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The Standard Model and Beyond: Problem Set 1

1. a) Derive the Palatini identity δF i
µν = DµδA

i
ν −DνδA

i
ν for infinitesimal variations of a nonabelian

field strength arising from a variation δAi
µ of the Yang-Mills gauge field, in which Dµ is a covariant

derivative for the adjoint representation. Recall that T kij
adj = −ifkij for the adjoint representation.

b) Derive the nonabelian identity DµF̃
i µν ≡ 0 where F̃ i µν := 1

2
ϵµνρσF i

ρσ in which Dµ is here a

covariant derivative for the adjoint representation while (Dµ)A
B = ∂µδA

B− igAµ ·TA
B in a general

representation T i
A
B. One then has [Dµ, Dν ]A

B = −igFµν · TA
B. It may be helpful to use the

Jacobi identity [Dρ, [Dµ, Dν ]] + cycle (ρ, µ, ν) = 0.

c) Show that the infinitesimal variation of F i
µνF̃

i µν is a total derivative, so such terms in the

field-theory Lagrangian do not contribute to the classical field equations.

2. a) Show that the complex n-dimensional fundamental representation φa of SU(n), with infinitesi-

mal transformations generated by Hermitean Lie algebra generators T i
a
b

δφa = iδθiT i
a
bφb

δφ∗ a = −iδθiφ∗ bT i
b
a

can be recast as a 2n dimensional real representation with Hermitean generators. One way to

label this 2n dimensional real form is to use a 2n valued hybrid index notation A ↔ aẑ, in which

one has ϕA = ϕaẑ with a = 1, . . . , n; ẑ = 1, 2, setting

ϕa1 =
1
2
(φa + φ∗ a) , ϕa2 =

−i
2
(φa − φ∗ a)

Demonstrate that the generators T i
BC in this real form, with B ↔ bŵ, etc., are Hermitean 2n×2n

matrices. Since the 2n dimensional real form must have purely imaginary generators (so that iT i

is real), show that the generators of this real form are purely antisymmetric 2n× 2n matrices.

b) Using the results of part a), show that for this real-form representation, the matrix

Sij = (T iϕ̄, T jϕ̄)

is real and symmetric, and thus diagonalizable, where (v, w) is the usual 2n dimensional vector

space inner product, (v, w) = vAwA and ϕ̄B is the vacuum value of ϕB. Hence, starting from the

(mass)2 constraint M2
ABT

i
BCϕ̄C = 0, show that there is precisely one zero eigenvalue of M2

AB for

each non-vanishing T iϕ̄ vector. (Ignore the possibility of further accidentally vanishing eigenvalues

about which one can’t learn anything from this discussion: if the above discussion does not require

a (mass)2 eigenvalue to vanish, assume that it is positive.)
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3. Consider the symmetry-breaking mechanism of the Standard Model from the point of view of

Problem 2, with the scalar fields considered as a quartet of real fields ϕ4Ri given in terms of the

standard complex doublet φ2Ca by

φ2C =

(
ϕ4R3 + iϕ4R4

ϕ4R1 + iϕ4R2

)
.

Let the scalar vacuum be

ϕ̄4R =


v

0

0

0

 .

• Show that the SU(2)L generators T i=1,2,3
4R and the U(1)Y generator T 4

4R in this scheme take the

purely imaginary and antisymmetric forms

T 1
4R = i

2


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 T 2
4R = i

2


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0



T 3
4R = i

2


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 T 4
4R = i

2


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 .

The general expression for the vector mass (matrix)2 in this real-field scheme is (M2)ijgen =

gigj(ϕ̄4R, T
i
4RT

j
4Rϕ̄4R), in which (v, w) = vAwA is the standard R4 inner product, gi is gT for all

T i
4R in a simple G group factor and the underlined i, j do not provoke Einstein summation. Noting

that (T 1
4R)

2 = (T 2
4R)

2 = (T 3
4R)

2 = 1
4
1l4×4 and T 3

4RT
4
4R = T 4

4RT
3
4R = 1

4


−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

, we found in

the lectures that the SM vector mass (matrix)2 takes the form

(M2)ijSM = 1
4


g22v

2 0 0 0

0 g22v
2 0 0

0 0 g22v
2 −g2g1v

2

0 0 −g2g1v
2 g21v

2


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where g2 is the SU(2)L Yang-Mills coupling constant and g1 is the U(1)Y hypercharge coupling

constant.

• Then show that under an assumption only that the SM gauge group SU(2)L × U(1)Y breaks

spontaneously down to the little group U(1)EM generated by T 3
4R + Y4R, the vector mass (matrix)2

would generically have a structure

(M2)ijgen = 1
4


g22v

2 0 0 0

0 g22v
2 0 0

0 0 g22u
2 −g2g1u

2

0 0 −g2g1u
2 g21u

2


in which u is not neccessarily equal to v.

• In order to do this, it may be convenient to show firstly that the requirement that the U(1)EM

generated by T 3
4R + Y4R be unbroken, i.e. that (T 3

4R + Y4R)ϕ̄4R = 0, combined with use of the

G = SU(2)L × U(1)Y Lie algebra implies (M2)11gen = (M2)22gen and (M2)12gen = (M2)21gen = 0 and

(M2)23gen = (M2)13gen = 0 and (M2)14gen = (M2)24gen = 0. Consequently, the upper-left 2 × 2 block of

(M2)ijgen must be diagonal, while the upper-right and lower-left 2× 2 blocks must vanish.

• Find that the remaining lower right-hand block is required to be symmetric, but is not otherwise

constrained by the SU(2)L × U(1)Y algebra since Y4R commutes with itself and with the T i
4R.

However, this remaining lower right-hand 2× 2 block is still constrained by the requirement that

(M2)ijgen have a zero eigenvalue, which thus requires the lower right-hand block’s determinant to

vanish, yielding the above structure.

The special SM condition u = v is the consequence of the “custodial SU(2)” symmetry.

4. ∗ Consider the different possibilities for symmetry breaking in a theory of a scalar field ϕi that

is invariant under a rigid SO(3) symmetry, with the scalar field taken in the fundamental triplet

representation of the group. The structure constants of SO(3) are f ijk = ϵijk, so the adjoint ≃
triplet representation generators are T i

jk = −iϵijk.

a) Consider the most general element of the SO(3) algebra acting on a constant vacuum value ϕ̄i

and find

• which generators, or linear combinations of generators, are broken and which are unbroken

• the stability (aka little) group

• which combinations of the fields ϕi are massless and which will generally be massive, when

expanded around ϕ̄i in the following cases, in which v is a real constant:
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a) ϕ̄i =


0

0

0

, b) ϕ̄i = v


1

0

0

, c) ϕ̄i =
v√
2


1

1

0

, d) ϕ̄i =
v√
2


1

−1

0

.

Find the most general form of the expectation value ϕ̄i. Show that one always has 0 or 2 broken

generators.

5. Show that a general complex but nonsingular (i.e. with nonvanishing determinant) matrix M can

be made diagonal with positive real entries by use of a biunitary transformation, M → V†MU

where V and U are unitary matrices. Do this as follows:

a) State why M†M is straightforward to diagonalize by a unitary transformation. Use a unitary

transformation U to do this and show that the resulting diagonal entries are real and positive.

Call this diagonal matrix D2 Define the matrix D to be the diagonal matrix whose entries are the

positive square roots of the corresponding entries in D2.

b) Let H = UDU†. Show that Ũ = MH−1 is unitary. Thus, show that

V†MU = D (1)

where V = ŨU and U are unitary.

This can be extended to the case of singular matrices by showing that they can be first be

transformed to block-diagonal form with the zero eigenvalues on the diagonal in the upper left

corner, then with a nonsingular sub-block to which the above argument can be applied.

6. Given three complex numbers A, B, C satisfying A+B+C = 0, show that the area of the triangle

with vertices at the two-dimensional points 0, A, A+B is given by 1
2
|Im(AB∗)| = 1

2
|Im(AC∗)| =

1
2
|Im(BC∗)|.
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