SUSY Problem Set 2

1 Identities for Lorentz Group Representations

We will use undotted and dotted spinor indices (a € {1,2}, & € {1,2}) as well as vector indices
(n € 40,1,2,3}). While the raising and lowering of vector indices is done with the mostly plus
metric 7, (or it’s inverse n*"), the spinor indices are raised and lowered with the epsilon symbols
e*B, €af 6‘5‘5, g Objects with an odd number of spinor indices are Grassmann odd, i.e. they

anticommute with other Grassmann odd objects. We pick the convention
12— 21— and €19 = —€91 = —1 thus 50‘5557 = (52‘ Y (1)

(i) Show the completeness relation

eape’’ = —076% + 520} (2)
The pulling up and down of indices is as follows
U= g, Yo =eapt’  and  fa = eg507, P =40 (3)
Remember under so(4) the following fields transform as
Yq as (1/2,0) and Vg as (0,1/2). (4)

Contracted spinor indices may be suppressed with-the-eenvention. The dot on top of the index
is really a representation of a balloon filled with helium. The index holds on to the balloon and

flies up. Without such a balloon the index falls down, naturally...
X = X*Val(= X"eapt?)  and X = Xat¥(= Xac"1y)
(0,0) = A*(1/2,0)  and  (0,0) = A%*(0,1/2).
Note that it’s important to stick to this convention! Show

(i)

Xa¥® =—x1¥  and X%y = —X¢ (6)
(iii)
x =1y and XY=y (7)
(iv)
VP = = 2hothy = 20%Y1 and PP = gy = 2919y = 29192 (8)
(v) . o '
Pl = —op?e®and P = g (9)



(vi)
(x¥)* = x (10)

We can now introduce the O'Z , constants that help us switch between spinor and vector indices
(Remember that (1/2,0) ® (0,1/2) = (1/2,1/2) ).
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And their conjugate

ghae = sdgeaﬁagﬁ- . (12)
Show the completeness relations
(vii)
Tr(ctc")=—-2n"  and UZd(?ﬁ’B = —203 g (13)
We define
Vaa =0h V. (14)

Note, we are only changing the description, not the representation. The sigmas are just a bunch

of constants after all (remember intertwiners?). Show that

(viii)
-1 .
VH = 75_uozavad (15)

We can use sigma matrices to compute tensor products of spinors.
(ix) Show
(Yo'x)" =xoy  and oty = —xa"y. (16)

What is the relevant tensor product?

(x) Show
(Yota"x)* = xa" oty and Yotatx = xo'aty . (17)

What is the relevant tensor product?
(xi) Write the metric tensor g, in spinor notation
xii) Write the 4-dimensional epsilon €,,,, tensor in spinor notation
ii) Write the 4-di i 1 epsil uvop b in spi tati

(xiii) Defining (xF)u = $€upoF??, show that
Fif = Fu £i(xF) (18)

and express both parts in terms of E and B.

(xiv) Show that

1 . .
ot 1= (040" = gl ) (19)

are generators of the Lorentz group acting on the (1/2,0) representation.



(xv) Show that

Yot =0. (20)
Prove the Fierz identities
(xvi) For 4 spinors 1, ...,14
(162) () = 5 (10" 50) (F7) 1)
(xvii)
_ _ 1 L
(60 ) (0" §) = — 0 (b (D). (22)
For 4 spinors 1, ..., 14 show
(xviii)
(P1902) (Y3va) + (V1903) (Yatha) 4 (Y1¢4) (b2th3) = 0. (23)
(xix)
(Y1902) (30" 10a) + (Y1903) (20"90a) + (10"9D4) (21P3) = 0. (24)
(xx)
(110" 92) (30" 9a) — (P103) (1h26" 0" Pa) — (Y107 P4) (P25"1P3) = 0. (25)
Show
(xxi)
(ot'a” +o"a")§ = =20 65 (26)
(xxii)
ota? = - + 20" . (27)

(xxiii) We know that (1/2,0) ® (1/2,0) = (0,0) & (1,0). How can you decompose
YaXxpg = ... +...7 (28)

(xxiv) Extra credit: Find any typos and report them!

2 Supermultiplets

(i) Write down the content of massless multiplets with highest helicity 1/2 and 1.
(ii) Write down the content of massive multiplets with highest spin 1/2 and 1.

(iii) Count the number of bosonic versus fermionic degrees of freedom for each multiplet above

and confirm that they match.

(iv) Compare the degrees of freedom of the massless and the massive multiplets. How does

this connect to the Higgs mechanism?



3 Superspace and Superfields for 4d N =1

Superspace for 4d N = 1 has coordinates (z*,60,,60s). The SUSY generators Q, and Qg can be

expressed as differential operators on superspace

. A 0 . &
Qo =+ 0y —10%0ps = +—=—— —wgoﬂ O

00«
i} _ P (29)
Qd = — 8@ + ieaaad = —ﬁ + i@aagdﬁu
(i) Check that
{Qa,Qs} =0 (30)
and
{Qav Qd} = 2Puq - (31)
The covariant derivatives on superspace are defined as
Do =+ 0y +ic" 040,
_ _ (32)
Dy = — 04 —i0%ct 0,
(ii) Show that Dg annihilates both #% and y* = x# + ifoHf.
A superfield C is called chiral if
DsC =0. (33)

(iii) Show that any chiral field may be written as

1

C(z",6%,6%) = ¢(x)+V 200 (x)+62 F (2)+i05700,,6(x) — 7

928uw(w)a“§+%92§23“0#¢(x)
(34)

(iv) Show that if C is chiral, then

QaC and Q4C are chiral (35)
(v) Count the off-shell degrees of freedom of the chiral superfield. Do fermionic and bosonic
degrees of freedom cancel? How about on-shell?
(vi) What is an anti-chiral superfield? Show that C is antichiral.

There is a second kind of common superfield. The vector superfield. A superfield V is called a
vector superfield if
V=V (36)

(vii) Write the most general vector superfield.

(viii) Count the off shell degrees of freedom of the vector superfield. Do fermionic and bosonic

degrees of freedom cancel? How about on-shell?



Let’s turn to integration on superspace. Remember that we're dealing with Berezin integration

(i.e. differentiation really).

(ix) Show that
/ dOK(CP, G, X) = / POdK(CT,C7,X) | (37)

where C? are chiral and X is a collection of arbitary superfields, is invariant under Susy
transformations. You can show that @ acting on a superfield has a 6?62 term which is a
total derivative O(...).

(x) Show that
/d40f(0) —a(.). (38)

4 Kahler Potentials, optional, you can hand it in

Kahler potentials are objects from differential geometry. If you open e.g. Nakahara you will find
a chapter on Kéahler geometry.
Let’s consider a complex, Riemannian, symplectic manifold M with metric g, complex structure

I and symplectic form w. The manifold is said to be Kahler if the following relation holds
9g(I(X),Y) =w(X,Y) for X, Y eI'(TM). (39)

Kéhler manifolds have nice properties. Locally (i.e. on an open patch U) The complex structure
allows us to introduce holomorphic coordinates ¢’ and ¢'. We will from now on work on this

coordinate chart in complex coordinates. Partial derivatives are

s, 9,
= 29 and 0 = o5 (40)

i

It can be shown that the metric can be expressed as

9i1(6,¢) = 0:0;K (¢, 9) . (41)
This is also called the Kahler metric. The symplectic form (Kéhler form) can also be expressed

in terms of derivatives of the Kahler potential. Show that K is not unique in the sense that g;;

is invariant under

K(¢,0) — K(¢,6) + (f(¢) + complex conjugate) . (42)
The Christoffel symbols are

;‘k = gliakgjl_ and F;;} = glialégzj ) (43)

and the Riemann tensor is
Rizpr = Ok0p9:5 — F%Qmmfjﬁf . (44)



Let’s turn back to Supersymmetry! Interpreting the first components ¢! and ¢ of our chiral
superfields C* and their aintichiral conjugates C? as coordinates on a manifold (also called the

target space), show that we can express the supersymmetric Lagrangian
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where

Dy’ = 0’ + T.0,0" )7 . (46)

Vary F and find the equations of motion

T

= STyt (47)

assuming that g,; is invertible. By substituting the e.o.m. back into the Lagrangian, show that
L | e
L =—-9;0.0"0"¢" —igz'c" Dy’ + iRﬁkﬂwka ot (48)

What is the interpretation of the 1’s on the target space side?



