
SUSY Problem Set 1

1 Supersymmetric Quantum Mechanics

Consider a quantum mechanical system with the wave function

Ψ =

(
ψ+(x)

ψ−(x)

)
(1)

where the first entry is bosonic and the second entry is fermionic and hence (−1)F = σ3. We

can construct a Susy QM by defining the supercharges

Q† = σ+(P + iW ′(x)) and Q = σ−(P − iW ′(x)) (2)

where W (x) is a real function in x and its derivative |W ′(x)| → ∞ for x→ ±∞ and

P = −ih̄∂x, σ+ =

(
0 1

0 0

)
, σ− =

(
0 0

1 0

)
, σ3 =

(
1 0

0 −1

)
. (3)

(i) Use the Susy algebra to show that

(a)

2H = P 2 + (W ′(x))2 − h̄W ′′(x)σ3 (4)

(b) for E > 0 :

(−1)F =
1

2E
[Q†, Q] . (5)

(ii) Let W (x) = λx2. Diagonalise H and find the spectrum

En,± = h̄λ(n+
1

2
∓ 1

2
) (6)

(iii) The Witten index is defined as

Tr[(−1)F exp (−βH)] (7)

using the results form the lecture, determine whether it is non-zero for the following

examples of W:

(a) W = x4 + lower orders

(b) W = x3 + lower orders

(c) W = x2

(d) W has no critical points.

What does this have to do with Susy breaking?
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2 Superspace and Superfields for QM

Supersymmetric quantum mechanics may be formulated using superspace with coordinates

(t, θ, θ̄). Superfields are fields defined on superspace. θ and θ̄ are Grassmann variables and

obey the following equations

θ2 = θ̄2 = 0, θθ̄ = −θ̄θ

∂θ :=
∂

∂θ
, ∂θ̄ :=

∂

∂θ̄
, ∂̄θ = −∂θ̄

∂θ1 = 0, ∂θθ̄ = 0, ∂θ̄1 = 0, ∂θ̄θ = 0 .

(8)

any superfield may be expanded in the form

X(t, θ, θ̄) = x(t) + θψ(t)− θ̄ψ̄(t) + θθ̄F (t) (9)

(i) check that for x and F real

X̄ = X. (10)

(ii) We can define the covariant derivative on superspace

D = ∂θ − iθ̄∂t (11)

and

D̄ = −∂θ̄ + iθ∂t . (12)

Compute

DX and D̄X , (13)

and show that

{D, D̄} = 2i∂t . (14)

(iii) Consider the supertranslations

(t, θ, θ̄)
δε7→ (t+ iεθ̄, θ + ε, θ̄) (15)

and

(t, θ, θ̄)
δε̄7→ (t− iθε̄, θ, θ̄ + ε̄) . (16)

By acting on a superfield, show that

[δε, δε̄] = −εε̄2i∂t = εε̄2H . (17)

and deduce that

{Q̄,Q} = 2H . (18)
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(iv) Superfield C is said to be chiral, if it satisfies

D̄C = 0. (19)

Show that

(a) products of chiral superfields are chiral

(b) D̄X is chiral for any X.

(c)
∫
dtdθC is SUSY invariant

3 Fermionic Zero Modes

We will now consider regular quantum mechanics with fermions and study them in a path

integral. Let ai be grassmann variables. The rules for Berezin integration are∫
daiaj = δij ,

∫
dai1 = 0 (20)

(i) Let us start with a discrete system. Consider the action

S =
∑
iα

ψ̄iAiαψα (21)

where A has a single ψ zero mode, and there is one more ψ than ψ̄ (i = 1, . . . , N and

α = 1, . . . , N + 1). Hence after a suitable transformation

A =


λ1 0 . . . 0

0 λ2 0
...

. . .
...

0 . . . λN 0

 . (22)

Compute

(a) ∫ ∏
i

dψ̄i
∏
α

dψα exp (−S) (23)

(b) ∫ ∏
i

dψ̄i
∏
α

dψα exp (−S)ψN+1 (24)
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(ii) We can now do a similar computation for Quantum Mechanics, i.e. 1-dimensional QFT.

We will work with the euclidean path integral. Consider the action

S =

∫
dtψ̄(t)Aψ(t) (25)

where A has a single ψ zero-mode. What does this mean?

Using an expansion of ψ and ψ̄ in terms of eigenmodes of A, compute

(a) ∫
[Dψ̄][Dψ] exp (−S)ψ(t) (26)

(b) ∫
[Dψ̄][Dψ] exp (−S)ψ̄(t) (27)

(c) ∫
[Dψ̄][Dψ] exp (−S)ψ̄(t1)ψ(t2) (28)

(d) ∫
[Dψ̄][Dψ] exp (−S)ψ̄(t1)ψ(t2)ψ(t3) (29)

4 Representation Theory

Remind yourselves of the Lie-algebra representations of su(2) and so(4) = su(2) × su(2). The

(n + 1)-dimensional representation of su(2) may be labelled by its highest weight [n], or by its

spin (n2 ). Hence we can label the representations of so(4) by using a set of two spins (j1, j2).

(i) Compute the following tensor products for su(2)

(a) (j)⊗ (k)

(b)
∧2(j)

(c) Sym2(j)

(ii) Compute the following tensor products for so(4)

(a) (j1, j2)⊗ (k1, k2)

(b)
∧2(j1, j2)

(c) Sym2(j1, j2)

where
∧2 denotes the antisymmetric product, and Sym2 denotes the symmetric product.
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