
SUSY Problem Set 2

1 Identities for Lorentz Group Representations

We will use undotted and dotted spinor indices (α ∈ {1, 2}, α̇ ∈ {1, 2}) as well as vector indices

(µ ∈ {0, 1, 2, 3}). While the raising and lowering of vector indices is done with the mostly plus

metric ηµν (or it’s inverse ηµν), the spinor indices are raised and lowered with the epsilon symbols

εαβ, εαβ, εα̇β̇, εα̇β̇. Objects with an odd number of spinor indices are Grassmann odd, i.e. they

anticommute with other Grassmann odd objects. We pick the convention

ε12 = −ε21 = 1 and ε12 = −ε21 = −1 thus εαβεβγ = δαγ , . . . (1)

(i) Show the completeness relation

εαβε
γδ = −δγαδδβ + δδαδ

γ
β (2)

The pulling up and down of indices is as follows

ψα = εαβψβ , ψα = εαβψ
β and ψ̄α̇ = εα̇β̇ψ̄

β̇ , ψ̄α̇ = εα̇β̇ψ̄β̇ . (3)

Remember under so(4) the following fields transform as

ψα as (1/2, 0) and ψ̄α̇ as (0, 1/2) . (4)

Contracted spinor indices may be suppressed with the convention. The dot on top of the index

is really a representation of a balloon filled with helium. The index holds on to the balloon and

flies up. Without such a balloon the index falls down, naturally...

χψ = χαψα(= χαεαβψ
β) and χ̄ψ̄ = χ̄α̇ψ̄

α̇(= χ̄α̇ε
α̇β̇ψ̄β̇)

(0, 0) = Λ2(1/2, 0) and (0, 0) = Λ2(0, 1/2) .
(5)

Note that it’s important to stick to this convention! Show

(ii)

χαψ
α = −χψ and χ̄α̇ψ̄α̇ = −χ̄ψ̄ (6)

(iii)

χψ = ψχ and χ̄ψ̄ = ψ̄χ̄ (7)

(iv)

ψ2 = ψψ = 2ψ2ψ1 = 2ψ2ψ1 and ψ̄2 = ψ̄ψ̄ = 2ψ̄1ψ̄2 = 2ψ̄1ψ̄2 (8)

(v)

ψαψβ = −1

2
ψ2εαβ and ψ̄α̇ψ̄β̇ =

1

2
ψ̄2εα̇β̇ (9)
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(vi)

(χψ)∗ = χ̄ψ̄ (10)

We can now introduce the σµαα̇ constants that help us switch between spinor and vector indices

(Remember that (1/2, 0)⊗ (0, 1/2) = (1/2, 1/2) ).

σ0 =

(
−1 0

0 −1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (11)

And their conjugate

σ̄µα̇α = εα̇β̇εαβσµ
ββ̇
. (12)

Show the completeness relations

(vii)

Tr(σµσ̄ν) = −2ηµν and σµαα̇σ̄
β̇β
µ = −2δαβ δ

α̇
β̇
. (13)

We define

Vαα̇ = σµαα̇Vµ . (14)

Note, we are only changing the description, not the representation. The sigmas are just a bunch

of constants after all (remember intertwiners?). Show that

(viii)

V µ =
−1

2
σ̄µα̇αVαα̇ (15)

We can use sigma matrices to compute tensor products of spinors.

(ix) Show

(ψσµχ̄)∗ = χσµψ̄ and ψσµχ̄ = −χ̄σ̄µψ . (16)

What is the relevant tensor product?

(x) Show

(ψσµσ̄νχ)∗ = χ̄σ̄νσµψ̄ and ψσµσ̄νχ = χσν σ̄µψ . (17)

What is the relevant tensor product?

(xi) Write the metric tensor gµν in spinor notation

(xii) Write the 4-dimensional epsilon εµνσρ tensor in spinor notation

(xiii) Defining (∗F )µν = 1
2εµνρσF

ρσ, show that

F±
µν = Fµν ± i(∗F )µν ; (18)

and express both parts in terms of E and B.

(xiv) Show that

σµνβα :=
1

4
(σµαα̇σ̄

να̇β − σναα̇σ̄µα̇β) (19)

are generators of the Lorentz group acting on the (1/2, 0) representation.
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(xv) Show that

ψσµνψ = 0 . (20)

Prove the Fierz identities

(xvi) For 4 spinors ψ1, . . . , ψ4

(ψ1ψ2)(ψ̄3ψ̄4) =
1

2
(ψ1σ

µψ̄4)(ψ̄3σ̄µψ2) (21)

(xvii)

(ψσµψ̄)(ψσνψ̄) = −1

2
ηµν(ψψ)(ψ̄ψ̄) . (22)

For 4 spinors ψ1, . . . , ψ4 show

(xviii)

(ψ1ψ2)(ψ3ψ4) + (ψ1ψ3)(ψ2ψ4) + (ψ1ψ4)(ψ2ψ3) = 0 . (23)

(xix)

(ψ1ψ2)(ψ3σ
µψ̄4) + (ψ1ψ3)(ψ2σ

µψ̄4) + (ψ1σ
µψ̄4)(ψ2ψ3) = 0 . (24)

(xx)

(ψ1σ
µψ̄2)(ψ3σ

νψ̄4)− (ψ1ψ3)(ψ̄2σ̄
µσνψ̄4)− (ψ1σ

νψ̄4)(ψ̄2σ̄
µψ3) = 0. (25)

Show

(xxi)

(σµσ̄ν + σν σ̄µ)αβ = −2ηµνδαβ (26)

(xxii)

σµσ̄ν = −ηµν + 2σµν . (27)

(xxiii) We know that (1/2, 0)⊗ (1/2, 0) = (0, 0)⊕ (1, 0). How can you decompose

ψαχβ = ...+ ... ? (28)

(xxiv) Extra credit: Find any typos and report them!

2 Supermultiplets

(i) Write down the content of massless multiplets with highest helicity 1/2 and 1.

(ii) Write down the content of massive multiplets with highest spin 1/2 and 1.

(iii) Count the number of bosonic versus fermionic degrees of freedom for each multiplet above

and confirm that they match.

(iv) Compare the degrees of freedom of the massless and the massive multiplets. How does

this connect to the Higgs mechanism?
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3 Superspace and Superfields for 4d N = 1

Superspace for 4d N = 1 has coordinates (xµ, θα, θ̄α̇). The SUSY generators Qα and Q̄α̇ can be

expressed as differential operators on superspace

Qα = + ∂α − iθ̄α̇∂αα̇ = +
∂

∂θα
− iσµαα̇θ̄

α̇∂µ

Q̄α̇ =− ∂̄α̇ + iθα∂αα̇ = − ∂

∂θ̄α̇
+ iθασµαα̇∂µ

(29)

(i) Check that

{Qα, Qβ} = 0 (30)

and

{Qα, Q̄α̇} = 2Pαα̇ . (31)

The covariant derivatives on superspace are defined as

Dα = + ∂α + iσµαα̇θ̄
α̇∂µ

D̄α̇ =− ∂̄α̇ − iθασµαα̇∂µ
(32)

(ii) Show that D̄α̇ annihilates both θα and yµ = xµ + iθσµθ̄.

A superfield C is called chiral if

D̄α̇C = 0 . (33)

(iii) Show that any chiral field may be written as

C(xµ, θα, θ̄α̇) = φ(x)+
√

2θψ(x)+θ2F (x)+iθσ̄µθ̄∂µφ(x)− i√
2
θ2∂µψ(x)σµθ̄+

1

4
θ2θ̄2∂µ∂µφ(x)

(34)

(iv) Show that if C is chiral, then

QαC and Q̄α̇C are chiral. (35)

(v) Count the off-shell degrees of freedom of the chiral superfield. Do fermionic and bosonic

degrees of freedom cancel? How about on-shell?

(vi) What is an anti-chiral superfield? Show that C̄ is antichiral.

There is a second kind of common superfield. The vector superfield. A superfield V is called a

vector superfield if

V̄ = V (36)

(vii) Write the most general vector superfield.

(viii) Count the off shell degrees of freedom of the vector superfield. Do fermionic and bosonic

degrees of freedom cancel? How about on-shell?
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Let’s turn to integration on superspace. Remember that we’re dealing with Berezin integration

(i.e. differentiation really).

(ix) Show that ∫
d4θK(Ci, C̄ ī, X) =

∫
d2θd2θ̄K(Ci, C̄ ī, X) , (37)

where Ci are chiral and X is a collection of arbitary superfields, is invariant under Susy

transformations. You can show that Q acting on a superfield has a θ2θ̄2 term which is a

total derivative ∂(. . . ).

(x) Show that ∫
d4θf(C) = ∂(. . . ) . (38)

4 Kähler Potentials, optional, you can hand it in

Kähler potentials are objects from differential geometry. If you open e.g. Nakahara you will find

a chapter on Kähler geometry.

Let’s consider a complex, Riemannian, symplectic manifold M with metric g, complex structure

I and symplectic form ω. The manifold is said to be Kähler if the following relation holds

g(I(X), Y ) = ω(X,Y ) for X,Y ∈ Γ(TM) . (39)

Kähler manifolds have nice properties. Locally (i.e. on an open patch U) The complex structure

allows us to introduce holomorphic coordinates φi and φ̄ī. We will from now on work on this

coordinate chart in complex coordinates. Partial derivatives are

∂i =
∂

∂φi
and ∂ī =

∂

∂φ̄ī
(40)

It can be shown that the metric can be expressed as

gīi(φ, φ̄) = ∂i∂īK(φ, φ̄) . (41)

This is also called the Kähler metric. The symplectic form (Kähler form) can also be expressed

in terms of derivatives of the Kähler potential. Show that K is not unique in the sense that gīi

is invariant under

K(φ, φ̄) 7→ K(φ, φ̄) + (f(φ) + complex conjugate) . (42)

The Christoffel symbols are

Γijk = g l̄i∂kgjl̄ and Γ̄īj̄k̄ = g l̄i∂k̄glj̄ , (43)

and the Riemann tensor is

Rij̄kl̄ = ∂k∂l̄gij̄ − Γmikgmm̄Γm̄j̄l̄ . (44)
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Let’s turn back to Supersymmetry! Interpreting the first components φi and φ̄i of our chiral

superfields Ci and their aintichiral conjugates C̄ ī as coordinates on a manifold (also called the

target space), show that we can express the supersymmetric Lagrangian

L =

∫
d4θK(Ci, C̄ ī) =gīiF

iF̄ i − 1

2
F igı̄iΓ

ī
j̄k̄ψ̄

j̄ψ̄k̄ − 1

2
F̄ īgīiΓ

i
jkψ

iψk

− gīi∂µφi∂µφ̄ī − igīiψ̄īσ̄µDµψi +
1

4
(∂k∂l̄gij̄)ψ

iψkψ̄j̄ψ̄ l̄ ,

(45)

where

Dµψi = ∂µψ
i + Γijk∂µφ

kψj . (46)

Vary F̄ and find the equations of motion

F i =
1

2
Γijkψ

jψk , (47)

assuming that gīi is invertible. By substituting the e.o.m. back into the Lagrangian, show that

L = −gīi∂µφi∂µφ̄ī − igīiψ̄īσ̄µDµψi +
1

4
Rij̄kl̄ψ

iψkψ̄j̄ψ̄ l̄ . (48)

What is the interpretation of the ψ’s on the target space side?
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