The Standard Model and Beyond: Problem Set 4

1. A symmetric-space nonlinear realisation of a group \(G\) with linear realisation on a subgroup \(H\) is based on a Lie algebra

\[
[V_i, V_j] = i f_{ij}^k V_k \quad [V_i, A_\ell] = i f_{i\ell}^m A_m \quad [A_\ell, A_m] = i f_{\ell m}^k V_k
\]

(1.1)

where the \(V_i\) are generators of the stability subgroup \(H\) and the \(A_\ell\) are generators of the \(G/H\) coset representatives. Note that this symmetric-space symmetry algebra admits an automorphism \(A_\ell \rightarrow -A_\ell\). For the nonlinear realisation, write \(g(x) = e^{i\xi(x)A_k} e^{i\theta(x)}V_i = u(\xi^k(x))h(\theta^i(x))\) where the \(\xi^k(x)\) are the nonlinearly transforming Goldstone fields. Upon transforming by an \(x^\mu\) independent element \(g_0\) of \(G\), one has

\[
g_0 g = u(\xi'^k(x))h(g_0, \xi'^j(x))
\]

(1.2)

by repolarizing into \(G/H\) and \(H\) factors.

For chiral symmetry derived from \(N\) underlying quark species, \(G = SU(N)_L \times SU(N)_R\) where \(H\) is the diagonal “vector” \(SU(N)_V\) subgroup, and the individual \(SU(N)_{L,R}\) factors act on the \(q_L\) left (\(\gamma_5\) eigenvalue +1) and the \(q_R\) right (\(\gamma_5\) eigenvalue -1) chiral components of the quarks independently. An arbitrary element \(g\) of \(G\) may be written \(g = L(\alpha_L)R(\alpha_R) = e^{i\alpha_L \cdot T_L} e^{i\alpha_R \cdot T_R} = e^{\frac{i}{2}(\alpha_L^1 + \alpha_R^1)T_1 + \frac{i}{2}(\alpha_L^2 - \alpha_R^2)\gamma_5 T_5}\) corresponding to \(V_i = 1_{4 \times 4} T_i\) for the diagonal \(SU(N)_V\) vector subgroup \(H\) generators and \(A_k = \gamma_5 T_k\) for the \(G/H\) axial coset generators, in which the \(T_k\) are generators of \(SU(N)\). The \(g_0\) transformation of equation (1.2) thus would have \(\xi_0^i = \frac{1}{2}(\alpha_L^1 - \alpha_R^1)\) and \(\theta_0^i = \frac{1}{2}(\alpha_L^2 + \alpha_R^2)\). The \(1_{4 \times 4}\) and \(\gamma_5\) matrices are inherited from the underlying spinorial quark structure; even though one is now dealing only with bosonic fields, these matrices play a key rôl in representing the \(SU(N)_L \times SU(N)_R\) algebra.

For original left and right chiral-projection quark transformations \(q \rightarrow q' = Lq_L + Rq_R\), one can define modified chiral quark fields \(q_L = u\tilde{q}_L\)\(, q_R = u^\dagger\tilde{q}_R\), where the form of the second definition is determined by the parity transform of the first, which sends \(\gamma_5 \rightarrow -\gamma_5\). This is the \(A_i \rightarrow -A_i\) automorphism for this \(G/H\) symmetric space. It is helpful to use a representation in which \(\gamma_5 = \text{diag}(1, -1)\) is diagonal (with \(1\) now a \(2 \times 2\) unit submatrix). Keeping the +1 eigenvalue associated to the upper-left \(2 \times 2\) subblock of this \(4 \times 4\) matrix, the effect of a left \(\leftrightarrow\) right parity transformation may then be viewed as interchanging the upper-left and lower-right \(2 \times 2\) subblocks of \(\gamma_5\) so \(u_P = \Lambda_P u P^{-1}\) with \(\Lambda_P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\).
• Show that the G/H coset representative structure $u = e^{i\xi(x)\gamma_5 T_k}$ implies $u(x) = \text{diag}(w(x)1, w^\dagger(x)1)$ where $w(x) = e^{i\xi(x)T}$. The detailed form of the transformation $u \to u'$ is determined by the requirement of preserving this G/H coset representative structure for $u' = e^{i\xi'(x)\gamma_5 T_k}$.

For a quark transformation $q \to q' = Lu\tilde{q}_l + Ru^\dagger\tilde{q}_r$ one accordingly has nonlinear transformations $Lu = u'h_1$, $Ru^\dagger = u''h_1$ and $\tilde{q}'_l = h_1\tilde{q}_l$, $\tilde{q}'_r = h_1\tilde{q}_r$, where $u' = u(\xi')$, $h_1 = h_1(g_0, u(x))$ and the forms of the R transformation laws are determined by the parity transforms of the L transformation laws, i.e. using $R = L_P = \Lambda_P L \Lambda_P^{-1}$.

• Show that for $SU(N)_L$ or $SU(N)_R$ transformations, i.e. $g_0 = L$ resp. $g_0 = R$, one thus has

$$u' = LH_1$$
$$u'' = h_1u^\dagger L^\dagger$$

(resp.)

$\text{Equivalently for} \quad u' = h_1uR^\dagger$ (1.3a)

where in each case $h_1 = h_1(g_0, u(x))$.

• Show that for a combined $g_0 = LR$ transformation $X = \text{diag}(\ell 1, r 1)$ that the induced H transformation h_1 is determined by the nonlinear relation $h_1 w^\dagger \ell^\dagger = rw^\dagger h_1^\dagger$ equivalently for left-sided and right-sided versions of the transformation:

$$u' = Xu h_1^\dagger$$
$$u'' = h_1u^\dagger X^\dagger$$

(resp.)

$\text{Equivalently for} \quad u' = h_1uX_P^\dagger$ (1.4a)

where $X_P = \Lambda_P X \Lambda_P^{-1}$.

The standard left-sided transformation of the form (1.2) for a nonlinear realisation of G (or the equivalent right-sided transformation from (1.4a)) requires finding $h_1(g_0, u(x))$ from the implicit relation given above. General G invariants are then built by requiring local h_1 invariance for “matter” fields such as the \tilde{q} quarks. Such constructions make use of the standard Maurer-Cartan form $udu^{-1} = udu^\dagger = Z \cdot A + M \cdot V$, where the G/H coset projection $Z = Z_\mu dx^\mu$ transforms according to $Z \to h_1 Z h_1^\dagger$, while the $M = M_\mu dx^\mu$ stability subgroup H projection transforms like a gauge field for H, i.e. $M \to h_1 dh_1^\dagger + h_1 M h_1^\dagger$.

2
In order to construct an invariant Lagrangian for the Goldstone fields \(u = e^{i \xi \cdot A} \) themselves, however, a more convenient form of the realisation is obtained by defining \(U = u^2 \).

- In order to construct a normalised Goldstone-field kinetic term, write \(\xi^k(x) = F_\pi \pi^k(x) \) so
 \[
 U(\pi(x)) = e^{\frac{2i\pi^k(x)}{F_\pi} \gamma_5 T_k}
 \]
 where \(T_k = \frac{1}{2} \lambda_k \) and for \(N = 2 \) the \(\lambda_k \) are the SU(2) Pauli matrices \(\sigma_k \) while for \(N = 3 \) the \(\lambda_k \) are the SU(3) Gell-Mann matrices. Show that the standard nonlinear-realisation kinetic term
 \[
 L_{\text{kin}} = \frac{F_\pi^2}{16} \text{tr}(Z_\mu Z^\mu) \]
 can then be written in the form
 \[
 L_{\text{kin}} = -\frac{F_\pi^2}{4} \text{tr}(\partial_\mu U \partial^\mu U^\dagger)
 \]
 where the trace is over both \(\gamma_5 \) and adjoint SU(\(N \)) indices.

2. In an SU(5) grand-unified model extending the SU(3) \(\times \) SU(2) \(\times \) U(1) Standard Model, the Higgs sector can be built using an adjoint 24 Higgs field \(\Phi \) and a fundamental 5 Higgs field \(H \). One then has a general renormalizable Higgs potential
 \[
 V(\Phi, H) = V(\Phi) + V(H) + \lambda_1 (\text{tr}\Phi^2)(H^\dagger H) + \lambda_2 (H^\dagger \Phi^2 H)
 \]
 \[
 V(\Phi) = -m_1^2 \text{tr}(\Phi^2) + a[\text{tr}(\Phi^4)]^2 + b[\text{tr}(\Phi^2)]^2
 \]
 \[
 V(H) = -m_2^2 (H^\dagger H) + \lambda (H^\dagger H)^2
 \]

- Show that one may arrange a first SU(5) \(\Phi \rightarrow \) SU(3) \(\times \) SU(2) \(\times \) U(1) stage of symmetry breaking producing \(\langle \Phi \rangle = v_1 \text{diag}(2, 2, 2, -3, -3) \) with \(v_1^2 = m_1^2/(16a + 60b) \) provided \(a > 0 \) and \(b > -7a/30 \).
- Show that the Higgs effect gives a mass \(\sqrt{25/2} g_5 v_1 \) to the \(X_{\mu A}^a \) transforming as \((3, \bar{2}) \) under SU(3) \(\times \) SU(2).
- Show that \(X_{\mu A}^a \) transform with charge \(-5/6 \) under the conventionally normalized hypercharge \(Y \) symmetry by considering the commutation relations of the SU(5) generator that is proportional to the \(Y \) generator.

As a result of the first stage of symmetry breaking, the SU(5) Higgs field \(H \) breaks into a \((3, 1) \) SU(3) colour triplet \(h_t \) and a \((1,2) \) SU(2) doublet \(h_d \).

- Show that the \(h_t \) and \(h_d \) fields acquire mass terms
 \[
 m_t^2 = -m_2^2 + (30\lambda_1 + 4\lambda_2)v_1^2
 \]
 \[
 m_d^2 = -m_2^2 + (30\lambda_1 + 9\lambda_2)v_1^2
 \]

In order for the second stage of symmetry breaking SU(3) \(\times \) SU(2) \(\times \) U(1) \(\rightarrow \) U(1)\(_{\text{EM}} \) to take place, one needs to have \(m_d^2 < 0 \). In order to have the correct hierarchy of symmetry breakings with the second stage taking place at energies \(v_2 \simeq 246 \text{ GeV}/c^2 \), one needs to have \(|m_d^2| << v_1^2 \).
3. The renormalization group equation describes the change in a renormalized coupling \(g_R \) occasioned by a change in renormalization reference scale \(\mu \) is

\[
\mu \frac{\partial g_R}{\partial \mu} = \beta(g_R).
\]

Writing \(\beta = -\frac{b g^3}{4 \pi} \), one finds the one-loop contribution to the \(b \) coefficient for an SU(\(N \)) gauge group coupling constant \(g_N \)

\[
b_N = \frac{1}{12\pi}(11C_A - 2n_f^i C_{R_i} - n_o^i C_{R_i})
\] (3.1)

where \(n_f^i \) is the number of left- or right-chiral fermions carrying the \(i^{th} \) irreducible representation of the gauge group. \(C_A = N \) is the adjoint representation Dynkin index and \(C_F = \frac{1}{2} \) is the Dynkin index for the fundamental representation. For a U_1 subgroup of a simple unified gauge group, one needs to be careful to rescale the Lie algebra generator and corresponding coupling constant with respect to the traditional Standard Model hypercharge \(Y \) generator: \(\hat{g}_1 = \sqrt{\frac{5}{3}} g_Y \), so \(\hat{b}_1 = \frac{3y_Y}{5} \).

- Show that the \(b_3, b_2 \) and \(\hat{b}_1 \) coefficients for the Standard Model are given by

\[
b_3 = \frac{1}{4\pi}(11 - 4n_g) \quad b_2 = \frac{1}{4\pi}\left(\frac{22}{3} - \frac{4n_g}{3} - \frac{n_H}{6} \right), \quad \hat{b}_1 = \frac{1}{4\pi}\left(-\frac{4n_g}{3} - \frac{n_H}{10} \right)
\] (3.2)

where \(n_g \) is the number of matter generations and \(n_H \) is the number of Higgs doublets.

- Define \(\alpha_N = \frac{g^2}{4\pi} \) and consider the evolution of \(\alpha_3, \alpha_2 \) and \(\alpha_1 \) between a scale \(\mu_0 \) and a scale \(\mu = Q \). Show that

\[
\ln(\frac{Q^2}{\mu_0^2}) = \left(\frac{1}{\alpha_1(\mu_0)} - \frac{1}{\alpha_2(\mu_0)} \right) / (b_2 - \hat{b}_1).
\] (3.3)

- Assuming unification of couplings at the \(Q \) scale, i.e. \(\alpha_3(Q) = \alpha_2(Q) = \alpha_1(Q) \), obtain the corresponding relation at scale \(\mu_0 \) that would have to be found,

\[
\frac{1}{\alpha_3(\mu_0)} = (1 + B) \frac{1}{\alpha_2(\mu_0)} - B \frac{1}{\alpha_1(\mu_0)}
\] (3.4)

where

\[
B = \frac{b_3 - b_2}{b_2 - \hat{b}_1}.
\] (3.5)

- Show that in a version of the Standard Model with \(n_H \) Higgs doublets one would have

\[
B^{th} = \frac{\frac{1 + \frac{n_H}{110} - \frac{3n_H}{110}}{2(1 - \frac{n_H}{110})}}{\approx} \frac{1}{2} + \frac{3}{110} n_H
\] (3.6)

- In the MSSM with \(n_g \) generations and \(n_H \) Higgs doublets, show that one has

\[
b_3 = \frac{1}{4\pi}(9 - 2n_g), \quad b_2 = \frac{1}{4\pi}(6 - 2n_g - \frac{n_H}{2}), \quad \hat{b}_1 = \frac{1}{4\pi}(-2n_g - \frac{3n_H}{10})
\] (3.7)

and consequently for \(n_H = 2, n_g = 3 \) one has \(B^{th}_{MSSM} = \frac{5}{7} \).