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Problem Sheet 7: Interacting Quantum Field Theory: \¢*

Comments on these questions are always welcome. For instance if you spot any typos or feel the wording
is unclear, drop me an email at T.Evans at the usual Imperial address.

Note: problems marked with a x are the most important to do and are core parts of the course. Those
without any mark are recommended. It is likely that the exam will draw heavily on material covered in
these two types of question. Problems marked with a ! are harder and/or longer. Problems marked with
a f are optional. For the exam it will be assumed that material covered in these optional f questions has
not been seen before and such optional material is unlikely to be used in an exam.

x1. The full propagator in \¢* theory

Consider a theory of a real scalar field ¢

ap (1)

1 1
£ = 5(0u0)(0"6) — 5m*¢* — 4

This is the simplest interacting relativistic QFT as it involves a single type of spinless particle (which
is its own anti-particle) yet it contains an interaction term. It is also renormalisable in four space-time
dimensions' though it turns out to be trivial in a precise mathematical sense. Nevertheless this is a
standard example used to illustrate QFT. When part of a larger theory it can represent real physics.

(i) Thinking in terms of the energy (the interaction terms in the Hamiltonian might help here), why
is theory with a g¢/(3!) interaction term not a viable option?

(ii) Write down the Feynman rules for Green functions in momentum space.
Why do we not include a propagator for external legs when calculating matrix elements but we do

include propagators on external legs when representing Green functions with Feynman diagrams?

(iii) The full propagator is the two-point Greens function. If we denote this as Go(x,y) = Ilp(z — y)
when it is defined using the vacuum of the free theory, |0), then we have that

Go(z,y) =Ilo(z —y) = (0|To(x)d(y)S|0) (2)
Go(p1,p2) = /d4$1/d4962 e~ 1T T2 G (1, 30 (3)

W) = [dloe ™ ). (1)

= Go(p1,p2) = & (p1+p2)o(p1) (5)

Remember that we are exploiting Lorentz symmetry as we know Go(z,y) can only be a function of
(x —y) so we set Go(z,y) = lp(x —y). In terms of momentum space notation, it means Ilp(p) does
not contain the overall energy-momentum conserving delta-function in its definition. The Feynman
rules, as given in this course, give Go(p1, p2) rather than IIy(p) directly.

(a) Draw all the vacuum diagrams up to O(\?).

(b) Draw all the connected diagrams which contribute to Iy up to O(\?).

(c) Describe the remaining diagrams which contribute to Ty up to O(\?).

1For relativistic scalar fields, any terms of ¢™ for n > 4 are not renormalisaable in d = 3 + 1 dimensions. That means the
UV (ultraviolet, i.e. high energy) infinities can not be systematically removed.
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(iv) Specify the symmetry factor and the number of loop momenta for

(a) Draw all the vacuum diagrams up to O(\?).
(b) Draw all the connected diagrams which contribute to Iy up to O()\2).
(v) Which diagrams contain a vacuum diagram and therefore do not contribute to the full propagator

II(p)? That is the two-point Green function calculated with the full interacting vacuum | Q) G.(z,y)
(as opposed to using the vacuum of the free non-interacting theory | 0) which gives Go(z,y))

Ge(z,y) =z —y) = (QTo(x)o(y)S|Y) (6)
Ge(p1,p2) = /d49€1/d49€2 e PTG (2, 29) (7)

II(p) = /d4x e PTI(z). (8)

= Gelpi,p2) = & (p1+p2)(p1) (9)

As before, Lorentz symmetry allows us to define II(z) through G.(z — y) = II(x — y). Again the
notation used here means that the full propagator II(p) is in terms of one momentum and so does
not include the delta function representing the overall conservation as (9) shows.

(vi) The full propagator may be written as

T(p) = A(p) Y _ (S(p).A(p))" (10)

n=0

2 — m? + ie)~! is just the free propagator. The function X(p) is called the

where A(p) = i(p
self-energy. It is the two-point 1PI (one-particle irreducible) function and it is described by
the sum of 1PI diagrams with two amputated legs (two external legs but the propagator usually
associated with them is not present). A 1PI diagram is one in which external legs are not separated
if you cut a single line? In particular this means there are no contributions from external lines on a
1PI diagram (I draw such external lines on 1PI diagrams as little stubs not long lines). For instance
a diagram contributing to the contribution to II(p) in the A(p)X(p)A(p) term may be cut into two
by cutting either of the lines representing the A(p) factors, which are external lines in the diagram.

See figure 1 for a further example.

Find the diagrams which contribute to 3(p) to O(\2).

(vii) Let X1 be the lowest order contribution to Y. This is O(A!).

Show that the formula (10) for the full propagator I1(p) is consistent at O(\?) with the contribution
made by ¥; terms in the diagrammatic expansion. You will have to evaluate all symmetry factors
to make sure the coefficients are correct.

(viii) Show formally from (10) (e.g. treating ¥ as being an O(\) object which can be treated as being

“small” in perturbation theory) that

(p) = AT =% (11)

2In theories with no tadpoles, this is equivalent to saying that a 1PI diagram cannot be cut into two separate parts by

cutting one line. In almost all theories, tadpole diagrams (or their sum at each order in the expansion) are zero.
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(ix) The pole of the full propagator should be at the physical mass squared, p* = m

f)hys. Why? Hence
show that the physical mass is not the parameter m in the Lagrangian but is given by the self-
consistent equation

M2 = m? —iS(p® =m2y.) . (12)

(x) Analyse the value of ¥ (p), the O(A!) contribution to the self-energy. Do not calculate this in detail

but argue that if we limit the size of the three- or four-momenta in the integration to be O(A) or
less, then ¥; = cA%. Also deduce that ¥ is independent of the external momenta p. What does
this tell us about the Lagrangian mass parameter m as A — oo?

Figure 1: Example of a 1PI diagram. Here the external legs have been amputated/truncated so they are

not present to be cut. However the line in the middle if cut, as indicated by the dashed line, would leave

this diagram in two pieces. This is not a 1PI diagram. The two subdiagrams on either side of the dashed

line, if the connecting propagator has been removed (the one intersecting the dashed line), are both in

fact 1PI diagrams in this case.

*x2. Scattering in \¢*? theory

Consider the A¢* theory of a real scalar field ¢ described by the Lagrangian density (1).

(i)

Write down the Feynman rules for Green functions in momentum space.

What changes are needed to the rule depending on whether we care calculating the contribution to
a Green function or to a matrix element?

Consider the four-point Green function

Go(w1, 22,3, 24) = (0| T[P(21)P(22)P(23)P(74)S]| 0) . (13)

How is this related to the matrix element My = (q1, q2|S| p1,p2) describing ¢¢ — ¢ scattering
as described by the matrix element? Just sketch this relationship and do not give a full algebraic
expression.

Write down all the diagrams up to O(A?) which contribute to the Fourier transform of this four-
point Green function, Go(p1, p2, p3, p4). Note we may choose to set p1 and py (¢1 = ps and g2 = py )
to be the four-momenta of the two initial (final) states in the ¢p¢p — ¢¢ scattering process, in which
case they would be on-shell so that p? = m?. However the Green function is defined for arbitrary
momenta and we will not impose any conditions on the p;.
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(iii) Which of these diagrams contain a vacuum diagram? Therefore these diagrams do not contribute

to this four-point Green function when defined with respect to the full physical vacuum | ), i.e.
Gc(p1,p2,P3,p4), which is the Fourier transform of

Ge(1, 12,73, 74) = (QT[d(21)P(22) P (73)P(24) 5] Q) - (14)

(iv) A component of a Feynman diagram is a set of nodes and edges where every vertex and line in the

component is connected to every other node and edge in the same component. For example see
figure 2. Classify your diagrams for G. (so no vacuum diagrams here) by the number of components

:
2

in the diagram.

Figure 2: Example of a single Feynman diagram of two components which contributes to the four-point

Green function at higher order. The single diagram is the whole lot, both parts, and is a contribution to

the four-point Green function G.(z1,x2,x3,z4) (or the momentum equivalent) defined above. However

this diagram represents quantum fluctuations for the propagation of two phi particles which don’t interact

with each other. Such terms will be dealt with by considering the two-point Green function. We would

only focus on diagrams of one single connected component when wanting to look at the physics of ¢p¢ — ¢

scattering.

(v)

(vi)

For the diagrams with more than one component, explain (no detailed calculation needed) why,
working to O(A\?) approximation, these two-component diagrams for the Green function may be
written in the form

T(p1 )T (p2)8 (1 + p3)6 (p2 + pa) + TL(p1)TL(p2)8 (1 + pa)& (p2 + p3)
+ TI(p1)T(ps)5* (p1 + p2)5* (ps + pa) (15)

where p; are four-momenta all defined to be flowing into the diagram (or equally good they all flow
out). Here II(p) is the full propagator of (9) with the 1PI function ¥ calculated to O(\?).

Why must this last term give no contribution to a scattering process where p; and py (ps = —q1
and py = —¢2) are the four-momenta of initial (final) state particles?

Using a diagrammatic approach (don’t write this out algebraically), show that the one component
diagrams may be written approximately to O(\?) as

3 (p1 + p2 + p3 + p)T(p1)I(p2)I(p3)IL(pa).(—iT D (p1, p2, p3)) (16)
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(vii)

where —il'(¥)(p1, po, p3) is given by a sum of four-point 1PI (one-particle irreducible) diagrams to
O(M?). Hence give a diagrammatic representation for —il'¥)(py, po,p3) to O(A?). 1PI has the
meaning that if we cut any one line in a diagram then the external legs in that diagram will still be
connected. In particular, here this means that we must amputate the propagators on the external
legs, here leaving four external ‘stubs’ represented in a diagram as no leg or just a short stub. See
figure 1 for some examples.

Write down an expression for the scattering amplitude for this process. Do not evaluate this in
detail but estimate the nature of its UV divergence. That is how does the loop integration diverge
at high energies.

How does this compare to the M — oo limit of the scalar Yukawa theory? The Lagrangian density
for scalar Yukawa theory is given by

L= é(am)(a%) - %m%b? + (0,9 (0"9) — MPyTy — g (@) (z)p(x) (17)

Only a brief qualitative answer is needed and you should ignore the issue of UV infinities. Just
indicate the lowest order type of diagrams in the propagation and scattering of ¢ particles in scalar
Yukawa theory of (17) which can give a behaviour which is roughly like that of pure ¢* theory of (1).
Hence specify, very roughly, the relationship between the two theories in terms of their parameters.

#3. Exponential form for 7

The expression for Z = (0|S]0) is given by the sum of all vacuum diagrams. In fact we find that In(Z2)

is given by the sum of connected vacuum diagrams alone. Put another way, Z = exp{C'} where C is the

sum of connected vacuum diagrams. We will illustrate this property for Z by working with one example,
the A¢* theory of (1).

(i)

Give the diagrammatic expansion for Z to O(A?). You should find the symmetry factors and the
number of loops in each case.

Use this to illustrate how some of the contributions to Z come from diagrams which consist of
multiple components, disconnected pieces. A component in graph theory? is a graph (Feynman
diagram) which is a connected diagram, where you can find a path from every vertex to every
other vertex by following the edges. Further each these components also appears in the expansion
for Z as a vacuum diagram in its own right. Put another way, if V' is a connected vacuum diagram
which appears in the expansion for Z then there is always a higher order contribution proportional
to V2 which is represented as a single diagram consisting of two components, each the connected
subdiagrams V.

Focus on the single O(A!) vacuum diagram, V. Show that, in the expansion for Z, the terms which
correspond to diagrams made up only of disconnected V; diagrams, that is terms proportional to
(V1)™ contribute to Z in such a way that we may write

Z=exp{Vi} +... (18)

See if you can justify this for arbitrary orders but only working in terms of the single connected
diagram V7.

3Feynman diagrams are ‘graphs’ in ‘graph theory’.



