
Solutions - PS4

Questions on the solutions can be sent to pulkit.ghoderao18@imperial.ac.uk
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The decay of π0 into two photons is given by

Lπ0AA =
e2

32π2Fπ
π0Fµν(A)Fρσ(A)ϵµνρσ .

Under the nonlinear symmetry transformation π0 7→ π0 + ωFπ, we have

δLπ0AA =
e2ω

32π2
Fµν(A)Fρσ(A)ϵµνρσ . (1.1)

From problem sheet 1, this is a total derivative, and consequently has no effect at the classical level.

From lecture notes, the relevant anomaly coefficients can be obtained by recalling that the (anoma-
lous) axial currents are such that

∂µjaµ ∝ Fµν(A)Fρσ(A)ϵµνρσ tr
(
T aQ2

EM

)
,

where T a are the generators. The matrix QEM embedded in SU(2)A and SU(3)A is

QEM = diag(2/3,−1/3) ∈ SU(2)A for π0 ∼ uu+ dd√
2

, (1.2)

QEM = diag(2/3,−1/3,−1/3) ∈ SU(3)A for η ∼ uu+ dd− 2ss√
6

(1.3)

For the π0 decay, we are interested in the SU(2)A generators, and only the a = 3 contribution is non-zero.
Similarly, for the η decay, we are in SU(3)A generators, and only the a = 8 contribution is relevant. Thus
the relevant generators are T3A = γ5σ

3/2 and T8A = γ5λ
8/2. The eighth Gell-Mann matrix is proportional

to diag(1, 1,−2) and with the requirement that tr(λ8λ8) = 2δ88 we find the proportionality constant to
be λ8 = (1/

√
3) diag(1, 1,−2).

The ratio of anomaly coefficients is then

A3AQEMQEM

A8AQEMQEM

=
tr
(
T3AQ

2
EM

)
tr
(
T8AQ2

EM

) =
(2/3)2 − (1/3)2

1√
3
((2/3)2 + (1/3)2 − 2(1/3)2)

=
√
3 ,
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The decay rate Γ(P → γγ) is proportional to the absolute square of the anomaly coefficient (as the
anomaly coefficient is proportional to the ‘coupling constant’ in the decay Lagrangian). By dimensional
analysis, it should be multiplied by m3

P . Thus,

R =
Γ(π0 → γγ)

Γ(η → γγ)
=

∣∣∣A3AQEMQEM

A8AQEMQEM

∣∣∣2m3
π0

m3
η

= 3
m3

π0

m3
η

≃ 0.045 .
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We will adopt the notation that A(G1, G2, G3) denote the anomaly coefficient corresponding to groups
G1, G2 and G3. Anomaly coefficient for a general representation R has the properties

1. A(R) = −A(R)

2. A(R1 ⊕R2) = A(R1) +A(R2)

3. A(R1 ⊗R2) = A(R1 ⊗ I2 + I1 ⊗R2) = dim(R1)A(R2) + dim(R2)A(R1)

Now for the SM: SU(3)c × SU(2)L × U(1)Y ,

A(3, 3, 3) ∝
∑
αβγ

tr
(
λα{λβ, λγ}

)
= 2

∑
αβγ

dαβγ = 0 ,

as the non-vanishing d coefficients are d118 = d228 = d338 = −d888 = 1/
√
3, d448 = d558 = d668 = d778 =

−1/(2
√
3), and d344 = d355 = −d366 = −d377 = 1/2. Then,

A(3, 3, 2) ∝
∑
αβa

tr
(
λα{λβ, σa}

)
∝ δαβ trσa = 0 ,

as the SU(3) and SU(2) generators commute. The A(3, 3, 1) coefficient is more involved. Recalling that
the U(1)Y group is generated by the hypercharge operator Y , we have

A(3, 3, 1) ∝
∑

quarks

Y = 3
(
2yQL

+ yuRc + ydRc

)
= 0 . (2.1)

Moving on, we can easily see that A(2, 2, 2) vanishes because {σa, σb} ∝ δab and σa is traceless. As with
the case with two 3’s, A(2, 2, 1) is more involved, and it is given by

A(2, 2, 1) ∝
∑

doublets

Y = 3
(
3yQL

+ yLL

)
= 0 . (2.2)

There are two more coefficients to check. A(2, 1, 1) vanishes because it is proportional to the trace of a
single Pauli matrix, and finally,

A(1, 1, 1) ∝
∑

fermions

Y 3 ∝ 2y3LL
+ y3eRc

+ 6y3QL
+ 3y3uRc

+ 3y3dRc
= 0 . (2.3)

We have 3 non-trivial equations ((2.1)-(2.3)) and 5 hypercharges, so there are 2 hypercharges left unde-
termined.

Including the Higgs doublet ϕ with hypercharge yϕ, we have the following Yukawa couplings:

QLuRϕ̃ , QLdRϕ , LLeRϕ , complex conjugates.
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Classical invariance of hypercharge of these couplings require the following relations:

yuR − yϕ − yQL
= 0 , ydR + yϕ − yQL

= 0 , yeR + yϕ − yLL
= 0 , (2.4)

where yuR = −yuRc , and so on. The negative of the sum of the first two equations give precisely (2.1), so
there are only 2 extra independent relations. So, including the Higgs field, there are 6 hypercharges with
5 anomaly cancelling relations. The single, undetermined hypercharge, say yϕ can be set by convention;
yϕ = 1/2 in the Standard Model.

The generators of the SU(2) × U(1)Y sector are T i and Y for i ∈ {1, 2, 3}. Recall that the unbroken
generator QEM is given by

QEMϕ = (θiT
i + ηY )ϕ = 0 ,

where θi ∈ R, and ϕ is the Higgs vacuum expectation value. For ϕ = (0, v/
√
2), the solution is θ1 = θ2 = 0,

and η = θ3. We can normalise with η = 1 giving QEM = T 3 + Y . The unique solution to the anomaly
cancellation and hypercharge invariance equations given yϕ = 1/2 is

yuR =
2

3
, ydR = −1

3
, yQL

=
1

6
, yLL

= −1

2
, yeR = −1 .

Their corresponding electric charges are:

uR :
2

3
,

dR : −1

3
,

QL : QEMQL =

(
1
2 + 1

6 0
0 1

6 − 1
2

)(
uL
dL

)
=⇒ charge 2/3 for uL and charge -1/3 for dL ,

LL : QEMLL =

(
1
2 − 1

2 0
0 −1

2 − 1
2

)(
ν
eL

)
=⇒ charge 0 for ν and charge -1 for eL ,

eR : −1 .

Now, let’s suppose that the up quark has no current-quark mass, and yϕ and yeRc = 1 + ϵ where ϵ is
infinitesimal. Recall that e = g1 cos θW , so (1 + ϵ)e = g1 cos θW , which for infinitesimal ϵ gives

e = g1(1− ϵ) cos θW .

Since the up quark has no current-quark mass, the relations imposed on the hypercharges are (2.1)-(2.3)
and the middle and right of (2.4). To lowest order in ϵ, we have

yQL
=

1

6
+

ϵ

3
, yLL

= −1

2
− ϵ , ydR = −1

3
(1− ϵ) , yuR =

2

3
+

ϵ

3
.

The electric charge of the neutron (udd) is then

QEM ;neutron = yuR + 2ydR = ϵ .
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The intuitive way of finding the vev Φ that can give rise to a symmetry breaking G = SU(5) → H
is one which leaves the H = SU(3) × SU(2) × U(1) subgroup invariant, i.e. since the field is in the
adjoint rep, commutes with the generators of SU(3) × SU(2) × U(1). One can immediately see that a
vev proportional to Y ∼ diag(2, 2, 2,−3,−3) does the job. This is exactly the way we had found the
vacuum orbits for SU(3) symmetry breaking from Peter Higgs’ paper in problem set 2. The required vev
is ⟨Φ⟩ = v1 diag(2, 2, 2,−3,−3).

One can also argue for the required vev by looking for a simple enough specific parametrisation for
Φ = ϕaT a: Consider the terms trΦ2 and trΦ4 in the potential. It will be convenient if all of the terms
generated by trΦ2 were quadratic, i.e., if all of the mixed second order terms vanish. That is, for Φ = vaϕa,
tr(ϕaϕb) ∝ δab. The existence of this parameterisation is guaranteed by group theory. It would also be
convenient if all terms involving v1 and ϕ1 in the trΦ4 terms to be at least quadratic in each other
parameter. That is, tr(ϕ3

1ϕb) = 0 for b ̸= 1. Fortunately, such a parameterisation exists. It is

ϕ1 = diag(2, 2, 2,−3,−3) , ϕ2 = diag(1,−1, 0, 0, 0) , ϕ3 = diag(1, 1,−2, 0, 0) , ϕ4 = diag(0, 0, 0, 1,−1) .

We can now rewrite V (Φ, H = 0) = V(vi) in terms of these parameters. Recalling that our parameterisa-
tion is such that tr(ϕ3

1ϕb) = 0 for b ̸= 1, every term in ∂V/∂vi will include at least one v1. Thus, v1 ̸= 0
and v2 = v3 = v4 = 0 is a solution to ∂V/∂va = 0.

With the vev ⟨Φ⟩ = v1 diag(2, 2, 2,−3,−3) the potential is

V(v1, v2 = v3 = v4 = 0) = 900bv41 + 210av41 − 30m2
1v

2
1

And so, the minimum of V is given by

v21 =
m2

1

14a+ 60b
,

provided that b > −7a/30 so that the denominator is positive definite, and a > 0 so that the Lagrangian
is bounded from below.

To find the mass term of the gauge fields after symmetry breaking, consider the kinetic term of the Φ
field and expand it about Φ + δΦ, focussing on terms independent of δΦ,

Lkin(Φ) =
1

2
tr
(
DµΦD

µΦ
)
, (DµΦ)a = ∂µva − ig5fabcXµbΦc .

The δva independent term in Lkin(v + δv) is then

−1

4
g25fabcfadevcveXµbX

µ
d .

The conventional mass term is given by

−m2

2
XµaX

µ
a ,

so

m2 =
1

2
g25faa1faa1v

2
1 .
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Calculating the commutators, we find that faa1 = 5, and so

m =

√
25

2
g5v1 .

For finding the transformation of the gauge fields under hypercharge, consider the same action under the
adjoint commutator, but rescaled so instead of diag(2, 2, 2,−3,−3), it is proportional to the SM hyper-
charge generator y = diag(−1/3,−1/3,−1/3, 1/2, 1/2). This has a difference of a factor of −1/6, so the
charge is −5/6 under the SM hypercharge.

Lastly, writing H = (ht1 , ht2 , ht3 , hd1 , hd2)
T , then finding the mass term in V (Φ, H) for H, we have

V (Φ, H) = −m2
2(h

∗
tihti + h∗djhdj ) + 30λ1v

2
1(h

∗
tihti + h∗djhdj ) + λ2v

2
1(4h

∗
tihti + 9h∗djhdj ) + · · · ,

which gives

m2
t = −m2

2 + (30λ1 + 4λ2)v
2
1 ,

m2
d = −m2

2 + (30λ1 + 9λ2)v
2
1 .
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From the lecture notes, the particles that make up the 5 rep of SU(5) are diag(dR, dR, dR, e
+
L , ν̄eL) which

yield the electromagnetic charge matrix embedded in the 5 rep as

Q̂ = cdiag(−1/3,−1/3,−1/3, 1, 0) (4.1)

where c =
√

3/2 is the constant of proportionality determined using the trace relation tr(Q̂Q̂) = 1
2 . We

also know that the hypercharge matrix of the above particle content√
5

3
Ŷ = Y = diag(−1/3,−1/3,−1/3, 1/2, 1/2) (4.2)

when embedded in 5 rep of SU(5). Lastly, the T 3 of SU(2) can be embedded in SU(5) as

T 3 =
1

2
diag(0, 0, 0, 1,−1) (4.3)

where once again the proportionality constant is determined using the trace relation tr(T 3T 3) = 1
2δ

33.
From which we immediately see that

Q̂ =

√
3

2
(T 3 +

√
5

3
Ŷ ). (4.4)

For the anomalies, first note that one can use the Q̂ operator in a given representation to calculate the
anomaly as it is just a particular linear combination of the generators of SU(5) which keeps the anomaly
coefficient of that representation invariant upto a factor of dIJK . Furthermore it is easier to calculate the
ratio A(5∗)/A(10) because the factor dIJK drops out as we are the considering the same Q̂ operator for
both the 5∗ and 10 reps in the anomaly calculation.
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The anti-fundamental rep 5∗ has the charges switched from the fundamental 5 rep considered above,
or specifically it has the particle content {(dR)C , L = (eL, νeL)} giving

tr5∗(Q
3) = 3(1/3)3 + (−1)3 + 0 = −8/9, (4.5)

while for anomaly of the 10 rep we need to consider its particle content, {(uR)C , QL = (uL, dL), (eR)C}
giving

tr10(Q
3) = 3(−2/3)3 + 3(2/3)3 + 3(−1/3)3 + 13 = 8/9. (4.6)

From which we see that

A(5∗)

A(10)
=

tr5∗(Q̂
3)

tr10(Q̂3)
= −1 =⇒ A(5∗) +A(10) = 0 .

There are no changes to the gauge anomalies when one includes an SU(5) singlet right-handed fermion
to generate neutrino masses via the see-saw mechanism, as the neutrino by definition does not transform
under the gauge group.

5

For each gauge group, nf = 4ng, as they couple four particles/antiparticles per generation. Similarly,
CA = 3, 2 for SU(3) and SU(2), and CR = 1/2, so

b3 =
1

12π

(
11× 3− 2× 4ng ×

1

2

)
=

1

4π

(
11− 4ng

3

)
, (5.1)

b2 =
1

12π

(
11× 2− 2× 4ng ×

1

2
− nH × 1

2

)
=

1

4π

(22
3

− 4ng

3
− nH

6

)
. (5.2)

For b̂1, we need to compute bY , which from the notes is

bY = − 1

6π

(
trfermions,left(Y

2) +
1

2
trscalars(Y

2)
)
,

and therefore,

b̂1 =
1

4π

(
− 4ng

3
− nH

10

)
. (5.3)

Next, the renormalisation group equation in the variable z = logµ is

∂gR
∂z

= −
bg3R
4π

,

which can be solved to give

gR = ±
( b

2π
z + c̃

)− 1
2
, c̃ ∈ R .

Hence, using the definition αN = g2N/4π, we have

αN (µ) =
(
2bN logµ+ c

)−1
=⇒ logµ =

(
2αNbN

)−1 − c

2bN
,
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where c =
√
4πc̃. Therefore,

log
(Q2

µ2
0

)
=

1

bNαN (Q)
− 1

bNαN (µ0)
. (5.4)

Assuming unification of the couplings at scale Q, and noticing that the RHS of (5.4) has no N dependence,
we have

1

b1α1(Q)
− 1

b1α1(µ0)
=

1

b2α2(Q)
− 1

b2α2(µ0)
=

1

b2α1(Q)
− 1

b2α2(µ0)
,

which can be solved for α1(Q) to give

α1(Q) =
(b2 − b1)α1(µ0)α2(µ0)

b2α2(µ0)− b1α1(µ0)
.

Inserting this back into (5.4) yields the required result

log
(Q2

µ2
0

)
=

1

b1α1(Q)
− 1

b1α1(µ0)
=

( 1

α1(µ0)
− 1

α2(µ0)

) 1

b2 − b1
.

Similarly, we have

log
(Q2

µ2
0

)
=

( 1

α3(µ0)
− 1

α2(µ0)

) 1

b2 − b3
,

which implies that

1

α3(µ0)
=

1 +B

α2(µ0)
− B

α1(µ0)
, B =

b3 − b2
b2 − b1

.

Substituting (5.1), (5.2) and (5.3), we find that

B =
110 + nH

2(110− nH)
≃ 1

2
+

3nH

110
+O(n2

H) .

Lastly, in the MSSM, we must remember to include superpartners. If a vector transforms in the adjoint,
then there is a spinor that transforms in the adjoint. And if there is a spinor transforming in the fun-
damental representation, there is a scalar transforming in the fundamental representation and vice versa.
Therefore, bN becomes

bN =
1

12π

(
11CA − 2nA

f CA − 8ngCF − 4ngCF

)
,

where nA
f = 1 is the number of fermions in the adjoint. Using this, we find that

b3 =
1

4π

(
9− 2ng

)
,

b2 =
1

4π

(
6− 2ng −

nH

2

)
,

b1 =
1

4π

(
− 2ng −

3

10
nH

)
.
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