here we have from (60) that

ψ(x)ψ(y) = θ(t)
[
ψ+(x), ψ−(y)

]
+ θ(−t)

[
ψ+(y), ψ−(x)

]
(86)

Again by inspection we see that from (67) and (68) that ψ+ and ψ− contain different types of

annihilation and creation operators, b’s in ψ+ and c’s in ψ−.

(e) The argument for the previous parts works here too.

0 = ψ†ψ† (87)
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(f) We start from

ψ(x)ψ†(y) = θ(x0 − y0)
[
ψ+(x), (ψ†)−(y)

]
+ θ(y0 − x0)

[
(ψ†)+(y), ψ−(x)

]
(88)

Now use (67), and (70) we find that[
ψ+(x), (φ†)−(y)

]
=

∫
d3p

(2π)3

d3q

(2π)3

1√
2Ωp

1√
2Ωq

e−ipx+iqy
[
bp, b

†
q

]
(89)

=

∫
d3p

(2π)3

1

2Ωp
e−iΩp(x0−y0)+ip·(x−y) . (90)

For the second term in (88), using (68) and (69) we get[
(ψ†)+(y), ψ−(x)

]
=

∫
d3p

(2π)3

d3q

(2π)3

1√
2Ωp

1√
2Ωq

e−ipx+iqy
[
cp, c

†
q

]
(91)

=

∫
d3p

(2π)3

1

2Ωp
e−iΩp(x0−y0)+ip·(x−y) . (92)

These two forms are identical to those found for the real scalar field contraction of (71) which

gave us the two terms (73) and (77) except ω is replaced by Ω. So we can immediately deduce

that

ψ(x)ψ†(y) = ∆M (x− y) =

∫
d4k

(2π)4
e−ik(x−y) i

k2 −M2 + iε
(93)

Note: I will use the same ∆M notation for propagators in both position and momenta with

the arguments indicating which is meant, i.e. it is clear which form is meant for ∆M (x − y)

and ∆M (p− q).

(g) We just have to note our result above in (61) to see that with the standard normal ordering

definition the contractions are symmetric so that

ψ†(x)ψ(y) = ψ(y)ψ†(y) = ∆M (y − x) (94)

which is exactly the same as (88) except the space-time arguments are reversed.

The contraction is symmetric in our standard choice of normal ordering for vacuum expectation

values. This means the order of the field and its hermitian conjugate in the definition of the

contraction is irrelevant provided we label the coordinates appropriately. Equation (94) is

correctly labelled with the y and x swapped compared to (93) above.

However for complex (and real) scalar fields the propagator is in fact completely symmetric

∆(x − y) = ∆(y − x). You can show this explicitly by switching each component of the

four kµ = −k′µ integration variables in turn (remembering to set the range of integration

appropriately).

3. Wick’s theorem for four bosonic fields
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(i) Let φi = φi(xi), ∆12 = φ1φ2, N12 = N(φ1φ2), N1234 = N(φ1φ2φ3φ4), etc., then for four scalar (or

indeed bosonic) fields Wick’s theorem states that

T1234 = T (φ1φ2φ3φ4) = N (φ1φ2φ3φ4)

+N

(
φ1φ2φ3φ4

)
+ N

(
φ1φ2φ3φ4

)
+ N

(
φ1φ2φ3φ4

)
+N

(
φ1φ2φ3φ4

)
+ N

(
φ1φ2φ3φ4

)
+ N

(
φ1φ2φ3φ4

)
+N

(
φ1φ2φ3φ4

)
+ N

(
φ1φ2φ3φ4

)
+ N

(
φ1φ2φ3φ4

)
(95)

= N1234

+∆12N334 + ∆13N24 + ∆14N23

+∆23N14 + ∆24N13 + ∆34N12

+∆12∆34 + ∆13∆24 + ∆14∆23 (96)

(ii) Whenever normal ordering has been defined such that expectation values of any normal product

are zero, i.e. 〈N(fields)〉 = 0. Then when we take expectation values of a time ordered product, and

if we use Wick’s theorem any term containing a normal ordered operator will be zero so only terms

which are products of contractions ∆ij = 〈T (φiφj)〉 will survive. In this case we will just pick up

the last term

G1234 = 〈T (φ1φ2φ3φ4)〉 = ∆12∆34 + ∆13∆24 + ∆14∆23 (97)

(iii) For the usual vacuum expectation values we want to define our normal ordering in terms of the

usual split into annihilation parts for φ+ and creation parts in φ− as given in (65) and (66). We

can substitute this in to our expression for a vacuum expectation value of the time-ordered product

of four fields with t1 > t2 > t3 > t4

G1234 = 〈0|T (φ(x1)φ(x2)φ(x3)φ(x4)) | 0〉 = 〈0|φ(x1)φ(x2)φ(x3)φ(x4)| 0〉 (98)

=

 ∏
i=1,2,3,4

∫
d3pi
(2π)3

1√
2ωi


×〈0|(a1e

−ip1x1 + a†1e
+ip1x1)(a2e

−ip2x2 + a†2e
+ip2x2)

.(a3e
−ip3x3 + a†3e

+ip3x3)(a4e
−ip4x4 + a†4e

+ip4x4)| 0〉 (99)

where ai = api . Now for a single operator ap the only non-zero answers must come from terms with

two annihilation operators aj and two creation operators a†. Otherwise we will have in initial and

final states with different numbers of quanta and hence the overlap will be zero.

So writing Aj = aje
−ipjxj , and exploiting that ai| 0〉 = 0 and 〈0|a†i = 0, then we have using the
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commutation relations (64) that

〈0|A1(A2 +A†2)(A3 +A†3)A†4| 0〉 = (100)

= 〈0|A1A2A
†
3A
†
4| 0〉

+〈0|A1A
†
2A3A

†
4| 0〉 (101)

= 〈0|A1

(
A†3A2 + δ3(p2 − p3)e−ip2(x2−x3)

)
A†4| 0〉

+〈0|
(
A†2A1 + δ3(p1 − p2)e−ip1(x1−x2)

)
A3A

†
4| 0〉 (102)

= 〈0|
(
A†3A1 + δ3(p1 − p3)e−ip1(x1−x3)

)
A2A

†
4| 0〉+ δ3(p2 − p3)e−ip2(x2−x3)〈0|A1A

†
4| 0〉

+δ3(p1 − p2)e−ip1(x1−x2)〈0|A3A
†
4| 0〉 (103)

= δ3(p1 − p3)e−ip1(x1−x3)δ3(p2 − p4)e−ip2(x2−x4)

+δ3(p2 − p3)e−ip2(x2−x3)δ3(p1 − p4)e−ip1(x1−x4)

+δ3(p1 − p2)e−ip1(x1−x2)δ3(p3 − p4)e−ip3(x3−x4) (104)

An inspection for the form of the propagator shows that for t1 > t2 we have that

∆12 = D(x1 − x2) =

∫
d3p

(2π)3

1

2ω
e−ip(x1−x2) . (105)

and likewise for other combinations. This makes it clear what we have in (104) are just the terms

found above in (97), so indeed we have that

G1234 = ∆12∆34 + ∆13∆24 + ∆14∆23 (106)

]4. Normal Ordering for Thermal Expectation Values

The expectation values here, 〈. . .〉, are now thermal expectation values where

〈Ô〉 =
1

Z
Tr{e−βĤÔ} , Z = Tr{e−βĤ} , (107)

and β = 1/(KT ) is the inverse temperature. Here Tr{. . .} indicates a sum over all states in any basis,

i.e. Tr{O} ≡
∑

n〈n|O|n〉.

(i) We have a single quantum harmonic oscillator with the usual annihilation and creation operators â†

and â and a Hamiltonian Ĥ = ωâ†â. The states are the usual normalised Fock space energy/number

eigenstates

|n〉 =
1√
n!

(â†)n| 0〉 . (108)
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This gives that

Z = Tr{e−βĤ} =
∞∑
n=0

〈n| exp(−βωâ†â)|n〉 (109)

=

∞∑
n=0

〈n|
∞∑
m=0

(−βωâ†â)m|n〉 (110)

=
∞∑
n=0

〈n|
∞∑
m=0

(−βωn)m|n〉 (111)

=
∞∑
n=0

〈n|e−βωn|n〉 (112)

=

∞∑
n=0

(
e−βω

)n
(113)

=
1

1− e−βω
(114)

Note we used the binomial expansion of (1− x)−1 and the normalisation of the states.

We can calculate 〈â†â〉 directly as above or use the usual trick with partition functions and recognise

that

〈â†â〉 =
1

ω
〈Ĥ〉 =

1

ω

1

Z
.− d

dβ
Tr{e−βĤ} = − 1

ω

1

Z

dZ

dβ
(115)

= − 1

ω

1

Z

d

dβ

(
1

1− e−βω

)
(116)

= − 1

ω

1

Z

(
−ωe−βω

(1− e−βω)2

)
(117)

=
e−βω

(1− e−βω)
(118)

=
1

(eβω − 1)
= n(ω) (119)

This is the Bose-Einstein distribution as should have been expected

Using the commutator [â, â†] = 1 we have that

〈ââ†〉 = 〈â†â+ 1〉 = 1 +
1

(eβω − 1)
=

eβω

(eβω − 1)
= 1 + n(ω) =

1

(1− e−βω)
(120)

We can see that 〈ââ〉 and 〈â†â†〉 both zero because all the terms in the sum under the trace are of

the form 〈n|ââ|n〉 ∝ 〈n|n− 2〉 = 0 and 〈n|â†â†|n〉 ∝ 〈n|n+ 2〉 = 0.

(ii) Here we will use the notation : . . . : to indicate the ‘usual’ ‘traditional’ normal ordering as used

in QFT based around vacuum expectation values — zero temperature QFT. This normal ordering

: . . . : is defined such that annihilation (creation) operators are moved to the right (left) of creation

(annihilation) operators2.

Clearly

〈0| : ââ† : | 0〉 = 〈0|â†â| 0〉 = 0 (121)

2To be more precise, as you might want to be in an exam if asked explicitly for a definition, we should also note that

within the set of annihilation operators, their relative order is maintained. Likewise for the creation operators.



QFT PS5 Solutions: Bosonic Interacting Quantum Field Theory (22/11/18) 13

but from above we have that

〈: ââ† :〉 = 〈â†â〉 =
1

(eβω − 1)
6= 0 . (122)

So the traditional normal ordering : . . . : while perfectly well defined in thermal field theory will

turn out not to simplify the calculations. In thermal field theory it is best to work with a different

normal ordering, see Thouless, Phys.Rev. 107 (1957) 4 or Evans and Steer, Nucl.Phys.B, 474 (1996)

481–496 arXiv:hep-ph/96012683.

]5. Normal Ordering for Thermal Field Theory

(i) Consider a single real scalar field φ(x), defined as usual as

φ̂(x) =

∫
d3p

(2π)3

1√
2ω(p)

(âpe
−ipx + â†pe

+ipx) , p0 = ω(p) =
∣∣∣√p2 +m2

∣∣∣ , (123)

where âp and â†p are the usual annihilation and creation operators obeying standard commutation

relations. The Hamiltonian is then just Ĥ =
∫
d3kâ†kâk. Note we can ignore any (infinite) constants

because this represents a shift in the zero of energy. Equilibrium statistical mechanics does not

depends on the zero of energy e.g. you can include rest mass energy or not and it does not make

any difference to the statistical mechanics.

The thermal Wightman function is given as follows:-

D(x− y) = 〈φ(x)φ(y)〉 =
1

Z
Tr{e−βĤφ(x)φ(y)} . (124)

=
1

Z
Tr

{
e−βĤ

∫
d3p

(2π)3

1√
2ω(p)

∫
d3q

(2π)3

1√
2ω(q)

(âpe
−ipx + â†pe

+ipx)(âqe
−iqy + â†qe

+iqy)
}

(125)

We can generalise the result that 〈ââ〉 and 〈â†â†〉 are both zero to see that 〈âpâq〉 and 〈âpâq〉 are

always zero as the bra and kets will have different numbers of p and q states even if p = q. For

instance if p 6= q then

〈âpâq〉 =
1

Z
Tr
{
e−βĤ âpâq

}
(126)

=
1

Z

 ∞∑
np=0

〈np|e−βâpâp âp|np〉

 ∞∑
nq=0

〈nq|e−βâq âq âq|nq〉


×
∏

r 6=p,q

( ∞∑
nr=0

〈nr|e−βâr âr |nr〉

)
(127)

∝ 1

Z

 ∞∑
np=0

〈np|e−βâpâp |np − 1〉

 ∞∑
nq=0

〈nq|e−βâq âq |nq − 1〉


×
∏

r 6=p,q

( ∞∑
nr=0

〈nr|e−βâr âr |nr〉

)
. (128)

3See http://arxiv.org/abs/hep-ph/9601268.
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The exp(−βâpâp) terms do not alter particle number of the states so the terms with âp and âq
always involve overlaps between 〈n|n−1〉 = 0. If p = q then we will have one term of 〈n|n−2〉 = 0.

The same applies to all the other cases for thermal expectation values of pairs of annihilation and

creation operators when p 6= q.

In fact we can see the only cases where the thermal expectation values of a pair of annihilation and

creation operators is non-zero is when then are a number operator, i.e. the two cases

〈â†pâq〉 = n(ωp)(2π)3δ3(p− q) , (129)

〈âpâ†q〉 = (1 + n(ωq)) (2π)3δ3(p− q) (130)

where we have used (120) and (119) and written the answer in terns of the Bose-Einstein distribution

defined as n(ωp) = (eβω − 1)−1. Note the normalisation for these continuous momentum space p

states and operators is now

〈np|nq〉 = (2π)3δ3(p− q)δnp,nq . (131)

and so forth. It is sometimes easier to do this calculation in discrete momentum space and take the

continuum limit at the end but we would have to change the notation and definitions used in this

course.

So we can reduce this thermal Wightman function to

Dβ(x− y) =

∫
d3p

(2π)3

d3q

(2π)3

1√
2ω(p)2ω(q)

〈âpâ†p〉e−ipx+iqy + 〈â†pâq〉e+ipx−iqy (132)

=

∫
d3p

(2π)3

d3q

(2π)3

1√
2ω(p)2ω(q)

×
(
n(ωp)(2π)3δ3(p− q)e−ipx+iqy + (1 + n(ωq))(2π)3δ3(p− q)e+ipx−iqy) (133)

Dβ(x− y) =

∫
d3p

(2π)3

1

2ω(p)

(
n(ωp)e

−ipx+iqy + (1 + n(ωq))e
+ip(x−y)

)
(134)

Note that if we take β →∞ we get the usual Wightman function we encountered in zero temperature

QFT, i.e.

D(x− y) = 〈0|φ(x)φ(y)| 0〉 =

∫
d3p

(2π)3

1

2ω(p)
e+ip(x−y) . (135)

(ii) We split our field using a general linear split of the annihilation and creation parts as follows

φ̂+(x) =

∫
d3p

(2π)3

1√
2ω(p)

((1− fp)âpe−ipx + gpâ
†
pe

+ipx) , (136)

φ̂−(x) =

∫
d3p

(2π)3

1√
2ω(p)

(fpâpe
−ipx + (1− gp)â†pe+ipx) , (137)

where p0 = ω(p) =
∣∣∣√p2 +m2

∣∣∣ as usual. Here fp =≡ f(p) and gp =≡ g(p) are two functions to

be determined.

We have from the definition of normal ordering that if φ1 = φ(x) and φ2 = φ(y) the as in (55) we

have that

N(φ(x)φ(y)) =
(
φ+

1 φ
+
2 + φ−2 φ

+
1 + φ−1 φ

+
2 + φ−1 φ

−
2

)
(138)



QFT PS5 Solutions: Bosonic Interacting Quantum Field Theory (22/11/18) 15

For instance the first term is

〈φ+
1 φ

+
2 〉 =

〈∫
d3p

(2π)3

1√
2ω(p)

((1− fp)âpe−ipx + gpâ
†
pe

+ipx)

×
∫

d3q

(2π)3

1√
2ω(q)

((1− fq)âqe−iqy + gqâ
†
qe

+iqy)

〉
(139)

=

∫
d3p

(2π)3

d3q

(2π)3

1√
2ω(p)2ω(q)

×
(

(1− fp)gq〈âpâ†q〉e+iqy−ipx + gp(1− fq)〈â†pâq〉e−iqy+ipx
)

(140)

=

∫
d3p

(2π)3

1

2ω(p)

(
(1− fp)gp(1 + n(ωp))e

+ip(y−x) + gp(1− fp)n(ωp)e
−ip(y−x)

)
(141)

The remaining terms are

〈φ−2 φ
+
1 〉 =

∫
d3p

(2π)3

1

2ω(p)

(
fpgp(1 + n(ωp))e

−ip(y−x) + (1− gp)(1− fp)n(ωp)e
+ip(y−x)

)
(142)

〈φ−1 φ
+
2 〉 =

∫
d3p

(2π)3

1

2ω(p)

(
fpgp(1 + n(ωp))e

+ip(y−x) + (1− gp)(1− fp)n(ωp)e
−ip(y−x)

)
(143)

〈φ−1 φ
−
2 〉 =

∫
d3p

(2π)3

1

2ω(p)

(
fp(1− gp)(1 + n(ωp))e

+ip(y−x) + gp(1− fp)n(ωp)e
−ip(y−x)

)
(144)

(iii) We now demand that 〈N(φ(x)φ(y))〉 = 0. This gives us the following

0 =

∫
d3p

(2π)3

1

2ω(p)

[(
(1− fp)gp(1 + n(ωp))e

+ip(y−x) + gp(1− fp)n(ωp)e
−ip(y−x)

)
+
(
fpgp(1 + n(ωp))e

−ip(y−x) + (1− gp)(1− fp)n(ωp)e
+ip(y−x)

)
+
(
fpgp(1 + n(ωp))e

+ip(y−x) + (1− gp)(1− fp)n(ωp)e
−ip(y−x)

)
+
(
fp(1− gp)(1 + n(ωp))e

+ip(y−x) + gp(1− fp)n(ωp)e
−ip(y−x)

)]
(145)

=

∫
d3p

(2π)3

1

2ω(p)[
e+ip(y−x) ((1− fp)gp(1 + n(ωp)) + (1− gp)(1− fp)n(ωp)

+fpgp(1 + n(ωp)) + fp(1− gp)(1 + n(ωp)))

+e−ip(y−x) (gp(1− fp)n(ωp) + fpgp(1 + n(ωp))

+(1− gp)(1− fp)n(ωp) + gp(1− fp)n(ωp))] (146)

=

∫
d3p

(2π)3

1

2ω(p)[
e+ip(y−x) ((1− (1− fp)(1− gp)) + n(ωp))) + e−ip(y−x) (fpgp + n(ωp))

]
(147)

So we require that

fpgp = −n(ωp) , (1− fp)(1− gp) = 1 + n(ωp) . (148)

These have two solutions

fp = −n+ s
√
n(n+ 1) , gp = −n− s

√
n(n+ 1) , s = ±1 . (149)
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(iv) Perturbation theory works formally in thermal field theory exactly as before.

If we choose a field split such that the thermal expectation value of a pair of normal ordered fields

is zero then from the definition of the contraction we still have that

〈Tφ(x)φ(y)〉 = 〈φ(x)φ(y)〉 (150)

Exactly as before, this leads to (see (58))

φ(x)φ(y) = θ(t1 − t2)
[
φ+

1 , φ
−
2

]
+ θ(t2 − t1)

([
φ+

2 , φ
+
1

]
+
[
φ+

2 , φ
−
1

]
+
[
φ−2 , φ

−
1

])
. (151)

where φ1 = φ(x) and φ2 = φ(y) here.

Only when we substitute in the specific form for the split to be used in thermal theory do we find

the new form for the propagator to be used in perturbation theory of thermal field theory.

We could calculate the contraction directly as that will give us our thermal propagator for the

Feynman rules as the contraction has the same form as in (54) and (58). By choosing the split

such that the thermal expectation value of normal ordered products is zero we will find the correct

propagator to use in perturbation theory.

However it is easier just to find the expectation value of the time-ordered product of two interaction

picture fields directly. This is simply given in term of the thermal Wightman function (134)

∆β(x− y) = 〈Tφ(x)φ(y)〉 (152)

= θ(x0 − y0)Dβ(x− y) + θ(y0 − x0)Dβ(y − x) (153)

= ∆0(x− y) +

∫
d3p

(2π)3

1

2ω(p)
n(ωp)

(
e−ipx+iqy + e+ip(x−y)

)
(154)

= ∆0(x− y) +

∫
d4p

(2π)4
n(|p0|)(2π)4δ4(p2 −m2)e−ip(x−y) (155)

where ∆0(x− y) is our usual Feynman propagator i.e. for zero temperature field theory. Using our

previous results for ∆0(x− y) we have that

∆β(x− y) =

∫
d4p

(2π)4

(
i

p2 −m2 + iε
+ n(|p0|)(2π)4δ4(p2 −m2)

)
e−ip(x−y) (156)

∆β(p) =
i

p2 −m2 + iε
+ n(|p0|)(2π)4δ4(p2 −m2) . (157)

So we see that the thermal correction to our usual propagator only comes from physical on-shell

particles weighted by the Bose-Einstein factor. These correspond to the effects of propagating

through a heat bath at inverse temperature β of real physical particles (i.e. no virtual energy

fluctuations, their energies are always equal to ωp).


