

The Standard Model and Beyond: Problem Set 1

1. a) Derive the Palatini identity $\delta F_{\mu\nu}^i = D_\mu \delta A_\nu^i - D_\nu \delta A_\mu^i$ for infinitesimal variations of a nonabelian field strength arising from a variation δA_μ^i of the Yang-Mills gauge field, in which D_μ is a covariant derivative for the adjoint representation. Recall that $T_{\text{adj}}^{kij} = -i f^{kij}$ for the adjoint representation.
b) Derive the nonabelian identity $D_\mu \tilde{F}^{i\mu\nu} \equiv 0$ where $\tilde{F}^{i\mu\nu} := \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}^i$ in which D_μ is here a covariant derivative for the adjoint representation while $(D_\mu)_A^B = \partial_\mu \delta_A^B - ig A_\mu \cdot T_A^B$ in a general representation T_A^B . One then has $[D_\mu, D_\nu]_A^B = -ig F_{\mu\nu} \cdot T_A^B$. It may be helpful to use the Jacobi identity $[D_\rho, [D_\mu, D_\nu]] + \text{cycle } (\rho, \mu, \nu) = 0$.
c) Show that the infinitesimal variation of $F_{\mu\nu}^i \tilde{F}^{i\mu\nu}$ is a total derivative, so such terms in the field-theory Lagrangian do not contribute to the classical field equations.
2. a) Show that the *complex* n -dimensional fundamental representation φ_a of $SU(n)$, with infinitesimal transformations generated by Hermitean Lie algebra generators T_a^b

$$\begin{aligned}\delta \varphi_a &= i\delta\theta^i T_a^b \varphi_b \\ \delta \varphi^{*a} &= -i\delta\theta^i \varphi^{*b} T_b^a\end{aligned}$$

can be recast as a $2n$ dimensional *real* representation with Hermitean generators. One way to label this $2n$ dimensional real form is to use a $2n$ valued hybrid index notation $A \leftrightarrow a\hat{z}$, in which one has $\phi_A = \phi_{a\hat{z}}$ with $a = 1, \dots, n$; $\hat{z} = 1, 2$, setting

$$\phi_{a1} = \frac{1}{2}(\varphi_a + \varphi^{*a}), \quad \phi_{a2} = \frac{-i}{2}(\varphi_a - \varphi^{*a})$$

Demonstrate that the generators T_{BC}^i in this real form, with $B \leftrightarrow b\hat{w}$, *etc.*, are Hermitean $2n \times 2n$ matrices. Since the $2n$ dimensional real form must have purely imaginary generators (so that iT^i is real), show that the generators of this real form are purely antisymmetric $2n \times 2n$ matrices.

- b) Using the results of part a), show that for this real-form representation, the matrix

$$S^{ij} = (T^i \bar{\phi}, T^j \bar{\phi})$$

is real and symmetric, and thus diagonalizable, where (v, w) is the usual $2n$ dimensional vector space inner product, $(v, w) = v_A w_A$ and $\bar{\phi}_B$ is the vacuum value of ϕ_B . Hence, starting from the (mass)² constraint $M_{AB}^2 T_{BC}^i \bar{\phi}_C = 0$, show that there is precisely one zero eigenvalue of M_{AB}^2 for each non-vanishing $T^i \bar{\phi}$ vector. (Ignore the possibility of further accidentally vanishing eigenvalues about which one can't learn anything from this discussion: if the above discussion does not require a (mass)² eigenvalue to vanish, assume that it is positive.)

3. Consider the symmetry-breaking mechanism of the Standard Model from the point of view of Problem 2, with the scalar fields considered as a quartet of real fields ϕ_{4Ri} given in terms of the standard complex doublet φ_{2Ca} by

$$\varphi_{2C} = \begin{pmatrix} \phi_{4R3} + i\phi_{4R4} \\ \phi_{4R1} + i\phi_{4R2} \end{pmatrix}.$$

Let the scalar vacuum be

$$\bar{\phi}_{4R} = \begin{pmatrix} v \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

- Show that the $SU(2)_L$ generators $T_{4R}^{i=1,2,3}$ and the $U(1)_Y$ generator T_{4R}^4 in this scheme take the purely imaginary and antisymmetric forms

$$\begin{aligned} T_{4R}^1 &= \frac{i}{2} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} & T_{4R}^2 &= \frac{i}{2} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \\ T_{4R}^3 &= \frac{i}{2} \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} & T_{4R}^4 &= \frac{i}{2} \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}. \end{aligned}$$

The general expression for the vector mass (matrix)² in this real-field scheme is $(M^2)_{\text{gen}}^{ij} = g_i g_j \langle \bar{\phi}_{4R}, T_{4R}^i T_{4R}^j \bar{\phi}_{4R} \rangle$, in which $(v, w) = v_A w_A$ is the standard \mathbb{R}_4 inner product, g_i is g_T for all T_{4R}^i in a simple G group factor and the underlined i, j do not provoke Einstein summation. Noting

that $(T_{4R}^1)^2 = (T_{4R}^2)^2 = (T_{4R}^3)^2 = \frac{1}{4} \mathbb{1}_{4 \times 4}$ and $T_{4R}^3 T_{4R}^4 = T_{4R}^4 T_{4R}^3 = \frac{1}{4} \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, we found in

the lectures that the SM vector mass (matrix)² takes the form

$$(M^2)_{\text{SM}}^{ij} = \frac{1}{4} \begin{pmatrix} g_2^2 v^2 & 0 & 0 & 0 \\ 0 & g_2^2 v^2 & 0 & 0 \\ 0 & 0 & g_2^2 v^2 & -g_2 g_1 v^2 \\ 0 & 0 & -g_2 g_1 v^2 & g_1^2 v^2 \end{pmatrix}$$

where g_2 is the $SU(2)_L$ Yang-Mills coupling constant and g_1 is the $U(1)_Y$ hypercharge coupling constant.

- Then show that under an assumption only that the SM gauge group $SU(2)_L \times U(1)_Y$ breaks spontaneously down to the little group $U(1)_{EM}$ generated by $T_{4R}^3 + Y_{4R}$, the vector mass (matrix)² would generically have a structure

$$(M^2)_{\text{gen}}^{ij} = \frac{1}{4} \begin{pmatrix} g_2^2 v^2 & 0 & 0 & 0 \\ 0 & g_2^2 v^2 & 0 & 0 \\ 0 & 0 & g_2^2 u^2 & -g_2 g_1 u^2 \\ 0 & 0 & -g_2 g_1 u^2 & g_1^2 u^2 \end{pmatrix}$$

in which u is not necessarily equal to v .

- In order to do this, it may be convenient to show firstly that the requirement that the $U(1)_{EM}$ generated by $T_{4R}^3 + Y_{4R}$ be unbroken, *i.e.* that $(T_{4R}^3 + Y_{4R})\bar{\phi}_{4R} = 0$, combined with use of the $G = SU(2)_L \times U(1)_Y$ Lie algebra implies $(M^2)_{\text{gen}}^{11} = (M^2)_{\text{gen}}^{22}$ and $(M^2)_{\text{gen}}^{12} = (M^2)_{\text{gen}}^{21} = 0$ and $(M^2)_{\text{gen}}^{23} = (M^2)_{\text{gen}}^{13} = 0$ and $(M^2)_{\text{gen}}^{14} = (M^2)_{\text{gen}}^{24} = 0$. Consequently, the upper-left 2×2 block of $(M^2)_{\text{gen}}^{ij}$ must be diagonal, while the upper-right and lower-left 2×2 blocks must vanish.
- Find that the remaining lower right-hand block is required to be symmetric, but is not otherwise constrained by the $SU(2)_L \times U(1)_Y$ algebra since Y_{4R} commutes with itself and with the T_{4R}^i . However, this remaining lower right-hand 2×2 block is still constrained by the requirement that $(M^2)_{\text{gen}}^{ij}$ have a zero eigenvalue, which thus requires the lower right-hand block's determinant to vanish, yielding the above structure.

The special SM condition $u = v$ is the consequence of the “custodial $SU(2)$ ” symmetry.

4. * Consider the different possibilities for symmetry breaking in a theory of a scalar field ϕ_i that is invariant under a rigid $SO(3)$ symmetry, with the scalar field taken in the fundamental triplet representation of the group. The structure constants of $SO(3)$ are $f^{ijk} = \epsilon^{ijk}$, so the adjoint \simeq triplet representation generators are $T^i_{jk} = -i\epsilon^{ijk}$.
 - Consider the most general element of the $SO(3)$ algebra acting on a constant vacuum value $\bar{\phi}_i$ and find
 - which generators, or linear combinations of generators, are broken and which are unbroken
 - the stability (aka little) group
 - which combinations of the fields ϕ_i are massless and which will generally be massive, when expanded around $\bar{\phi}_i$ in the following cases, in which v is a real constant:

$$\text{a) } \bar{\phi}_i = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \text{b) } \bar{\phi}_i = v \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \text{c) } \bar{\phi}_i = \frac{v}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \text{d) } \bar{\phi}_i = \frac{v}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

Find the most general form of the expectation value $\bar{\phi}_i$. Show that one always has 0 or 2 broken generators.

5. Show that a general complex but nonsingular (*i.e.* with nonvanishing determinant) matrix \mathbf{M} can be made diagonal with positive real entries by use of a biunitary transformation, $\mathbf{M} \rightarrow \mathbf{V}^\dagger \mathbf{M} \mathbf{U}$ where \mathbf{V} and \mathbf{U} are unitary matrices. Do this as follows:
 - a) State why $\mathbf{M}^\dagger \mathbf{M}$ is straightforward to diagonalize by a unitary transformation. Use a unitary transformation \mathbf{U} to do this and show that the resulting diagonal entries are real and positive. Call this diagonal matrix \mathbf{D}^2 Define the matrix \mathbf{D} to be the diagonal matrix whose entries are the positive square roots of the corresponding entries in \mathbf{D}^2 .
 - b) Let $\mathbf{H} = \mathbf{U} \mathbf{D} \mathbf{U}^\dagger$. Show that $\tilde{\mathbf{U}} = \mathbf{M} \mathbf{H}^{-1}$ is unitary. Thus, show that

$$\mathbf{V}^\dagger \mathbf{M} \mathbf{U} = \mathbf{D} \quad (1)$$

where $\mathbf{V} = \tilde{\mathbf{U}} \mathbf{U}$ and \mathbf{U} are unitary.

This can be extended to the case of singular matrices by showing that they can be first be transformed to block-diagonal form with the zero eigenvalues on the diagonal in the upper left corner, then with a nonsingular sub-block to which the above argument can be applied.

6. Given three complex numbers A, B, C satisfying $A + B + C = 0$, show that the area of the triangle with vertices at the two-dimensional points $0, A, A + B$ is given by $\frac{1}{2} |\Im(AB^*)| = \frac{1}{2} |\Im(AC^*)| = \frac{1}{2} |\Im(BC^*)|$.