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The Standard Model and Beyond: Problem Set 2

1. This is a problem about vacuum orbits in an SU(3) symmetric model, suggested by the penultimate

paragraph of Peter Higgs’ famous 1966 paper. Consider a field transforming in the adjoint represen-

tation of SU(3). This may be written in terms of 3×3 hermitian traceless matrices Φi
j, i, j = 1, 2, 3,

transforming as Φ → UΦU † where Ui
j ∈ SU(3). Let the potential for Φ be V = 1

4
(tr(Φ2)− k2)2.

a) It is a standard result in matrix algebra that a hermitian matrix M can be diagonalized by a

unitary similarity transformation M → SMS−1, where S is unitary. Hence, show that Φ can be

diagonalized by an SU(3) transformation. Also show, however, that the eigenvalues of Φ are never

changed by such an SU(3) transformation.

b) Find the condition determining the vacuum Φ̄ values in the above potential. Show that the vac-

uum orbits may be characterized by the eigenvalues of Φ̄, and hence that one may parametrize the

vacuum orbits by the diagonalized Φ̄ matrix on a given orbit. How many free parameters determine

a given vacuum orbit for this model?

c) Show that for generic Φ̄ eigenvalues, the little group H is U(1)×U(1). Give an explicit form for

such little-group matrices when Φ̄ is diagonal. How many Goldstone modes and how many Higgs

modes are there for such a generic vacuum? In a gauged extension of this model, the Goldstone

modes, but not the Higgs, will be absorbed into vector-field masses.

d) Find the masses of the Higgs modes for a diagonal Φ̄ vacuum with eigenvalues of the form

(λ, 0,−λ). Are there Higgs modes with accidentally vanishing masses in this case, even though

such vanishing is not required by Goldstone’s theorem? Remember that masses are determined

purely by the expansion in fluctuation fields to second order about the given vacuum – there may

in addition be cubic and quartic interaction terms. The mass spectra of Higgs, i.e. non-Goldstone,

modes varies significantly from one model to another.

e) Find a special set of Φ̄ eigenvalues for which the little group becomes U(2) ∼= SU(2) × U(1).

How many genuine Goldstone modes and how many Higgs modes are there for vacua on such an

orbit? For a diagonal Φ̄ of this special type, identify the matrix elements that correspond to the

Goldstone modes and the matrix elements that correspond to the Higgs modes. Limit the analysis

to infinitesimal fluctuations away from the vacuum Φ̄.

f) In what representations of H do the Higgs fields transform for vacua with H = U(2)? How many

of these modes are accidentally massless, even though this is not required by Goldstone’s theorem?

What would happen to vector-field masses as one approached this orbit from neighboring generic

orbits in a gauged version of this model?
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2. In a seesaw mechanism model for Majorana spinors N and n with mass terms

Lmass = −i(MN̄N + vp

2
√
2
(n̄N + N̄n)), show that one finds mass eigenstates n± with mass values

m± = M
2
(1 ±

√
1 + p2v2

2M2 ). For M ≫ pv√
2
, one thus finds a very large eigenvalue m+ ≃ M and an

eigenvalue m− ≃ −p2v2

8M
with magnitude |m−| ≪ pv√

2
. Find the corresponding low-mass Majorana

spinor field n− as a combination of N and n. Show that the negative sign in m− is not physically

meaningful by making a field redefinition of the corresponding spinor n− → ñ− = iγ5n− which a)

preserves the Majorana condition for ñ− and b) flips the sign of the −im− ¯̃n−ñ− mass term while

leaving invariant the kinetic term −i¯̃n−γ
µ∂µñ−.

3. For a complex symmetric matrix S, consider the eigenvectors ofM = SS† and first show thatMmay

be diagonalized by a unitary matrix U constructed from the eigenvectors of M, i.e. U†MU = D

where D = diag(h1, h2, . . . , hN) is a diagonal matrix with real nonnegative elements. Then let

T = U†S(U†)T so TT† = D. Show that [D,T] = 0 and consequently that Tiℓ(hi − hℓ) = 0, so that

T must itself be diagonal provided the eigenvalues hi are all distinct. Consequently, show that one

may choose phases for the eigenvalues of T such that T = diag(
√
h1,

√
h2, . . . ,

√
hN).

Writing S = UDUT for U unitary and D diagonal is known as Takagi factorization.

4. ∗ In a system with N generations and PMNS unitary matrix U which diagonalizes the neutrino mass

matrix, the relation between flavour eigenstates |να⟩ and mass eigenstates |i⟩ is |να⟩ =
∑

i U
∗
αi|i⟩.

Consider ultrarelativistic neutrinos with momentum p = |p⃗| >> mi for any of the mass eigenvalues

mi, whose energies can accordingly be approximated by Ei =
√

p2i +m2
i ≃ pi +

m2
i

2pi
≈ E +

m2
i

2E
. For

ultrarelativistic neutrinos and c = 1, one has a time of flight T to distance travelled L relation

T ≈ L.

Show that the probability for a neutrino originally of flavour α to be later observed with flavour β

is then to leading order

Pα→β = |⟨νβ|να(T )⟩|2 = |
∑
i

U∗
αiUβie

−im2
iL/2E|2 .

Show that this probablility may be rewritten as

Pα→β = δαβ − 4
∑
i>j

Re(U∗
αiUβiUαjU

∗
βj) sin

2

(
∆m2

ijL

4E

)
+ 2

∑
i>j

Im(U∗
αiUβiUαjU

∗
βj) sin

(
∆m2

ijL

2E

)
where ∆m2

ij = m2
i −m2

j .

The CP asymmetry is Aαβ
CP = Pα→β − Pᾱ→β̄ = 4

∑
i>j Im(U∗

αiUβiUαjU
∗
βj) sin

(
∆m2

ijL

2E

)
. In terms of

the Jarlskog invariant J , determined in the N = 3 case by Im(U∗
αiUβiUαjU

∗
βj) = −J

∑
γ,k ϵαβγϵijk,

show that the CP asymmetry is given by

Aαβ
CP = 16J

∑
γ

ϵαβγ sin

(
∆m2

21L

4E

)
sin

(
∆m2

32L

4E

)
sin

(
∆m2

31L

4E

)
.
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