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The Standard Model and Beyond: Problem Set 4

1. We saw that the decay of a π0 particle into two photons is well described by the interaction term

Lπ0AA =
e2

32π2Fπ

π0ϵµνρσF
µν(A)F ρσ(A)

which follows from the chiral symmetry anomaly that gives a violation of the π0 → π0 + ωFπ

nonlinear symmetry present at the classical level.

When mesons containing strange quarks are included, the SUL(2) × SUR(2) nonlinearly realized

effective low-energy theory extends to a nonlinearly realized SUL(3)×SUR(3) effective theory, and

the SU(2) pion triplet extends to an SU(3) octet. The τ 8 member of this octet is the eta meson,

which has quark content η ∼ 1√
6
(uū+ dd̄− 2ss̄). The eta meson also can decay into two photons,

similarly to the π0, and this decay also originates from a chiral symmetry anomaly.

• Show that, at the classical level, electromagnetic coupling does not disturb the nonlinear

symmetries of the π0 or the η fields.

• At the quantum level, the π0 and η nonlinear symmetries are violated by anomalies. Show

that the corresponding anomaly coefficients A3AQEMQEM
and A8AQEMQEM

are related by

A3AQEMQEM

A8AQEMQEM

=
√
3

recalling that the SU(3) generators are τa = 1
2
λa, where the Gell-Mann matrices λa are

normalized such that tr(λaλb) = 2δab.

• Note that the amplitudes generated by these anomalies contain a 1/Fπ factor and that decay

rates are obtained from corresponding amplitudes-squared while decay rates should have

dimensions of [time]−1 ∼ [mass]. Consequently the decay rate Γ(P → γγ) where P represents

either a π0 or an η must contain a factor of m3
P . Accordingly, show that the decay rates of

π0 and η mesons into two gammas are related in leading approximation by

Γ(π0 → γγ)

Γ(η → γγ)
= 3

m3
π0

m3
η

.

Given that mπ0 ∼ 135MeV/c2 and mη ∼ 548MeV/c2, find the ratio of decay rates expected

from the chiral symmetry effective theory.
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2. Considering just the chiral fermions of the minimal Standard Model (i.e. not including neutrino

masses), assign general unknown hypercharges to the five chiral fermion species. Treat the right-

handed fermions as left-handed after charge conjugation.

• By demanding cancelation of the SU(3)× SU(2)× U(1) gauge anomalies, derive three con-

ditions that must be satisfied by the hypercharges yL, y(er)C , yQL
, y(uR)C and y(dR)C . These

three conditions then leave two hypercharges undetermined.

• Now include the Higgs sector with the standard single Higgs doublet ϕa, with initially un-

determined hypercharge yϕ. Show that the requirements of classical hypercharge invariance

for the possible Yukawa couplings yield three more relations on the various hypercharges.

Show that one combination of these three relations is redundant with a combination of the

fermionic anomaly-canceling conditions.

• Including the Higgs doublet field, there are then six undetermined hypercharges overall, which

must thus satisfy five relations. One of these six hypercharges may be set by definition,

e.g. the standard Higgs value yϕ = 1
2
. The SU(2) × U(1) symmetry breaking causes the

Higgs field ϕa to take a nonvanishing vacuum value ϕ̄a. Find the generator of the unbroken

generator QEM and show that for the standard Higgs VEV in unitary gauge ϕ̄ = (0, 1√
2
v)

one has QEM = T 3 + Y . Show then that the remaining relations on the five fermionic

hypercharges fix their values to the established values for the Standard Model.

• Suppose there were no Q̄LuRϕ̃ Yukawa term in the Lagrangian (where ϕ̃a = εabϕ
∗b), so that

the up quark would have vanishing current-quark mass. This would remove one relation

imposed on the hypercharges. Suppose then that, instead of the SM value y(er)C = 1, some

additional effect gave y(er)C = 1+ ϵ. What would the relation between g1, θW and the electric

charge e then be? Treating ϵ as a infinitesimal quantity, find the corrections to lowest order

in ϵ for yL, yQL
, y(uR)C and y(dR)C . What would the electric charge of the left-handed neutrino

and of the neutron then be in units of e?
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3. In an SU(5) grand-unified model extending the SU(3)× SU(2)×U(1) Standard Model, the Higgs

sector can be built using an adjoint 24 Higgs field Φ and a fundamental 5 Higgs field H. One

then has a general renormalizable Higgs potential

V (Φ, H) = V (Φ) + V (H) + λ1(trΦ
2)(H†H) + λ2(H

†Φ2H)

V (Φ) = −m2
1tr(Φ

2) + atr(Φ4) + b[tr(Φ2)]2

V (H) = −m2
2(H

†H) + λ(H†H)2 (3.1)

• Show that one may arrange a first SU(5)
Φ−→ SU(3) × SU(2) × U(1) stage of symmetry

breaking producing ⟨Φ⟩ = v1diag(2, 2, 2,−3,−3) with v21 = m2
1/(14a + 60b) provided a > 0

and b > −7a/30.

• Show that the Higgs effect gives a mass
√

25/2g5v1 to the XµA
a transforming as (3, 2̄) under

SU(3)× SU(2).

• Show that XµA
a transform with charge −5/6 under the conventionally normalized hyper-

charge Y symmetry by considering the commutation relations of the SU(5) generator that is

proportional to the Y generator.

As a result of the first stage of symmetry breaking, the SU(5) Higgs field H breaks into a (3, 1)

SU(3) colour triplet ht and a (1,2) SU(2) doublet hd.

• Show that the ht and hd fields acquire mass terms

m2
t = −m2

2 + (30λ1 + 4λ2)v
2
1

m2
d = −m2

2 + (30λ1 + 9λ2)v
2
1 (3.2)

In order for the second stage of symmetry breaking SU(3) × SU(2) × U(1)
H−→ U(1)EM to take

place, one needs to have m2
d < 0. In order to have the correct hierarchy of symmetry breakings

with the second stage taking place at energies v2 ≃ 246 GeV/c2, one needs to have |m2
d| << v21.
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4. * The standard Dynkin-index convention CF = 1
2
for the fundamental representation of a Lie group

G corresponds to the fundamental representation trace relation tr(T IT J) = 1
2
δIJ . For the group

SU(N), the corresponding symmetrized product relation for the fundamental-representation T I

generators is

{T I , T J} =
1

N
δIJ1l + dIJKTK

which defines the SU(N) anomaly symbol dIJK ; dIJK is totally symmetric in I, J,K. Then for a

general representation R, one defines the anomaly coefficient A(R) by the relation

tr(T I{T J , TK}) = 1

2
A(R)dIJK .

The anomaly coefficient A(R) is independent of the particular choice of generators T I , T J , T k and

it is normalized to one for the fundamental representation: A(F ) = 1. One can therefore make a

simple choice of generators or combination of generators in a given representation R in order to

calculate the anomaly coefficient A(R) for that representation and the result will be the same for

any choice of three generators in that representation, when multiplied by dIJK .

• First show that, in terms of SU(5) generators presented in the standard SU(5) normalization,

the electromagnetic charge becomes Q̂ =
√

3
2
(T 3 +

√
5
3
Ŷ ), where T 3 is the diagonal i = 3

generator of the SU(2) weak interaction subgroup and Ŷ is the hypercharge generator in the

standard SU(5) normalization.

• In order to calculate the anomaly coefficients for the left-handed 5∗ and 10 representations

of the SU(5) grand-unified theory, calculate tr Q̂3 for each of these representations. Hence

show that

A(5∗) + A(10) = 0

so that the combination 5∗ + 10 of left-handed fermion representations in the SU(5) grand-

unified theory is free from gauge symmetry anomalies.

• What happens to the gauge anomalies when one includes an SU(5) singlet right-handed

fermion in order to generate neutrino masses by a see-saw mechanism?
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5. The renormalization group equation describes the change in a renormalized coupling gR occasioned

by a change in renormalization reference scale µ is µ∂gR
∂µ

= β(gR). Writing β = − bg3R
4π

, one finds

the one-loop contribution to the b coefficient for an SU(N) gauge group coupling constant gN

bN =
1

12π
(11CA − 2ni

fCRi − ni
ϕCRi) (5.1)

where ni
f is the number of left- or right-chiral fermions carrying the ith irreducible representation

of the gauge group. CA = N is the adjoint representation Dynkin index and CF = 1
2
is the Dynkin

index for the fundamental representation. For a U1 subgroup of a simple unified gauge group, one

needs to be careful to rescale the Lie algebra generator and corresponding coupling constant with

respect to the traditional Standard Model hypercharge Y generator: ĝ1 =
√

5
3
gY , so b̂1 =

3bY
5
.

• Show that the b3, b2 and b̂1 coefficients for the Standard Model are given by

b3 =
1

4π
(11− 4ng

3
) b2 =

1

4π
(
22

3
− 4ng

3
− nH

6
) , b̂1 =

1

4π
(−4ng

3
− nH

10
) (5.2)

where ng is the number of matter generations and nH is the number of Higgs doublets.

• Define αN = g2n
4π

and consider the evolution of α3, α2 and α1 between a scale µ0 and a scale

µ = Q. Show that

ln(
Q2

µ2
0

) =

(
1

α̂1(µ0)
− 1

α2(µ0)

)
/(b2 − b̂1) . (5.3)

• Assuming unification of couplings at the Q scale, i.e. α3(Q) = α2(Q) = α̂1(Q), obtain the

corresponding relation at scale µ0 that would have to be found,

1

α3(µ0)
= (1 +B)

1

α2(µ0)
−B

1

α̂1(µ0)
(5.4)

where

B =
b3 − b2

b2 − b̂1
. (5.5)

• Show that in a version of the Standard Model with nH Higgs doublets one would have

Bth =
1 + nH

22

2(1− nH

110
)
≃ 1

2
+

3

110
nH (5.6)

• In the MSSM with ng generations and nH Higgs doublets, show that one has

b3 =
1

4π
(9− 2ng) , b2 =

1

4π
(6− 2ng −

nH

2
) , b̂1 =

1

4π
(−2ng −

3nH

10
) (5.7)

and consequently for nH = 2, ng = 3 one has Bth
MSSM = 5

7
.
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