Solutions - PS4

Questions on the solutions can be sent to pulkit.ghoderaol8@imperial.ac.uk
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The decay of 7V into two photons is given by

2
€ 0

Lroaa = Son2E " Fuy(A) o (A)eP.
Under the nonlinear symmetry transformation 70 — 7% 4+ wFy, we have
2
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0Loaa =

From problem sheet 1, this is a total derivative, and consequently has no effect at the classical level.

From lecture notes, the relevant anomaly coefficients can be obtained by recalling that the (anoma-
lous) axial currents are such that

0§ o Fpuy(A)Fpe(A)e?” tr (T°Q% ) »

where T are the generators. The matrix Q gy embedded in SU(2)4 and SU(3) 4 is

w+ dd
Qru = diag(2/3,—1/3) € SU(2)4  for 7° ~ ““\% (1.2)
p— 7_ 2 p—
Qpas = diag(2/3, —1/3,—1/3) € SU@3) 4 for 5 ~ L 4L =255 (1.3)

V6

For the 7¥ decay, we are interested in the SU(2) 4 generators, and only the a = 3 contribution is non-zero.
Similarly, for the n decay, we are in SU(3) 4 generators, and only the a = 8 contribution is relevant. Thus
the relevant generators are T34 = v50°/2 and Tga = v5A8/2. The eighth Gell-Mann matrix is proportional
to diag(1,1, —2) and with the requirement that tr(A3\8) = 26%® we find the proportionality constant to
be \® = (1/4/3) diag(1,1, —2).

The ratio of anomaly coefficients is then

A34QuM Qe _ tr (T3AQ%EM) _ (2/3)2 - (1/3)2 —3
A8AQun Qe tr (TSAQ%M) %((2/3)2 +(1/3)2 = 2(1/3)?) ’

—



The decay rate I'(P — 7+) is proportional to the absolute square of the anomaly coefficient (as the
anomaly coefficient is proportional to the ‘coupling constant’ in the decay Lagrangian). By dimensional
analysis, it should be multiplied by m%. Thus,

P(ﬂ—o — 77) A3AQEMQEM 2m? m

R— - n0 — 370 0,045,
L(n— ) A8AQur Qe m3 %
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We will adopt the notation that A(Gj,G2,G3) denote the anomaly coefficient corresponding to groups
G1, G2 and G3. Anomaly coefficient for a general representation R has the properties

1. A(R) = —A(R)

2. ARy & Ry) = A(Ry) + A(R»)

3. A(R1 @ Ry) = A(R1 @I + I} ® Ry) = dim(Ry)A(Rz) + dim(R2) A(R)
Now for the SM: SU(3), x SU(2), x U(1)y,

A(3,3,8) o > tr (AafAg, A }) =2 dag, =0,

afy aBy

as the non-vanishing d coefficients are dy1g = dogsg = dazg = —dgss = 1/v/3, dys = dsss = dees = dr7s =
_1/(2\/§)7 and d344 - d355 = _d366 = —d377 = 1/2. Then,

A(3,3,2) x Ztr (Aa{Ag,04}) x baptro, =0,

afa

as the SU(3) and SU(2) generators commute. The A(3,3,1) coefficient is more involved. Recalling that
the U(1)y group is generated by the hypercharge operator Y, we have

A(3,3,1) o< > Y =3(2yq, + Yun. + Ydr.) =0. (2.1)

quarks

Moving on, we can easily see that A(2,2,2) vanishes because {04, 0} o dqp and o, is traceless. As with
the case with two 3’s, A(2,2,1) is more involved, and it is given by

A@2,2,1) c > Y =3(3yq, +yr,) =0. (2.2)

doublets

There are two more coefficients to check. A(2,1,1) vanishes because it is proportional to the trace of a
single Pauli matrix, and finally,

A L) o Y Y3 2yd +yd 46y, + 3y, + 3y, =0. (2.3)

fermions

We have 3 non-trivial equations ((2.1)-(2.3)) and 5 hypercharges, so there are 2 hypercharges left unde-
termined.

Including the Higgs doublet ¢ with hypercharge y4, we have the following Yukawa couplings:

@LuRg, Q;dr¢, Lrerop, complex conjugates.



Classical invariance of hypercharge of these couplings require the following relations:
Yur =Y —YQr =0, Yar t¥s — Y@, =0, Yer +Ys—yr, =0, (2.4)

where ¥y, = —Yup., and so on. The negative of the sum of the first two equations give precisely , SO
there are only 2 extra independent relations. So, including the Higgs field, there are 6 hypercharges with
5 anomaly cancelling relations. The single, undetermined hypercharge, say y4 can be set by convention;
Yy = 1/2 in the Standard Model.

The generators of the SU(2) x U(1)y sector are T% and Y for i € {1,2,3}. Recall that the unbroken
generator Qs is given by

Qemd = (0:T" +n1Y)p =0,

where 6; € R, and ¢ is the Higgs vacuum expectation value. For ¢ = (0,v//2), the solution is #; = 65 = 0,
and 7 = 63. We can normalise with 7 = 1 giving Qgy = T2 + Y. The unique solution to the anomaly
cancellation and hypercharge invariance equations given y, = 1/2 is

2 1 1 1
yuRzga ydR:7§7 yQLZEa yLinﬁv yeszl-

Their corresponding electric charges are:

2
UR:g,
1
dR : —§7
%+% 0 Uy,
QL: QrmQL = 0 11y, — charge 2/3 for uy, and charge -1/3 for dy,,
6 2

1 1
Ly :QrmL = <2 0 2 0 1) <V> — charge 0 for v and charge -1 for ey, ,
2

erp:—1.

Now, let’s suppose that the up quark has no current-quark mass, and y, and y., = 1+ € where € is
infinitesimal. Recall that e = g1 cos by, so (1 + €)e = g1 cos by, which for infinitesimal € gives

e=g1(1 —¢€)cosby .

Since the up quark has no current-quark mass, the relations imposed on the hypercharges are ([2.1))-(2.3))
and the middle and right of (2.4). To lowest order in €, we have

(VRG]
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) yLL:_§_€7 ydR:_i(l_E)v Yurp =
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Yor =
The electric charge of the neutron (udd) is then

QEM;neutron = Yup + deR = €.
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The intuitive way of finding the vev ® that can give rise to a symmetry breaking G = SU(5) — H
is one which leaves the H = SU(3) x SU(2) x U(1) subgroup invariant, i.e. since the field is in the
adjoint rep, commutes with the generators of SU(3) x SU(2) x U(1). One can immediately see that a
vev proportional to Y ~ diag(2,2,2,—3,—3) does the job. This is exactly the way we had found the
vacuum orbits for SU(3) symmetry breaking from Peter Higgs’ paper in problem set 2. The required vev
is (®) = vy diag(2,2,2, -3, —3).

One can also argue for the required vev by looking for a simple enough specific parametrisation for
® = ¢2T*: Consider the terms tr ®? and tr ®* in the potential. It will be convenient if all of the terms
generated by tr ®2 were quadratic, i.e., if all of the mixed second order terms vanish. That is, for ® = v4¢q,
tr(gadp) x dqp. The existence of this parameterisation is guaranteed by group theory. It would also be
convenient if all terms involving v; and ¢; in the tr ®* terms to be at least quadratic in each other
parameter. That is, tr(¢3¢,) = 0 for b # 1. Fortunately, such a parameterisation exists. It is

1= dla‘g(27 2,2, -3, _3) , 2= dla‘g(la —-1,0,0, 0) , 3= dlag(lv 1,-2,0, 0) , P4 = dla'g(07 0,0,1, _1) :

We can now rewrite V(®, H = 0) = V(v;) in terms of these parameters. Recalling that our parameterisa-
tion is such that tr(¢3¢,) = 0 for b # 1, every term in 9V /dv; will include at least one v;. Thus, v # 0
and vy = v3 = vg = 0 is a solution to 9V /dv, = 0.

With the vev (®) = vy diag(2, 2,2, —3, —3) the potential is

V(v1,v9 = v3 = vg = 0) = 900bv} + 210av] — 30m3v?
And so, the minimum of V is given by
V2 = mi
U7 140 4+ 600

provided that b > —7a/30 so that the denominator is positive definite, and a > 0 so that the Lagrangian
is bounded from below.

To find the mass term of the gauge fields after symmetry breaking, consider the kinetic term of the ®
field and expand it about ® + §®, focussing on terms independent of @,

1 .
Ekin<q)) = 5 tr (DM(I)DM(I)) , (D,uq))a = M’Ua — lg5fachub(I)c-

The dv, independent term in Ly, (T 4 dv) is then

1

- Zgg fabcfadeﬁcﬁeXung .

The conventional mass term is given by

X XH

a

SO

1 _
m2 = iggfaalfaalvf .



Calculating the commutators, we find that f,41 = 5, and so

B
m = 2g5?}1.

For finding the transformation of the gauge fields under hypercharge, consider the same action under the
adjoint commutator, but rescaled so instead of diag(2,2,2,—3, —3), it is proportional to the SM hyper-
charge generator y = diag(—1/3,—1/3,—1/3,1/2,1/2). This has a difference of a factor of —1/6, so the
charge is —5/6 under the SM hypercharge.

Lastly, writing H = (hy,, hey, htg, hay, ha,) !, then finding the mass term in V(®, H) for H, we have

V(®,H) = —m3(hfhy, + hij ha,) + 30003 (B by, + hij ha,) + A7 (4R by, + Ohg ha) + - -+

which gives
m? = —m3 + (30\1 + 4\)77
m3 = —m3 + (30\; + 9\)T3 .

4

From the lecture notes, the particles that make up the 5 rep of SU(5) are diag(dr, dg, dr, e} , V1) which
yield the electromagnetic charge matrix embedded in the 5 rep as

Q = cdiag(—1/3,-1/3,—-1/3,1,0) (4.1)

where ¢ = /3/2 is the constant of proportionality determined using the trace relation tr(QQ) = % We
also know that the hypercharge matrix of the above particle content

\/EY =Y = diag(—1/3,-1/3,-1/3,1/2,1/2) (4.2)
when embedded in 5 rep of SU(5). Lastly, the 7% of SU(2) can be embedded in SU(5) as
1
T3 = 3 diag(0,0,0,1, —1) (4.3)

where once again the proportionality constant is determined using the trace relation tr(7373) = %533.
From which we immediately see that

Q= \/E(T?’ + \/EY). (4.4)

For the anomalies, first note that one can use the Q operator in a given representation to calculate the
anomaly as it is just a particular linear combination of the generators of SU(5) which keeps the anomaly
coefficient of that representation invariant upto a factor of d//%. Furthermore it is easier to calculate the
ratio A(5*)/A(10) because the factor d/® drops out as we are the considering the same @ operator for
both the 5* and 10 reps in the anomaly calculation.



The anti-fundamental rep 5* has the charges switched from the fundamental 5 rep considered above,
or specifically it has the particle content {(dr)c, L = (er,Ver)} giving

trs-(Q%) = 3(1/3)3 + (-1)* + 0 = —8/9, (4.5)

while for anomaly of the 10 rep we need to consider its particle content, {(ur)c, QL = (ur,dr), (er)c}
giving

tri0(Q%) = 3(—2/3)% +3(2/3)% + 3(=1/3)> +1° = 8/9. (4.6)
From which we see that

A(5) _ s (QY)
A(10) trlo(Q3)

= -1 = A(5*) + A(10) = 0.

There are no changes to the gauge anomalies when one includes an SU(5) singlet right-handed fermion
to generate neutrino masses via the see-saw mechanism, as the neutrino by definition does not transform
under the gauge group.

5

For each gauge group, ny = 4ng, as they couple four particles/antiparticles per generation. Similarly,
Ca = 3,2 for SU(3) and SU(2), and Cr = 1/2, so

1 1 4n
b:—(ﬂ —ox4 7)=f(1 ——9), 1
3= T \M X3 -2 xdng x5 ) = 3 (5.1)
1 1 1 /22 4n ng
b:—(ll 22 xdny X - — 7>:f(f——9——>. 2
27 on S R Y B N T T (52)
For 131, we need to compute by, which from the notes is
by = —i<tr ~ (Y?) + 1tr (Y2)>
Y = 67 fermions,left 9 scalars )
and therefore,
-1 dng npg
bl_4n<_ 3 _1()) (5:3)

Next, the renormalisation group equation in the variable z = log u is

O9r _ _bojy
0z A7’

which can be solved to give

b Nz -
gR:i<2—z+c) * CeR.
T

Hence, using the definition ay = gZQV /4w, we have

an(p) = (2bylogptc) " = logu= (2anby) " - %



where ¢ = v/4we. Therefore,

Q%N 1 B 1
tog (M0> - bvan(Q)  byvan(uo) 54

Assuming unification of the couplings at scale @, and noticing that the RHS of (5.4)) has no N dependence,
we have

R R T T
bion(Q)  brai(mo)  bea(Q)  baaa(po)  baon(Q)  baaa(po)

which can be solved for a;(Q) to give

0 (Q) = (b2 — by)or (o) (peo)
! baaa(po) — brai(po)

Inserting this back into (5.4)) yields the required result

¢y 1 1 11 1
o (Mo) C baa(Q) brai(po) <a1(M0) Oéz(MO))’D —b

Similarly, we have

Q? 1 1 1
log <M(2)) - <Oé3(,u0) B Oéz(ﬂo)> by —bs’

which implies that

1 1+B B by — b
= = , B= .
ag(po)  az(po)  ai(uo) by — by
Substituting (5.1f), (5.2)) and (5.3)), we find that
110 +ngy 1 3ng
B=_——1"H 2 O,
2(110 — nH) 2 + 110 + ( )

Lastly, in the MSSM, we must remember to include superpartners. If a vector transforms in the adjoint,
then there is a spinor that transforms in the adjoint. And if there is a spinor transforming in the fun-
damental representation, there is a scalar transforming in the fundamental representation and vice versa.
Therefore, by becomes

1

197 (110,4 — an CA — 8ngC’F — 4ngCF)

by =

where n‘;‘ = 1 is the number of fermions in the adjoint. Using this, we find that

1
b3=E(9—2n9),

1 nyg
by = (6 - 2m, — 1),
2 47 0 Mg 2

1 3
b= (= 20y — ~onr)
P T



	
	
	
	
	

