SUSY Problem Set 1

1 Supersymmetric Quantum Mechanics
Consider a quantum mechanical system with the wave function
T - V() (1)
Y- ()

where the first entry is bosonic and the second entry is fermionic and hence (—1)F = 3. We

can construct a Susy QM by defining the supercharges
Ql = o (P +iW'(z)) and Q=o0_(P—iW'(x)) (2)

where W (z) is a real function in x and its derivative |W’(z)| — oo for z — +oo and

0 1 0 0 10
P = —ihd,, = . o= , = . 3

(i) Use the Susy algebra to show that

(a)

2H = P? + (W'(x))* — bW (2)o3 (4)
(b) for E>0:
1
-DF = —[Q", Q.
()" = 5=1e'.Q) )
(i) Let W(z) = Az?. Diagonalise H and find the spectrum
Ens = hA(n+ = F 2) (6)
n,+ = n 9 + 9
(iii) The Witten index is defined as
Tr[(—1)" exp (~5H)] (7)

using the results form the lecture, determine whether it is non-zero for the following

examples of W:

(a) W = 2% 4 lower orders
(b) W
(c) W

)

(d) W has no critical points.

= 2% + lower orders

What does this have to do with Susy breaking?



2 Superspace and Superfields for QM

Supersymmetric quantum mechanics may be formulated using superspace with coordinates
(t,0,0). Superfields are fields defined on superspace. @ and 6 are Grassmann variables and

obey the following equations
0?> = 6% =0, 06 = —60

9 9 _
Opi=—, Opi=—, Oy=—0 (8)

Oyl =0, 0y = 0, 051 =0, 060 =0.
any superfield may be expanded in the form
X(t,0,0) = z(t) + 0(t) — Op(t) + 00F (1) (9)

(i) check that for x and F real
X =X. (10)

(ii) We can define the covariant derivative on superspace

D = 9y — 00, (11)
and
D = —0;+i00; . (12)
Compute
DX and DX, (13)
and show that
{D, D} = 2i0,. (14)
(iii) Consider the supertranslations
(t,0,0) 25 (t + i€, 0 + €, 0) (15)
and
(t,0,0) %5 (t — i0¢,0,0 + ). (16)
By acting on a superfield, show that
[0c, 0g] = —€€2i0; = ee2H . (17)
and deduce that
{Q.Q}=2H. (18)



(iv) Superfield C is said to be chiral, if it satisfies
DC = 0. (19)

Show that

(a) products of chiral superfields are chiral
(b) DX is chiral for any X.
(c) [dtdfC is SUSY invariant

3 Fermionic Zero Modes

We will now consider regular quantum mechanics with fermions and study them in a path

integral. Let a; be grassmann variables. The rules for Berezin integration are

/daiaj = 5@', /dail =0 (20)

(i) Let us start with a discrete system. Consider the action

S =Y didiata (21)
e’
where A has a single 1 zero mode, and there is one more  than 1Z (i=1,...,N and
a=1,...,N +1). Hence after a suitable transformation
A0 L. 0
0 Ao 0
A= (22)
0 Ay O

Compute

(a)
[T 6 [T dvexo (-5) (23)

J T 0 T dveesp (-S)onn (24)



(i) We can now do a similar computation for Quantum Mechanics, i.e. 1-dimensional QFT.

We will work with the euclidean path integral. Consider the action

5= / dtp (1) Au (1) (25)

where A has a single 1 zero-mode. What does this mean?

Using an expansion of 1 and 1 in terms of eigenmodes of A, compute

(a)
/ DJIDY] exp (—S)i(t) (26)

(b)
/ [DIIDY] exp (—S)P (1) (27)

(©
/ [DFIDY] exp (— )b (t1)ip(t2) (28)

(@)
[1DdDul exp (-8)it) () (20)

4 Representation Theory

Remind yourselves of the Lie-algebra representations of su(2) and so(4) = su(2) x su(2). The
(n + 1)-dimensional representation of su(2) may be labelled by its highest weight [n], or by its

spin (5 ). Hence we can label the representations of so(4) by using a set of two spins (j1, j2)-

(i) Compute the following tensor products for su(2)
(a) (1) ® (k)
(b) A*(4)
(c) Sym?(j)

(ii) Compute the following tensor products for so(4)
(a) (J1,72) ® (k1, k2)
(b) A*(j1,72)
(c) Sym?(j1, j2)

where /\2 denotes the antisymmetric product, and Sym? denotes the symmetric product.



