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1 Introduction

In this dissertation, we explore the possibility of testing the AdS/CFT correspon-
dence by examining strings with large angular momenta in the S5 component of
AdS5 × S5 and their dual gauge theory operators, whose one loop, planar spectrum
can be derived by diagonalizing the Hamiltonians of spin chains, which are known
to be integrable systems. The aim is to give a clear and comprehensive review of
the development which started with the discovery of the AdS/CFT correspondence
and resulted in the emergence of integrable systems in the study of large R-charge
string states and their corresponding gauge theory operators.

The AdS/CFT correspondence is one of the most significant advances in theoretical
high energy physics in the last twenty years. The papers that first introduced the
fundamental ideas by Maldacena [49], Witten [70] as well as Gubser, Klebanov
and Polyakov [38] are among the most cited publications today. This shows what
a dramatic influence the correspondence had and how much advances have been
made, which are built upon the correspondence. It roughly states that some gravity
theories are equivalent to quantum field theories which means that the two theories
have the same observables, states, correlation functions and dynamics. This is an
astonishing proposal since quantum field theories do not include gravity. In general,
the mentioned gravity theories are string theories. String theory was first proposed
in the late 1960s as a theory for strong interactions [40]. Even though this approach
was abandoned, string theory soon became the most promising candidate for a grand
unified theory since, for example, string spectra quite naturally include a graviton
and fermions. Even though it remains unclear if string theory will one day be
able to provide such a unified theory, great advances have been made such as the
discovery of branes and their role of introducing gauge theories into string theory.
At the same time as string theory seemed to be more and more promising, quantum
field theories proved to be able to describe particle physics in an unprecedented
precise manner. Non-abelian gauge theories were successfully used to describe strong
interactions. They play a crucial role in the content of the standard model, from
which no deviation has yet been found experimentally.

In this setting of string theory being a grand unified theory candidate and quantum
field theories explaining fundamental particle physics in such a successful way, the
AdS/CFT correspondence might hold the answer to the question, which of the two
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theories is more fundamental. And the answer would be: none or both. If the
correspondence proved to hold more generally than we have explored it until now, it
might well be that we will ultimately see that both theories are completely equivalent
and only two ways of describing the same underlying structure. Moreover, through
the AdS/CFT correspondence string theory can be linked to QCD, the theory of
strong interactions. Perhaps, the original idea of string theory as a theory of strong
interactions might surprisingly not be as wrong as it seemed.

However, today we are far away from the claim that gauge theories and string theo-
ries are equivalent. Nevertheless, as mentioned above, the AdS/CFT correspondence
has opened the door for many advances in different directions from defining quan-
tum gravity in terms of gauge theory to phenomenological applications of describing
strongly coupled field theories as gravity theories. Maldacena’s original idea was to
describe a stack of D-branes in a certain limit from two different viewpoints. Thus,
he found the first and most restrictive version of the duality which states that planar
N = 4 Super Yang-Mills theory in four dimensions, a maximally supersymmetric
SU(N) gauge theory, is dual to type IIB supergravity in AdS5 × S5. Today, we
are convinced that the duality holds in a more general context. A stronger form of
the correspondence drops the condition that the gauge theory is in the planar limit,
which corresponds to type IIB string theory, rather than just supergravity, on the
gravity side of the duality.

The correspondence is only a conjecture. There is no formal proof and it is very
difficult to test it. We would like to identify string states and the corresponding
operators in the gauge theory and then compare the energies of the string states
with scaling dimensions of the operators in order to confirm the duality. The reason
for the difficulties, we encounter in doing so, is that AdS/CFT is a strong/weak
duality, i.e. strongly coupled gauge theories correspond to weakly coupled gravity
theories and conversely. Therefore, if one side of the correspondence is accessible
with perturbative tools, then the other side is not. One way to circumvent this issue
is to consider BPS states, which are protected from quantum corrections by super-
symmetry. Therefore, the scaling dimensions of BPS operators are not corrected in
the strongly coupled case and we can compare them to the energies of BPS states
in the string theory. For non-BPS states, the issue is a lot more difficult.

In 2002, Berenstein, Maldacena and Nastase found a way to circumvent this issue
[16]. They found that N = 4 SYM and type IIB string theory have an overlapping
perturbative regime, in which results of calculations on both sides of the duality can
be compared. Their ansatz was to find the classical solution of the string σ-model of
a pointlike string stationary in AdS5 and moving on a great circle in S5. Then, they
considered the expansion of AdS5×S5 string theory close to that geodesic. In doing
so, they established the so-called plane-wave string/gauge theory duality by showing
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that operators with high R-charges on the gauge theory side of the AdS/CFT duality
correspond to strings in a plane-wave background, the Penrose limit of AdS5 × S5.
Thanks to the work of Metsaev and Tseytlin we know how to quantize string theory
on a plane-wave background [51, 52]. Therefore, the string side of the duality is
under control as we know all states and their energies. On the gauge theory side,
the Penrose limit corresponds to a new kind of scaling limit, the so-called BMN
limit. In this limit, new quantum loop and genus counting parameters arise. The
new parameter that enumerates quantum loops, λ′, is small on both sides of the
duality at the same time. Therefore, it equips us with the possibility to perform
perturbative calculations on both sides of the duality and compare the results. This
offers a powerful test of the correspondence. Furthermore, the new genus counting
parameter g2 remains tuneable in the BMN limit. Therefore, we can test the duality
beyond the planar limit.

Inspired by the success of Berenstein, Maldacena and Nastase, large R-charge
string states and the corresponding operators were intensively studied subsequently.
Berenstein, Maldacena and Nastase had restricted their treatment to pointlike strings
moving on a great circle of the S5 component of AdS5 × S5. Gubser, Klebanov and
Polyakov considered both strings rotating in AdS5 and strings spinning in S5 [37]
and found such classical solutions of the string σ-model. These solutions made it
obvious, that the ansatz of finding classical string solutions with basic global charges
made it easier to find the gauge theory equivalents since these are just the states
carrying the same global charges on the other side of the duality. Gubser, Klebanov
and Polyakov generalised the BMN string to extended, closed, folded strings sta-
tionary in AdS5 but rotating in one plane of the S5. This was further generalised
by Frolov and Tseytlin who, among other classical solutions, derived the solutions
of folded and circular strings rotating in two orthogonal planes of the S5 component
[29, 31].

The connection of these solutions to spin chains was first discovered by Beisert,
Kristjansen and Staudacher [7, 6]. They realised that the problem of finding the one
loop, planar scaling dimensions of the operators corresponding to the solutions of
Frolov and Tseytlin is equivalent to diagonalizing the Hamiltonian of an isotropic
s = 1/2 spin chain. In the BMN limit, when the combined angular momentum
diverges, J1 + J2 → ∞, the spin chain goes to the thermodynamic limit where an
infinite number of spins is excited. Solving this Hamiltonian eigenvalue problem
yields expressions equal to the energies in the string solutions derived by Frolov
and Tseytlin. The discovery, that the spin chain model is an integrable theory
enormously simplifies finding the energy spectrum and therefore it helps to compare
the spin chain to the corresponding string theory spectrum.

The described succession of developments is roughly the path we are taking in
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this dissertation, from Maldacena’s original argument to the emergence of integra-
bility. In chapter 2, we explain the basic aspects of the AdS/CFT correspondence.
The whole chapter is designed as a preparation for describing Maldacena’s decou-
pling argument in section 2.5, the last section of that chapter. First, we study
heuristic motivations for the gauge/string duality in general and the AdS/CFT cor-
respondence in particular. We discover, that there are several clues that hint at the
existence of a close relation between gauge and string theories. The most prominent
of this clues is t’Hooft’s 1/N expansion of non-abelian gauge theories with a large
number of colours N , which we examine in detail. Other hints, that we explain,
are the twofold interpretation of the interaction of a very light with a heavy object.
The interactions can either be solved explicity or the heavy object can be treated
as a deformation of the background, as it is itself uneffected by the light object. A
third hint at the AdS/CFT correspondence is the open/closed string duality. After
these heuristic topics, we guide through the necessary background to have enough
tools at hand to understand the AdS/CFT duality and the two theories it relates. In
section 2.2, we study N = 4 Super Yang-Mills in four dimensions. We are particu-
larly interested in the fact that it is a conformal field theory and in what conformal
symmetry implies. Furthermore, we focus on the dilatation operator and scaling
dimensions of fields as these give us the opportunity to directly compare gauge the-
ory quantities with the dual expressions in string theory. In section 2.3, we give
an overview of some necessary superstring theory basics. In particular, we present
how gauge theories arise in string theory as the theory of open strings ending on
D-branes. This insight is key to the understanding of the AdS/CFT correspondence
and it is central Maldacena’s decoupling argument. In the last section before we
get to this decoupling argument, section 2.4, we will introduce anti-de Sitter space
AdSd+1 and examine several coordinate representations as well as its boundary and
symmetries. Moreover, we show that anti-de Sitter space arises as the near horizon
limit in the 3-brane supergravity solution. Along with the emergence of gauge the-
ories on D-branes, this is the most important insight that leads to the AdS/CFT
duality. Finally, we arrive at Maldacena’s decoupling argument in section 2.5. We
explain in detail how the twofold interpretation of a stack of D3-branes in type IIB
string theory in a certain limit lead Maldacena to his famous conjecture. Moreover,
we will discuss several versions of the duality which claim the correspondence to
hold under more or less restrictive conditions.

In chapter 3, we make first contact with states and operators carrying large
charges. We discuss the discovery of Berenstein, Maldacena and Nastase, which
we mentioned above, that superstring theory expanded around the geodesic of a
pointlike string moving on a great circle in S5 simplifies significantly and that the
resulting string states and the corresponding gauge theory operators open up pos-
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sibilities to test the AdS/CFT correspondence beyond the planar limit. In sec-
tion 3.1, we derive that a pointlike string, that is stationary in the AdS5 component
of AdS5 × S5, but moves on a great circle in the S5 component, effectively sees a
plane-wave background, the Penrose limit of AdS5 × S5. In section 3.2, we derive
which string states are projected out when we perform this limit. We translate the
Penrose limit to the dual gauge theory in section 3.3 since we have to take the same
limit on both sides of the duality to discuss the implications in the context of the
AdS/CFT correspondence. In section 3.4, we quantize type IIB string theory in a
plane-wave background following the work of Metsaev and Tseytlin. For simplicity,
we will focus on the bosonic sector of the theory but, apart from this simplification,
explain the procedure in detail. We conclude that we have full control of the string
spectrum and, therefore, try to identify the dual gauge theory operators and find
their scaling dimensions in section 3.5. This proves to be extremely fruitful and
equips us with a tool to test the duality. In the last section of the chapter, sec-
tion 3.6, we explore an example of how the BMN limit helps us to go beyond the
planar sector of the correspondence.

In chapter 4, we explore the analysis of large R-charge classical string solutions
as a more general tool to test the correspondence. In section 4.1, we first study the
classical string σ-model solutions of extended strings rotating in either the AdS5 or
the S5 component, which were found by Gubser, Klebanov and Polyakov. We see
how the examination of classical solutions with large charges simplifies the search
for the dual gauge theory operators. In section 4.2, we discuss more general classical
solutions of strings spinning in S5, which are due to Frolov and Tseytlin. These
solutions describe extended strings that are circular or folded and which can rotate
in more than just one plane of the S5. We study these solutions in much detail since
we want to examine the corresponding gauge theory operators using spin chains in
the following chapter and then compare the results.

Finally, in chapter 5 we explore how the gauge theory equivalents of the string
theory solutions, we derived in the chapters 3 and 4, can be translated to spin chains.
Therefore, the quest of finding the scaling dimensions of gauge theory operators
translates to solving a spin chain Hamiltonian eigenvalue problem. In section 5.1,
we derive that the gauge theory operators corresponding to the solutions of strings
rotating in two orthogonal planes of S5 can be represented by s = 1/2 spin chains.
Furthermore, we show that the one-loop dilatation operator acting on those gauge
theory states reduces to the Hamiltonian of the XXX1/2 Heisenberg spin chain in
the planar limit. The Heisenberg spin chain is a known integrable theory. We will
use integrability to derive eigenstates of the Hamiltonian with the help of the Bethe
ansatz in section 5.2. Finally, in section 5.3, we will study the thermodynamic limit
of the spin chain where an infinite number of spins is excited in the limit of a chain
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of infinite length. This thermodynamic limit corresponds to the string solutions of
Frolov and Tseytlin that we examined in the previous chapter. We will outline the
derivation of the spectrum of the spin chain using the thermodynamic Bethe ansatz
and compare it to the string theory results.



2 Introduction to the gauge/string
duality

The gauge/string duality relates two seemingly unrelated theories. It was introduced
by t’Hooft in the 1970s who showed that non-abelian gauge theories in a certain
limit admits a perturbative formulation equivalent to a string theory [40]. Roughly,
the duality states that some gauge theories are equivalent to (quantum) gravity
theories, meaning that they have the same observables, states, correlation functions
and dynamics. The AdS/CFT correspondence [49, 38, 70] is the first precisely
formulated example of the gauge/string duality and thus substantiated the proposal
by t’Hooft. The correspondence was famously proposed by Maldacena in 1997 [49]
who conjectured the equivalence of N = 4 Super Yang-Mills (SYM) theory in R1,3

with gauge group SU(N) in the planar limit and type IIB supergravity in AdS5×S5

in the classical limit.
The AdS/CFT correspondence is a realization of the holographic principle [41,

67]. This principle states that the dynamics of the degrees of freedom of a theory
are completely determined by or equivalent to the dynamics of degrees of freedom
on its boundary. The holographic principle was inspired by the result of Hawking
and Beckenstein [66], that the entropy of a black hole is proportional to the area of
its event horizon. This means that all information about a black hole is stored on
its boundary. The AdS/CFT correspondence is a realization of this principle since
the N = 4 SYM in R1,3 can be thought of being located on the boundary of AdS5.
Both phenomena resemble a hologram which stores the information about a three
dimensional image on a two dimensional surface.

The AdS/CFT correspondence is a strong/weak duality. Strongly coupled gauge
theories are equivalent to weakly coupled gravity theories and conversely. Today, the
duality is widely believed to hold more generally than stated above and to connect
type IIB string theory in AdS5 × S5 to N = 4 SYM with gauge group SU(N) not
necessarily in the planar limit. It is a stunning proposal, because the conjecture
links a theory with gravity to one with no gravity at all. There are attempts of
generalising the correspondence in order to use it to describe non-supersymmetric,
non-conformal gauge theories. For example, there is interest in using the duality to
describe the non-perturbative regime of QCD since it might be accessible through a
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weakly coupled gravity theory by means of the correspondence. In this dissertation,
however, we are more interested in the formal aspects of the correspondence. We
will explore these after an introduction to the duality in this chapter.

Section 2.1 gives a heuristic introduction trying to convey an intuitive understand-
ing of the gauge/gravity duality. This includes the concepts that lead Maldacena to
his remarkable conjecture in 1997 [49]. We will see that t’Hooft claimed that gauge
theories have a dual description in terms of strings as early as in the 1970s [40]. We
describe how the correspondence arises from formulating a physical problem in two
different ways and then comparing structures on both sides.

In section 2.2, we start to introduce the necessary tools to give a more precise
description of the duality later. First, we describe N = 4 SYM. We pay special
attention to the fact that it is a conformal field theory (CFT). We explore the
conclusions one can draw from the conformal symmetry with respect to operators
and correlation functions. The dilatation operator and its action on fields will be of
special interest. We derive the bosonic subgroup of the symmetry group of N = 4

SYM with gauge group SU(N) to be SO(2, 4)× SO(6).
In section 2.3, we describe how D-branes arise in a string theory. This leads to

the result that a stack of N D-branes hosts a U(N) gauge theory. This is a crucial
concept for the motivation of the AdS/CFT correspondence.

In section 2.4, we define the Anti-de Sitter (AdS) space and introduce different
coordinate descriptions. We derive that the boundary of AdS5 is conformally equiv-
alent to R1,3. Consequently, we can think of N = 4 SYM being located on the
boundary of AdS5. Moreover, we show that the symmetry group of AdS5 × S5 is
SO(2, 4) × SO(6). It is therefore equivalent to the bosonic subgroup of the gauge
theory on the other side of the duality. At last, we introduce the concept of p-branes
as solitonic supergravity solutions in AdS5 × S5 extended in p spatial dimensions.

In the last section of the chapter, section 2.5, we follow Maldacena’s line of thought
in his derivation of the AdS/CFT correspondence. We show that he derived the du-
ality by considering a decoupling limit in two dual descriptions of the same physical
situation. By comparing the structures that arise in both points of view he proposed
the correspondence, which remains, however, unproven. In the end, we introduce
different versions or formulations of the duality, which claim the equivalence to be
true under more or less restrictive assumptions.

2.1 Heuristic motivation of the gauge/string duality

Before we derive a precise, quantitative description of the correspondence, we try
to motivate it from a more heuristic point of view. Even though the gauge/string
duality seems very counterintuitive at first glance – it connects a theory with gravity
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to one without in a different number of dimensions – there are some observations
which hint at the correspondence. We can even draw some quantitative conclusions
from the heuristic viewpoints we will describe in this section.

2.1.1 T’Hooft’s 1/N expansion of non-abelian gauge theories

The claim that string theory is a dual description of a non-abelian gauge theory
with a large number of colours lies in the centre of the gauge/string duality. We
can get an intuitive grasp of that relation by studying t’Hooft’s insight [40] that
Feynman graphs of an SU(N) gauge theory can be classified according to their
topology and that planar graphs dominate in the large N limit. Therefore, large N
theories are simpler than real world gauge theories such as QCD since non-planar
Feynman diagrams do not contribute to correlators. As we will see, the powers of
λ/N count the genus of the Feynman diagram while the t’Hooft coupling λ = g2YMN

enumerates quantum loops in the expansion of correlation functions with gYM being
the gauge theory Yang-Mills coupling. Instead of λ/N as genus counting parameter,
one often reads that powers of 1/N enumerate the genus. In the planar limit, which
is defined by N → ∞, gYM → 0 such that λ is constant, this is equivalent since
λ is just a constant factor. The expansion in λ/N resembles the genus expansion
in string theory. This is a hint of a hidden relation to string theory which will be
formulated very precisely in the AdS/CFT correspondence.

For simplicity, let us consider a zero dimensional SU(N) gauge theory, a so-called
matrix model of hermitian N ×N matrices M (see also [33]). Let M transform as
M → UMU−1 in the adjoint representation of SU(N). Then the following purely
Gaussian action

S[M ] = − 1

g2YM
TrM2 (2.1)

is gauge invariant. Expectation values of operators Oi (assume operators are scalar
for simplicity) are given by

〈O1O2 . . .On〉 =
∫
DM O1O2 . . .On e

−S[M ]∫
DM e−S[M ]

=
1

Z[0]

δ

δJ1

δ

δJ2
. . .

δ

δJn
Z[Ji]|J=0

with the path integral measure DM and the generating functional of correlation
functions Z[Ji],

DM =
N∏
i=0

dMii

∏
i<j

d(ReMij)
∏
i<j

d(ImMij), (2.2)
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Z[Ji] =

∫
DM e−S[M ]+JiOi . (2.3)

In the case of a Gaussian action the generating functional is

Z[J ]

Z[0]
=

∫
Dxe− 1

2
xTAx+JT x∫

Dx e− 1
2
xTAx

= e
1
2
JTA−1J (2.4)

where x = (x1, . . . , xd),Dx = dx1 . . . dxd, J = (J1, . . . , Jd) and A a symmetric d× d

matrix. Then, the correlation functions are given by

〈xaxb〉 = A−1
ab , (2.5)

〈xa1xa2 . . . x2n+1〉 = 0, (2.6)

〈xa1xa2 . . . x2n〉 =
∑
σ∈S2n

n∏
i=1

〈xaσ(2i−1)
xaσ(2i)

〉. (2.7)

Equation (2.7) is Wick’s theorem, which can be used to simplify n point correlation
functions and trace them back to two point correlators. Next, we derive the prop-
agator of the matrix model. First, we need to write the action in a form such that
we can read off the matrix A from equation (2.4):

1

2g2YM
TrM2 =

1

2g2YM

(∑
i

M2
ii + 2

∑
i<j

(ReMij)
2 + 2

∑
i<j

(ImMij)
2

)

=
1

2g2YM

∑
ijkl

MijδilδjkMkl

=
1

2

∑
ijkl

MijAijklMkl. (2.8)

The last equal sign defines the Matrix Aijkl with two double indices {ij}, {kl} to be

Aijkl =
1

g2YM
δilδjk. (2.9)

We can now extract the propagator by inverting this matrix using equation (2.5).
Since ∑

kl

( 1

g2YM
δilδjk︸ ︷︷ ︸

=Aijkl

) (
g2YMδknδlm

)
= δimδjn (2.10)

⇒ A−1
klmn = g2YMδknδlm (2.11)

we can conclude that the propagator is given by

〈MijMkl〉 = g2YMδilδjk, (2.12)
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which we can represent diagrammatically in the so-called double-line notation as

〈MijMkl〉 = . (2.13)

Next, we calculate some correlators to see that the resulting Feynman diagrams
do in fact organise in the fashion mentioned above. They are ordered according
to their topology with planar graphs dominating in the limit of a large number of
colours N with the t’Hooft coupling kept constant. As an example, let us consider
the one point function of the operator TrM4 =

∑
ijklMijMjkMklMli. We simplify

the correlator using Wick’s theorem (2.7):

〈TrM4〉 =
〈∑
ijkl

MijMjkMklMli

〉
= 2

∑
ijkl

〈MijMjk〉〈MklMli〉+
∑
ijkl

〈MijMkl〉〈MjkMli〉

(2.12)
= 2g4YM

∑
ijkl

δikδjjδkiδll + g4YM
∑
ijkl

δilδjkδjiδkl

= 2g4YMN
3 + g4YMN = 2λ2N +

λ2

N

= 2λ3
(
N

λ

)
+ λ

(
λ

N

)
. (2.14)

From this result, we can conclude that there are two contributing diagrams. The
first has three quantum loops while the second one has only one quantum loop. The
genus of the first diagram is smaller than the genus of the second one as it contributes
with a higher power of λ/N . We will see a more formal statement that explains why
λ/N is the parameter counting the genus of a graph later in equation (2.21).

Let us confirm that our expectations about the number of quantum loops and the
genus are true. Diagrammatically, we get

〈
TrM4

〉
=
〈∑
ijkl

MijMjkMklMli

〉
=
〈∑
ijkl

〉

= 2× + . (2.15)

The Feynman rules of the matrix model we consider do not include vertices. So,
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Figure 2.1: Non-planar graph from equation (2.15) drawn on a torus without cross-
ing lines.

we can only join lines with propagators and there are only distinct ways to do this.
We call the first of the two graphs planar since it does not include any crossing
of lines. In contrary, the second graph is non-planar. We see, that the planar
graph is proportional to N/λ while the non-planar one is proportional to λ/N .
Therefore, in the limit of large N and λ constant, the planar graph dominates the
expression for the correlation function. We can relate the form of the diagrams to
string worldsheets of different topologies. String worldsheets are two dimensional
surfaces. If we only consider worldsheets without boundaries, they only differ in
one topological feature which is the number of holes called the genus of the surface.
A closed two dimensional surface without holes is topologically equivalent to the
2-sphere S2. If the surface has one hole, it is equivalent to the 2-torus T 2, etc.
In this example, we see that we can order Feynman diagrams of an SU(N) gauge
theory in the same way. While the first graph can be drawn on an S2 sphere without
crossing lines we need a torus T 2 in order to draw the second graph without crossing
lines, as can be seen in figure 2.1. If we allow vertices in the gauge theory, we will
get more diagrams requiring surfaces of higher genus in order to draw them without
crossing lines. For each diagram, there is a surface of minimal genus that allows the
diagram to be drawn on it without crossing. Therefore, we can order the diagrams
into classes according to these surfaces.

Let us consider a more complicated example, which shows that the statement
about the ordering of the graphs according to their topologies remains true when
we add interactions to the action,

S = − 1

2g2YM
Tr
(
M2 +

t3
3
M3 +

t4
4
M4 + . . .

)
(2.16)

where the ti, i = 3, 4, . . ., are coupling constants. Let us consider the connected
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correlator

〈
:

1

g2YM
TrM3 : :

1

g2YM
TrM3 :

〉
c
=
〈 〉

c

= + + + . . . ( planar)

+ + . . . ( one crossing)

+ . . . ( more crossings)

∼ + + + . . . . (2.17)

Again, we see that the diagrams can be organised according to their topologies. Of
course, the diagrams depend on the coupling constants ti, i > 2. So the matching
with two dimensional Riemann surfaces is not an exact equality unless we specify
precisely what kind of string theory we are considering. However, it is a qualitative
statement that large N gauge theories can be expanded in a perturbation series
that is resembling a perturbative genus expansion in string theory. We just cannot
specify precisely the kind of string theory we obtain in this context.

After these two examples, let us make the statement about the topological expan-
sion more precise. We follow the line of thought in [57] and explain why (λ/N)2

enumerates the genus of a given diagram. This is important because it explains why
the expansion in the genus becomes a valid perturbative expansion in the large N
limit. Furthermore, we see why λ is the parameter of the perturbative quantum
expansion. Each Feynman diagram in the gauge theory comes with a factor of

(
g2YM

)P−V
NL (2.18)

where P is the number of propagators, V the number of vertices and L the number
of closed loops. The factors of g2YM come from the overall factor of 1/g2YM in the
action. Propagators contribute with the opposite power due to the matrix inversion
we performed earlier in equation (2.12). A factor of N comes from each closed loop
because of the trace over colour indices.
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Now, we use the result (due to Euler) that in a polyhedron the number of edges
E, the number of vertices V , the number of faces F and the genus g obey

V − E + F = 2− 2g. (2.19)

In the Feynman diagrams the edges correspond to propagators and the faces to
closed loops, i.e. E = P , F = L. Therefore, we can rewrite equation (2.18) as

(
g2YM

)E−V
NF =

(
g2YM

)E−V
NE−VNV−E+F

=
(
g2YMN

)F+2g−2
N2−2g

= λF+2g−2N2−2g

= λF
(
λ

N

)2g−2

. (2.20)

Consequently, any correlator can be organised in a double expansion according to
the genus and the number of quantum loops which is given by the faces:

〈. . .〉 =
∞∑
g=0

(
λ

N

)2g−2 ∞∑
n=0

cg,nλ
n. (2.21)

The cg,n are numbers depending on the correlation function and the couplings ti, i >
2. We see that the genus expansion is controlled by the expansion parameter λ/N
while the t’Hooft coupling λ enumerates quantum loops. Expressing the correlator
in this form also shows that the effective coupling in perturbation theory in the
planar limit

N → ∞ and gYM → 0 but λ = g2YMN = const. (2.22)

is the t’Hooft coupling λ. We can conclude that in this planar limit only the dia-
grams with the lowest genus contribute. Furthermore, we deduce from the analogy
to a string worldsheet expansion that the corresponding string coupling gs in this
expansion must be

gs ∝
λ

N
= g2YM . (2.23)

Here, we choose a convention where

4πgs = g2YM . (2.24)

Therefore, we have already identified two of the four parameters on the gauge theory
and string theory side of the correspondence. The second equation relating the two
will be derived later in equation (2.123). One expects the strict planar limit on the
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Figure 2.2: (A) Perturbative expansion of the interaction of a heavy proton with an
electron. (B) The electron moving in the background deformed by the
proton.

gauge theory side where

λ

N
= 0 ⇒ gs = 0 (2.25)

to correspond to a non-interacting, free string theory.
Our restriction to a zero dimensional matrix model was just a simplification. Ev-

erything goes through analogously if we increase the dimension of spacetime [40].
If we go to a higher number of dimensions and replace M2 → ∂µM∂µM , the com-
putation of the Feynman diagrams is more complicated. However, the conclusion is
still be that the Feynman diagrams describe a string theory. In particular, the same
planar limit also occurs for N = 4 SYM for large N (see [57, 23]).

2.1.2 Feynman diagrams versus non-trivial background

If we want to study the motion of an electron in the vicinity of a heavy proton, with
which it interacts electromagnetically, there are two ways to treat this problem:
(A) explicit calculation of Feynman diagrams or
(B) studying the electron in a non-trivial background.

These two viewpoints are illustrated in figure 2.2. We could perform the stan-
dard QED calculation using a perturbative expansion. However, since we are not
interested in the dynamics of the proton, which we assume to be unaffected by
the electron, we can effectively treat it as a deformation of the trivial background.
Then, we can study the motion of the electron in that background. Note that we
can use the same reasoning when we study the interaction of a string with a stack
of D-branes. Either we can use string perturbation theory and an expansion in
different worldsheets ordered by their genus or we consider a free string propagating
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+

+ + . . . ∼

Figure 2.3: A string interacting with a stack of branes. A perturbative expansion
in the string worldsheets of different topologies is equivalent to treating
the branes as a deformation of the background through which a closed
string propagates.

in the background deformed by the stack of D-branes, see figure 2.1.2. When we
follow Maldacena’s line of thoughts, which led to the AdS/CFT conjecture, later
in section 2.5, we will consider a stack of branes just as we did here. The two in-
terpretations of the stack trace back to the fact that branes are both solutions to
the low energy string effective action (i.e. supergravity) and that they host a U(N)

gauge theory by means of the Chan-Paton mechanism, which is described in a set
of published lecture notes by Polchinski [59].

2.1.3 Open/closed string duality

The above twofold interpretation can also be related to the open/closed string du-
ality which is due to the two topologies a string can have. We know an open string
coupling to a stack of branes and closed strings emitted by the brane are essentially
the same. These two processes can be seen in figure 2.4. The former process leads
to a gauge theory while the latter describes gravitons emitted by the brane deform-
ing the background. Again, we see the equivalent description of the same situation
treated once as a gauge theory and once as a gravity phenomenon.

2.2 N = 4 Super Yang-Mills

N = 4 SYM in R1,3 with gauge group SU(N) is on the gauge theory side of the
AdS/CFT correspondence. It is a supersymmetric, conformal quantum field theory.
A comprehensive review of the subject is [23] by D’Hoker and Freedman.
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=

Figure 2.4: Open/closed string duality: An open string interacting with a stack of
branes is equivalent to a brane emitting a pair of closed strings.

2.2.1 Dimensional reduction of 10d N = 1 SYM

N = 4 SYM theory in 4d can be obtained from N = 1 SYM theory in 10d by
dimensional reduction on the torus T 6. This was first done by Brink, Schwarz and
Scherk [21]. The theory is the maximally supersymmetric SU(N) gauge theory that
does not contain gravity, i.e. no spin-2 particle.

The ten dimensional theory is defined by the action [63]

SN=1,10d =

∫
d10x Tr

(
1

4
FMNF

MN +
1

2
ΨΓMDMΨ

)
(2.26)

where (AM)a
b, Ψa

b, M ∈ {0, . . . , 9}, a, b ∈ {1, . . . , N} are a gauge field and a gaugino
in the adjoint representation of the gauge group SU(N) and the gamma matrices
ΓM obey the Clifford algebra relation {ΓM ,ΓN} = 2ηMN . The field strength and
the covariant derivative are

FMN = i[DM ,DN ], (2.27)

DM = ∂M − igYM [AM , · ]. (2.28)

Toroidal compactification on T 6 breaks the Lorentz group,

SO(1, 9) → SO(1, 3)× SO(6). (2.29)

We can restrict our treatment to the massless little group SO(8), a subgroup of the
Lorentz group, whose representations can be boosted to the full Lorentz group [42].
Upon compactification the little group breaks according to

SO(8) → SO(2)× SO(6). (2.30)
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Therefore, the fundamental vector representation and the spinor representation
break according to:

[1000]8 → [100]6 + (q−2 + q2)[000]6

[0001]8 → q[010]6 + q−1[001]6

⇒ AM →

{
Aµ, µ = 0, . . . , 3

φi ≡ Ai, i = 4, . . . , 9

Ψ → ψa, ψ
a
, a = 1, . . . , 4 (2.31)

Therefore, the compactification yields a supermultiplet of a vector Aµ, six scalars
φi and two fermions in the fundamental and antifundamental of the R-symmetry
group SO(6) ∼= SU(4).

A detailed analysis yields the action for the N = 4 theory in 4d to be [63]:

SN=4,4d =

∫
d4x Tr

(1
4
FµνF

µν +
1

2
Dµφ

iDµφi −
g2YM
4

[φi, φj][φ
i, φj]

+ ψ
a
σµDµψa −

igYM
2

σabi ψa[φi, ψb]−
igYM
2

σiabψ
a
[φi, ψ

b
]
)

(2.32)

where σµ and σi are the four- and six-dimensional chiral projections of the gamma
matrices ΓM . From the point of view of this compactification we can interpret
the SO(6) ∼= SU(4) R-symmetry of N = 4 SYM as rotations in the compactified
dimensions. For χ ∈ {φi, ψ, Fµν ,Dµφi,Dµψ, . . .}, χ transforms covariantly in the
adjoint of the gauge group. Therefore, the trace over a string of such operators is
gauge invariant, e.g.

O(x) = Tr (χ1(x)χ2(x) . . . χn(x)) . (2.33)

Hence, the relevant operators of the theory are single- or multi-trace gauge invariant
expressions of this type.

2.2.2 N = 4 Super Yang-Mills as conformal field theory

We know that the β-function for any non-abelian gauge theory at one loop is [36]

β(gYM) =
∂gYM
∂ logµ

= µ
∂gYM
∂µ

= g3YM

(
11

3
N − 1

6
NsN − 1

6
NfN

)
(2.34)
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where N is the number of colours, Ns and Nf the number of scalars and (real)
fermions and µ the energy scale. For Ns = 6 and Nf = 16 as in N = 4 SYM, we get

β(gYM) = 0. (2.35)

This is even true to all loop orders [50, 64, 20]. The theory is therefore invariant
under scale transformations even at the quantum level and it turns out N = 4 SYM
is a conformal field theory. A standard reference for CFTs is Ginsparg’s review [32].
More details can be found in the books [60, 27].

Conformal field theories are field theories invariant under the conformal group.
They have no intrinsic length or energy scale. The conformal group is defined as the
set of transformations xµ → x̃µ(x), µ = 0, . . . d − 1, that leave the metric invariant
up to a local scale factor:

ηρσ
∂x̃ρ

∂xµ
∂x̃σ

∂xν
= Ω2(x)ηµν . (2.36)

The conformal group contains the Poincaré group and in dimension d > 2 it
further consists of the following transformations, written in infinitesimal form:

• Dilatations: xµ → x̃µ(x) = xµ + λxµ, λ ∈ R+,
• Special conformal transformations: µ → x̃µ(x) = xµ + bµx2 − 2xµ(b · x), bµ ∈

R1,3.

The full proof can be found in Ginsparg’s review [32]. Here, we state the crucial
steps. Consider an infinitesimal conformal transformation of the form

x̃µ(x) = xµ + ξµ(x), Ω(x) = 1 + ω(x) (2.37)

where ξµ, ω � 1. Plugging into equation (2.36) yields

∂µξν + ∂νξµ = 2ω(x)ηµν (2.38)

to first order. Contracting with ηµν , we find

ω(x) =
1

d
∂ · ξ, (2.39)

with d the number of spacetime dimensions. We therefore obtain the conformal
Killing equation,

∂µξν + ∂νξµ =
2

d
(∂ · ξ)ηµν . (2.40)

The most general solution for d > 2 is

ξµ = aµ + ωµνx
ν + λxµ + bµx2 − 2xµ(b · x) (2.41)
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where aµ, bµ, λ are arbitrary and ωµν is antisymmetric. These parametrize transla-
tions, special conformal transformations, dilatations and Lorentz transformations,
respectively.

The dimension of the conformal group in d > 2 dimensions is

dim SO(2, d) =
1

2
d(d− 1)︸ ︷︷ ︸

antisym. Lorentz ωµν

+ d︸︷︷︸
transl. aµ

+ 1︸︷︷︸
dilatation λ

+ d︸︷︷︸
spec. conf. bµ

=
1

2
(d+ 2)(d+ 1). (2.42)

Together with the generator of dilatations D and the generator of special confor-
mal transformations Kµ the Poincaré generators Mµν and P µ form the conformal
algebra:

[Mµν ,Mρσ] = i(ηµρMνσ + 3 terms),

[Mµν , P ρ] = i(ηµρP ν − ηνρP µ),

[Mµν , Kρ] = i(ηµρKν − ηνρKµ),

[Mµν , D] = 0,

[D,P µ] = −iP µ,

[D,Kµ] = iKµ,

[P µ, Kν ] = −2i(ηµνD +Mµν). (2.43)

In a Lorentzian spacetime this algebra is isomorphic to SO(2, d). We can see this
by defining the antisymmetric matrix

M
NK

=

 Mµν M
µ,d

M
µ,d+1

−M ν,d
0 D

−M ν,d+1 −D 0

 (2.44)

where µ, ν = 0, 1, . . . d− 1 and

M
µ,d

=
Kµ − P µ

2
, M

µ,d+1
=
Kµ + P µ

2
. (2.45)

It is straightforward but tedious to check that[
M

NK
,M

LR
]
= i
(
ηNLM

KR
+ 3 terms

)
, (2.46)

with ηNK = diag(−1, 1, . . . , 1,−1). Here, we present the proof that ηd+1,d+1 = −1
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and the rest can be calculated analogously:[
M

d+1,ν
,M

d+1,ρ
]
=

1

4
[Kν + P ν , Kρ + P ρ]

=
1

4
([Kν , P ρ] + [P ν , Kρ])

(2.43)
=

1

4
(2i(ηρνD +Mρν)− 2i(ηνρD +Mνρ))

= −iMνρ

!
= i
(
ηd+1,d+1M

νρ−ην,d+1M
d+1,ρ − ηd+1,ρM

ν,d+1︸ ︷︷ ︸
=0 from looking at other equations

+ηνρM
d+1,d+1︸ ︷︷ ︸
=0

)
(2.47)

where ν, ρ = 0, 1, . . . , d− 1. Therefore,

ηd+1,d+1 = −1. (2.48)

This is just one example. Since we get the algebra structure in equation (2.46),
this means that the MNK obey the algebra of SO(2, d). Hence, the algebra of the
conformal group in d dimensions is isomorphic to SO(2, d). We will later rediscover
this group as the symmetry group of AdSd+1-space. Naturally, it is crucial for the
symmetries to match on both sides of the duality.

Since we are considering SYM theory we have to consider supersymmetry in ad-
dition. In supersymmetric field theories the spacetime symmetry group is extended
by additional fermionic generators. In 4d, these are

Qa
α, Qα̇a where α = 1, 2, a = 1, . . . ,N . (2.49)

They are Weyl spinors of the Lorentz group and commute with translations. Fur-
thermore, they obey

{Qa
α, Qβ̇b} = 2σµ

αβ̇
Pµδ

a
b , {Qa

α, Q
b
β} = 2εαβZ

ab. (2.50)

Zab is antisymmetric and commutes with all elements of the algebra. It is called
a central charge. For N = 1, antisymmetry requires Z = 0. The supersymme-
try algebra is invariant under rotations among the supersymmetry generators Qa

α

which yields the so-called R-symmetry group SU(N )R. The supersymmetry gen-
erators have an additional global U(1)R symmetry. Both SU(N )R and U(1)R can
be broken by quantum effects. The Haag-Lopuszanski-Sohnius Theorem [39] (a su-
persymmetric extension of the famous Coleman-Mandula Theorem) states that the
largest possible symmetry group of a four dimensional quantum field theory is the
supersymmetric extension of SO(2, 4), called PSU(2, 2|4), times an internal sym-
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metry group. In that sense N = 4 SYM is the maximally supersymmetric QFT
in four dimensions. PSU(2, 2|4) contains SO(2, 4) × SO(6) as bosonic subgroup,
which corresponds to the conformal symmetry and the R-symmetry.

2.2.3 The operator/state correspondence

In conformal field theories in Rd there is a remarkable link between operators and
states. States in the field theory are in one-to-one correspondence to operators
inserted at the origin. This is very striking since operators inserted at a point are
local objects, while states are obviously non-local as they carry information about
field configurations. A detailed treatment can be found in the lecture notes [68]. We
give an intuitive explanation and restrict ourselves to d = 4.

We can write the Euclidean metric (after performing a Wick rotation in the
Lorentzian case) of R4 as

ds2 = dr2 + r2ds2S3 = e2τ (dτ 2 + ds2S3︸ ︷︷ ︸
cylinder R×S3

) (2.51)

where we have substituted r = eτ . Consequently, the plane is conformally equivalent
to the cylinder R× S3 since the two are only related by a rescaling (see figure 2.5).
A dilatation on the plane corresponds to a translation in the τ -direction on the
cylinder and

r = 0 ↔ τ = −∞,

r = ∞ ↔ τ = ∞. (2.52)

If we have a state in the CFT in d = 4, we can map it to the cylinder, evolve it back
to τ = −∞ on the cylinder and then map back to R4. The state then becomes a
local disturbance at r = 0. So there is a one-to-one correspondence between states
in a CFT and operators inserted at the origin.

The fact that dilatations in R4 are equivalent to time translations on the cylinder
motivates

{∆}R4 = {E}R×S3 , (2.53)

i.e. the spectrum of scaling dimensions ∆ of operators is equivalent to the spectrum
of energies E of states. Consequently, the dilatation operator D can be interpreted
as a Hamiltonian. For this reason, we examine the dilatation operator and scaling
dimensions in more detail.



2.2. N = 4 SUPER YANG-MILLS 25

Figure 2.5: States in a conformal field theory are in one-to-one correspondence to
operators at the origin. The conformal map between R4 and R × S3

maps circles in the projection of R4 to slices of the cylinder. Dilatations
in R4 correspond to time translations (i.e. translations in τ -direction) on
the cylinder.

2.2.4 Dilatation operator and scaling dimensions

In addition to the Poincaré labels, states (or the equivalent operators) in a conformal
field theory carry an additional label, the scaling dimension ∆, associated to the
additional Cartan generator D. An operator φ∆(x) has scaling dimension ∆ if

[D,φ∆(0)] = −i∆φ∆. (2.54)

This is equivalent to

[D,φ∆(x)] = −i∆φ∆(x)− xµ[P
µ, φ∆(x)], (2.55)

which can be derived using

φ∆(x) = e−iP ·xφ∆(0)e
iP ·x and [D, eiP ·x]

(2.43)
= (P · x)eiP ·x. (2.56)

Consequently, it is always sufficient to examine the transformation behaviour of a
field at x = 0.

Reconsidering the conformal algebra (2.43), we see, that P µ and Kµ can be inter-
preted as raising and lowering operators with respect to the dilatation operator:

[D,P µ] = −iP µ ⇒ [D [P µ, φ∆(0)]] = − [P µ, [φ∆(0), D]]− [φ∆(0), [D,P
µ]]

= −i∆[P µ, φ∆(0)] + i[φ∆(0), P
µ]
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= −i(∆ + 1)[P µ, φ∆(0)],

[D,Kµ] = iKµ ⇒ [D, [Kµ, φ∆(0)]] = − [Kµ, [φ∆(0), D]]− [φ∆(0), [D,K
µ]]

= −i∆[Kµ, φ∆(0)]− i[φ∆(0), K
µ]

= −i(∆− 1)[Kµ, φ∆(0)]. (2.57)

We now use our intuition from the harmonic oscillator. If we have a lowering oper-
ator there must be a state in each representation with minimal scaling dimension.
These so-called primary operators are the operators corresponding to the lowest
weight states in a representation of the conformal group. We therefore conclude
that for a primary φ∆ we get the commutator

[Kµ, φ∆(0)] = 0. (2.58)

We obtain the other states in the representations by acting on the primary with
the momentum operator P µ. In the language of fields this means that all states in
a representation of the conformal group are given by the derivatives of a primary
field. These are the so-called descendant fields. There is an infinite number of those
as could be expected from the non-compactness of PSU(2, 2|4).

Let us consider a primary φA∆(x) with scaling dimension ∆ and an index A in the
representation R of the Lorentz group. Then,

[Mµν , φA∆(0)] = (Mµν
R )ABφ

B
∆(0),

[D,φA∆(0)] = −i∆φA∆(0),

[Kµ, φA∆(0)] = 0. (2.59)

We can derive the commutators [Q, φA∆(x)] for Q ∈ {Mµν , D,Kµ} using

φA∆(x) = e−iP ·xφA∆(0)e
iP ·x (2.60)

as well as the commutators (2.59). We can compute the action of Q ∈ {Mµν , D,Kµ}
on descendant operators using that we get descendant operators by acting on primary
ones with the momentum operators P µ and that we know the commutator of P µ

with the other operators in the conformal algebra (2.43).

Under a conformal transformation xµ → x̃µ(x) primary fields transform as:

• a scalar:

φ̃(x̃) =

∣∣∣∣∂x∂x̃
∣∣∣∣−∆/d

φ(x) (2.61)

where d is the spacetime dimension and ∆ the scaling dimension of the operator
and
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• a general Lorentz representation:

φ̃A(x̃) =

∣∣∣∣∂x∂x̃
∣∣∣∣−∆/d

LAB(R)φ
B(x) (2.62)

where the matrices LAB(R) form a representation of the Lorentz group and
Rµ

ν = Ω−1(x)∂x̃
µ

∂xν
is a spacetime dependent Lorentz transformation since

ηµνR
µ
ρR

ν
σ = (Ω−1(x))2ηµν

∂x̃µ

∂xρ
∂x̃ν

∂xσ
= ηρσ. (2.63)

For x̃µ(x) = xµ + ξµ(x) with the infinitesimal vector ξµ(x) from equation (2.41)
one can show that a primary field φA of scaling dimension ∆ transforms as

δφA∆(x) = −ξµ∂µφA∆(x)︸ ︷︷ ︸
orbital

+
i

2
Ωµν(M

µν)ABφ
B
∆(x)︸ ︷︷ ︸

Lorentz

−∆ω(x)φA∆(x)︸ ︷︷ ︸
scale

(2.64)

where

Ωµν(x) = ωµν − 2(xµbν − xνbµ), (2.65)

ω(x) =
1

d
(∂ · ξ) = λ− 2x · b. (2.66)

We will use these transformation rules in the next subsection to derive general
expressions for correlation functions in CFTs.

2.2.5 Correlation functions in conformal field theories

Correlation functions in CFTs are covered in Blumenhagen and Plauschinn’s book
[60]. Conformal invariance strongly restricts the form of correlation functions in
conformal field theories. They must be conformally invariant because they are ob-
servables. This means, if x → x̃(x) is a conformal transformation and OAi

i are
operators with dimensions ∆i and Lorentz labels Ai, then

〈ÕA1
1 (x̃1)ÕA2

2 (x̃2) . . . ÕAn
n (x̃n)〉 = 〈OA1

1 (x̃1)OA2
2 (x̃2) . . .OAn

n (x̃n)〉. (2.67)

Let us consider the different n point correlators specializing to Lorentz scalar
operators:

• Let O∆ be a scalar operator of scaling dimension ∆. Then the one point
function is

〈O∆(x)〉 = const. = C (2.68)
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by translational invariance. For a scale transformation x̃µ = λxµ, we get

C = 〈O∆(x̃)〉
(2.67)
= 〈Õ∆(x̃)〉

(2.61)
= λ−∆〈O∆(x)〉 = λ−∆C. (2.69)

Therefore, the one point correlator is

〈O∆ 6=0(x)〉 = 0, 〈O∆=0(0)〉 = C. (2.70)

• Now, consider the two point correlator of O1(x1) and O2(x2) with dimensions
∆1, ∆2. Due to translational invariance the correlator 〈O1(x1)O2(x2)〉 can
only be a function of the distance |x1−x2|, i.e. 〈O1(x1)O2(x2)〉 = F (|x1−x2|).
For a dilatation, we get

F (|x̃1 − x̃2|) = 〈O1(x̃1)O2(x̃2)〉
(2.67)
= 〈Õ1(x̃1)Õ2(x̃2)〉

(2.61)
= λ−(∆1+∆2)〈O1(x1)O2(x2)〉

= λ−(∆1+∆2)F (|x1 − x2|). (2.71)

Therefore, the two point function has the form

〈O1(x1)O2(x2)〉 =
C

|x1 − x2|∆1+∆2
. (2.72)

The correlator gets further restricted by invariance under special conformal
transformations. One can express a special conformal transformation Kµ as
Kµ = IP µI where I is an inversion,

I : x̃µ =
xµ

x2
. (2.73)

Imposing inversion invariance leads to

〈O1(x̃1)O2(x̃2)〉
(2.67)
= 〈Õ1(x̃1)Õ2(x̃2)〉

=
1

(x̃21)
∆1

1

(x22)
∆2

〈O1(x1)O2(x2)〉

(2.72)⇒ C

|x̃1 − x̃2|∆1+∆2
=

1

(x̃21)
∆1

1

(x22)
∆2

C

|x1 − x2|∆1+∆2
(2.74)

Using
x̃21x̃

2
2

|x̃1 − x̃2|2
=

1

|x1 − x2|2
(2.75)
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and plugging into equation (2.74), we obtain

(x̃21)
∆1 (x̃22)

∆2

|x̃1 − x̃2|∆1+∆2
=

[
x̃21x̃

2
2

|x̃1 − x̃2|2

]∆1+∆2
2

, (2.76)

which can only be generally true if

∆1 = ∆2. (2.77)

So we finally get the two point correlation function,

〈O∆1(x1)O∆2(x2)〉 =
Cδ∆1,∆2

|x1 − x2|2∆1
. (2.78)

• Also three point functions have a similar appearance by analogous arguments.
We apply translation and dilatation invariance to get

〈O1(x1)O2(x2)O3(x3)〉 =
C

|x1 − x2|2a|x1 − x3|2b|x2 − x3|2c
(2.79)

where
a+ b+ c =

∆1 +∆2 +∆3

2
. (2.80)

Next, we impose inversion invariance and get

2a = ∆1 +∆2 −∆3,

2b = ∆1 −∆2 +∆3,

2c = −∆1 +∆2 +∆3. (2.81)

• For four point functions the task becomes more difficult, since it is possible to
build conformally invariant cross ratios from four spacetime points:

η1 =
|x1 − x2||x3 − x4|
|x1 − x3||x2 − x4|

, η2 =
|x1 − x2||x3 − x4|
|x2 − x3||x1 − x4|

. (2.82)

Generally, four point functions are of the form

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 = F (η1, η2)
4∏
i<j

|xi − xj|γij (2.83)

where F (η1, η2) can be any function of the cross ratios and∑
j 6=i

γij = −2∆i. (2.84)
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For higher correlators almost nothing changes. There are more conformally in-
variant cross ratios, so F becomes a function of more variables, but the principle
remains the same. However, we can also show that all higher correlation functions
are fixed by two and three point functions. We use the operator product expansion
(OPE) in CFTs [32] that allows us to express the product of two operators at x and
y = 0 as a sum of local operators at y:

O1(0)O2(x) =
∑
i

C̃i(x)Oi(0)

=
∑

primaries k

(Ck(x)Ok(0) + Cµ
k (x)∂µOk(0) + Cµν

k (x)∂µ∂νOk(0) + . . .).

(2.85)

In the second line, we have used that the operators in a conformal field theory are
the primary operators and their descendants, which can be obtained by acting on
the primaries with derivatives.

Since scalar operators transform as Oi(x) → Õ(x) = Λ−∆iOi(Λ
−1x) under a

dilatation xµ → x̃µ(x) = Λxµ, we deduce

Cµ1...µn
k (x) → C̃µ1...µn

k (x) = Λ−∆1−∆2+∆k+nCµ1...µn
k (Λ−1x). (2.86)

We can fix the Cµ1...µn
k using conformal symmetry. We express the three point

correlator 〈O1(0)O2(x)Ok(y)〉 in two ways. First, we use the expression for the
three point function in equation (2.79) and consider the limit x→ 0:

〈O1(0)O2(x)Ok(y)〉 =
C12k

|x|∆1+∆2−∆k |y|∆1+∆k−∆2|x− y|∆2+∆k−∆1

=
C12k

|x|∆1+∆2−∆k |y|2∆k

(
1− 2x · y

y2
+
x2

y2

)∆1−∆2−∆k
2

=
C12k

|x|∆1+∆2−∆k |y|2∆k

(
1− ∆1 −∆2 −∆k

y2
x · y +O(x2)

)
(2.87)

Secondly, we use an OPE (2.85) and the two point correlator (2.78) to simplify the
three point correlator:

〈O1(0)O2(x)Ok(y)〉 =
∑
k′

Ck′(x)〈Ok′(0)Ok(y)〉+
∑
k′

Cµ
k′(x)〈∂µOk′(0)Ok(y)〉 . . .

=
Ck(x)

|y|2∆k
+

2Cµ
k∆kyµ

|y|2∆k+2
+ . . . . (2.88)
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Comparing equations (2.87) and (2.88), we find

Ck(x) =
C12k

|x|∆1+∆2−∆k
, (2.89)

Cµ
k (x) =

C12k

|x|∆1+∆2−∆k

∆1 −∆2 −∆k

2∆k

xµ, (2.90)

...

Cµ1...µn
k (x) =

C12k

|x|∆1+∆2−∆k
× (sth. fixed by conformal symmetry). (2.91)

Therefore, we can now recursively use equation (2.85) to reduce any n point func-
tion to two point and three point correlators. Consequently, higher correlators
are completely fixed by conformal symmetry. Note that we have only considered
Poincaré scalars so far. Obviously, finding the correlators for tensorial operators
will be harder, but the principle remains the same.

2.2.6 Anomalous scaling dimensions

We have seen in section 2.2.3 that the scaling dimensions of operators in N = 4 SYM
in R1,3 are essential quantities since they are the energies in R× S3, the boundary
of global AdS5. The time coordinate in the bulk and boundary of AdS5 agree, so
the scaling dimensions on the gauge theory side of the duality also correspond to
energies in the gravity theory.

The scaling dimension of an operator gets quantum corrections coming with pow-
ers of the effective coupling λ in the gauge theory. Interestingly, these quantum cor-
rections of the scaling do not have to come hand in hand with a non-zero β-function.
These corrections even appear in conformal theories such as N = 4 SYM for non-
chiral operators. For small λ, we can use perturbation theory to find the quantum
corrections to the scaling dimension of operators. For strong coupling, we have to
perform the calculation in the corresponding gravity theory.

On the gauge theory side of the duality, we can compute the dimensions of opera-
tors in perturbation theory for small λ in the following way: Take all fields Oa with
the same classical dimension ∆0, which is the mass dimension of the fields. Then,
we get

〈Oa(x)Ob(y)〉 =
1

|x− y|2∆0

(
δab − λγab log(Λ2|x− y|2) +O(λ2)

)
(2.92)

for a momentum cutoff Λ. Next, we diagonalize the matrix γab. The eigenvectors
Odiag
a are the operators with their corresponding eigenvalues as definite anomalous

dimensions ∆a = ∆0+λγa+O(λ2). We can phrase it differently. Let the dilatation
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operator act on the operators Oa to obtain

[D,Oa(0)] = −i∆abOb (2.93)

where ∆ab is a square matrix. The number of rows and colums in that matrix is the
number of degenerate operators Oa. The Odiag

a are the eigenvectors of this matrix
with corresponding eigenvalues ∆a. The γa are the first order corrections to the
anomalous dimensions.

A prominent example of an operator in N = 4 SYM is the Konishi field OK =

Tr (φiφi). Its classical scaling dimension ∆0 = 2 is altered by radiative corrections.
In the planar limit, these corrections come with powers of the t’Hooft coupling λ

and they are known up to high orders [18, 3, 6]. We give the result up to third order:

∆OK
= 2 +

3λ

4π2
− 3λ2

16π4
+

21λ3

256π6
+O(λ4). (2.94)

2.3 Basics of superstring theory

In this section, we briefly introduce some concepts of string theory which are nec-
essary to understand Maldacena’s decoupling argument and the derivation of the
AdS/CFT correspondence in section 2.5. We explain how supergravity arises as the
low energy limit in flat space. Moreover, we introduce the concept of D-branes and
their crucial role in modelling gauge theories in string theory. We will see how a
U(N) gauge theory arises from a stack of N D-branes. Everything we present in
this section can be found in [34].

2.3.1 The Polyakov action

It is well known that we can switch from the most natural choice of an action, the
Nambu-Goto action SNG, which measures the area of the worldsheet, to the Polyakov
action SP . This is a transition from a second order to a first order formalism. Let
us consider the bosonic sector of the theory:

SNG = − 1

2πα′

∫
dτdσ

√
det ∂aXµ∂bXνgµν , (2.95)

⇒ SP = − 1

4πα′

∫
dτdσ

√
−γγab∂aXµ∂bX

νgµν (2.96)

where τ , 0 ≤ σ < 2π are the time and space coordinate on the worldsheet, Xµ the
spacetime coordinates, gµν the spacetime metric and γ = det γab. The worldsheet
metric γab is an auxiliary field whose equations of motion δS/δγab = 0 must be
imposed additionally. If we solve these equations of motion and plug the solution
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for the metric in the Polyakov action, we get back the Nambu-Goto action equations
of motion.

The Polyakov action has the following symmetries:
• Poincaré invariance in spacetime,
• Weyl invariance on the worldsheet: γ′ab(τ, σ) = e2ω(τ,σ)γab(τ, σ),
• diffeomorphism invariance on the worldsheet: τ ′ = τ ′(τ, σ), σ′ = σ′(τ, σ) ⇒
X ′µ(τ ′, σ′) = Xµ(τ, σ).

We see that we have worldsheet symmetries parametrized by three functions:
τ ′(τ, σ), σ′(τ, σ), and ω(τ, σ). The metric γab(τ, σ) also has three degrees of free-
dom, so we can gauge fix the metric to be

γab = ηab =

(
−1 0

0 1

)
. (2.97)

In the flat case, gµν = ηµν , the equations of motion become

(
∂2σ − ∂2τ

)
Xµ = 0. (2.98)

These are the familiar equations of motion which are solved by left- and rightmov-
ing plane waves on the string. Upon quantisation the different plane wave mode
coefficients become the raising and lowering operators for the string states, αµ−|n|

and αµ|n|, n = 1, 2, . . ., satisfying [αµm, α
ν
m] = mδm+nη

µν . (Technically, we have to
normalise and worry about the minus sign in η00 to get proper raising and lowering
operators.) When we add the fermionic sector of the theory, the tachyonic state is
projected out and we get a massless gravity multiplet, (gµν , Bµν , φ), as lowest energy
(bosonic) excitations of the closed string. All higher bosonic excitations are massive.

2.3.2 String backgrounds

We can write down the action of the string propagating in the background generated
by the massless modes (gµν , Bµν , φ):

S = − 1

4πα′

∫
dτdσ

[√
−γγab∂aXµ∂bX

νgµν + εab∂aX
µ∂bX

νBµν − α′√−γRφ
]

(2.99)
where R is the Ricci scalar in two dimensions. The last term in this action is just
the Euler character

χ =
1

4π

∫
dτdσ

√
−γR = 2− 2g, (2.100)

which counts the number of holes g (i.e. the genus) in the two dimensional world-
sheet. The exponential of the action e−S contains the factor

(
eφ
)2(g−1) and since a

hole in the string worldsheet is interpreted as a loop in string quantum interactions,
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Figure 2.6: A D-brane with a string ending on it. Neumann-Neumann boundary
conditions in the directions µ = 0, 1, . . . , p, Dirichlet-Dirichlet boundary
conditions in the directions µ = p+ 1, . . . , d− 1.

we can identify gs ≡ eφ as string coupling.
Self-consistency requires the procedure of putting a string in a background to

preserve all symmetries. Imposing Weyl invariance leads to field equations for
gµν , Bµν , φ. This is how we obtain supergravity as a background. So, the low en-
ergy limit, α′ → 0, of 10d superstring theory, which is the theory of massless string
backgrounds, is supergravity in ten dimensions.

2.3.3 D-branes

For open strings the variation of the Polyakov action yields an additional boundary
term,

δSP,boundary = − 1

2πα′

∫
dτ Xµ × ∂σXµ|σ=2π

σ=0 , (2.101)

which has to vanish to obtain the equations of motion we stated above in equa-
tion (2.98). This provides two possibilities:

• Neumann boundary conditions: ∂σXµ = 0 at σ = 0 and 2π,
• Dirichlet boundary conditions: δXµ = 0 at σ = 0 and 2π.

We can choose Neumann or Dirichlet boundary conditions separately in every
direction (and also separately for the two ends of the string). For Dirichlet boundary
conditions the end of the string is fixed in the corresponding direction. So, if we
chose Neumann-Neumann boundary conditions (i.e. on both ends of the string) in
p spatial directions and Dirichlet-Dirichlet boundary conditions in the remaining
d − p − 1 directions, the endpoints of the string are confined to a hypersurface of
p spatial dimensions in which they can move. In the orthogonal directions, the
endpoints are fixed. Such an object, on which open strings can end, is called a
D-brane where D stands for Dirichlet. We can see an illustration of a D-brane in
figure 2.6.

The spectrum of states of an open string ending on a single D-brane in ten dimen-
sions contains the following massless bosons:
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• The parallel excitations αi−1|0, p〉, i = 0, . . . , p, where |0, p〉 is the vacuum with
the property Π̂µ|0, p〉 = pµ|0, p〉 and αµm|0, p〉 = 0 for m > 0. These form a
massless vector, a gauge potential of a U(1) gauge symmetry.

• The orthogonal excitations αa−1|0, p〉, a = p + 1, . . . , 9. These are Goldstone
bosons associated with the symmetry breaking of the ten dimensional Poincaré
invariance.

We can generalize this to N coincident D-branes. We get the following spectrum
on such a stack of branes:

• N2 massless vectors αi−1|jk, p〉, j, k = 1, 2, . . . , N are labels for the branes to
which the two ends of the string are attached, called Chan-Paton factors, and

• N2 sets of massless scalars αµ−1|jk, p〉.
We can write |jk, p〉 = λrjk|r, p〉, r = 1, 2, . . . , N2 such that λr form a basis of the

N × N matrices. One can show λa = (λa)†, i.e. the matrices span the Lie algebra
of U(N). We get a U(N) gauge theory on the worldvolume of the N branes. A
comprehensive review of D-branes are the lecture notes [59] by Polchinski.

2.4 Anti-de Sitter space and supergravity

In this section, we give a short introduction to Anti-de Sitter space. For the basic
facts see Maldacena’s review [48] or the article by Bayona and Braga with many
calculational details [5]. The main result of our treatment will be the insight that the
boundary of AdS5 with decompactified time coordinate is R×S3. This is, as we have
seen in section 2.2.3, conformally equivalent to R4 where we want to study gauge
theories. Furthermore, the isometries of AdS5 × S5 are the same as the symmetries
of N = 4 SYM which we have found to be SO(2, 4) × SO(6) in section 2.2.2. For
more details see, for example, Nastase’s review [55].

2.4.1 Embedding and coordinate representations of AdSd+1

AdSd+1 can be embedded into R2,d with coordinates Y−1, Y0, Y1, . . . , Yd and metric

ds2 = −Y 2
−1 − Y 2

0 +
d∑
i=1

Y 2
i . (2.102)

AdSd+1 is a hyperboloid in R2,d defined by

− Y 2
−1 − Y 2

0 +
d∑
i=1

Y 2
i = −L2 (2.103)
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where L is called the AdS-radius. One way to parametrize this space is given by the
global coordinates (ρ, t,Ωi):

Y−1 = L cosh ρ sin t,

Y0 = L cosh ρ cos t,

Yi = LΩi sinh ρ (2.104)

for 1 ≤ i ≤ n such that 0 ≤ ρ, 0 ≤ τ < 2π and Ωi are the usual coordinates on the
unit d-sphere such that

∑
iΩ

2
i = 1. By plugging in, we see that in these coordinates

the metric becomes

ds2 = L2
(
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

d−1

)
, (2.105)

where dΩd−1 is the usual metric on the unit (d − 1)-sphere. The factor of cosh2 ρ

in the (t, t) component of the metric can be interpreted as a gravitational potential
confining massive particles to the center of AdSd+1 near ρ = 0. (However, note
that there is no unambiguous way to define the centre, it depends on the choice of
coordinates. So, the statement really only says that massive geodesics cannot reach
the AdS boundary in a finite amount of time while massless geodesics can.)

The 2π-periodicity of the coordinate t leads to closed timelike curves, as the metric
becomes

ds2
ρ→0
= L2(−dt2 + dρ2 + ρ2dΩ2

d−1) (2.106)

in the limit ρ → 0. This means AdSd+1 becomes S1 × Rd near ρ = 0 where S1

is parametrized by the time coordinate t. We must unwrap this circle by allowing
−∞ < t < ∞ without identification to prevent causality issues. In topological
terms, we move to the universal covering space.

The Poincaré patch coordinates (xµ, u), µ = 0, . . . , d− 1 are defined by

u = Y−1 + Yd, v = Y−1 − Yd,
u

L
xµ = Y µ. (2.107)

We can use equation (2.103) to eliminate v. Upon switching to the new coordinates,
the metric becomes

ds2 = L2du
2

u2
+
u2

L2
dxµdxµ (2.108)

where dxµdxµ = −(dx0)2 +
∑d−1

i=1 (dx
i)2. Replacing z = L2

u
yields

ds2 =
L2

z2
(dz2 + dxµdxµ). (2.109)

Since the metric becomes singular at z = 0 the coordinates only describe either
z > 0 or z < 0. Assuming z > 0 implies Y−1 + Yd > 0. So, these coordinates do



2.4. ANTI-DE SITTER SPACE AND SUPERGRAVITY 37

not cover all AdSd+1, but only the so-called Poincaré patch. We can euclideanize by
taking x0 → ix0.

2.4.2 Boundary of AdSd+1

In Poincaré coordinates (2.109) the boundary of AdSd+1 is Minkowski space R1,d−1

at z → 0 as this corresponds to r → ∞. However, the Poincaré coordinates do not
cover all of AdSd+1. We can introduce yet another set of coordinates. We take the
metric from equation (2.105) and define

r = L sinh ρ. (2.110)

This replacement yields

ds2 = −(L2 + r2)dt2 +
L2

L2 + r2
dr2 + r2dΩ2

d−1. (2.111)

Factoring out (L2 + r2) and further replacing x = arctan r
L

results in

ds2 = −dt2 + dx2 + sin2 x dΩ2
d−1. (2.112)

The boundary at r → ∞, which corresponds to x = π
2
, is R × Sd−1 as the induced

metric on the boundary is given by

ds2∂AdSd+1
= −dt2 + dΩ2

d−1. (2.113)

So, we have seen that the boundary of Poincaré AdSd+1 is R1,d−1 while the bound-
ary of global AdSd+1 is R× Sd−1. To show those boundaries are conformally equiv-
alent, we inspect the Euclidean case,

d(log r)2 + dΩ2
d−1 =

1

r2
(dr2 + r2r2dΩ2

d−1) =
1

r2
dxidxi. (2.114)

Therefore, the two boundaries are related by a conformal rescaling r → log r. A Wick
rotation shows the equivalence of the Euclidean and Lorentzian case. Consequently,
conformal field theories are equivalent in R1,d and R × Sd−1 since conformal field
theories are not affected by conformal mappings. Hence, we can work in Poincaré
coordinates even though they do not cover all of AdSd+1.

2.4.3 Symmetries of AdS5 × S5

Although there is only an R × SO(1, d − 1) symmetry obvious in the Poincaré
metric (2.109), the symmetry group of AdSd+1 is even bigger. This can be seen in
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the definition as an embedding in R(2, d) in equation (2.103). In this definition, the
full symmetry group SO(2, d) is apparent.
AdS5 × S5 has an additional SO(6) symmetry from the S5 factor. The symme-

tries of AdS5 × S5 are therefore SO(2, 4) × SO(6). We recall that this was the
bosonic subgroup of the symmetry group of N = 4 SYM we derived in section 2.2.2.
SO(2, 4)× SO(6) has a six dimensional Cartan subalgebra since both SO(2, 4) and
SO(6) are rank 3 groups. We can already infer that each string state in AdS5 × S5

is specified by six quantum numbers and there will be an energy E corresponding
to the decompactified t direction in AdS5. Furthermore, there are two spins S1 and
S2 associated with the SO(2, 4) factor. The SO(6) factor gives rise to three spins
J1, J2, J3 corresponding to the string rotating in S5. So, a string state is

|string〉 = |E, S1, S2; J1, J2, J3〉. (2.115)

On the gauge theory side also operators and their equivalent states carry six labels.
We get the scaling dimension ∆ and two spins s1, s2 from the SO(2, 4) factor of the
bosonic subgroup of the symmetry group. Additionally, there are three R-charges
R1, R2, R3 corresponding to the R-symmetry SO(6). Therefore, an operator is given
by

O = O(∆, s1, s2;R1, R2, R3). (2.116)

The matching of the symmetries on both sides of the correspondence is a crucial
necessary condition for the ADS/CFT correspondence to hold.

2.4.4 P-branes in supergravity

Loosely speaking, p-branes are black holes extended in p spatial dimensions. They
are very massive and curve spacetime around them. They are 1/2 BPS, solitonic
solutions of ten dimensional supergravity, i.e. they break one half of the super-
charges Qα. Since we do not want to discuss supergravity in much detail, we refer
to Nastase’s teaching report [55] or Stelle’s review [65].

A p-brane has the symmetries

Rp+1︸︷︷︸
transl. on the brane

× SO(1, p)︸ ︷︷ ︸
Lorentz sym. on the brane︸ ︷︷ ︸

Poincaré sym. on the brane

× SO(9− p)︸ ︷︷ ︸
rot. in transv. dir.

, (2.117)

which are apparent in the following ansatz that solves the supergravity equations of
motion:

ds2 = ηµν
dxµdxν√
H(r)

+
√
H(r)dxmdxm (2.118)
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where µ = 0, 1, . . . p, m = p+1, . . . , 9. H(r) is a harmonic function of the coordinates
xm, but one can find that it only depends on the distance r2 = xmxm:

∆(9−p)H(xm) ∝ δ(9−p)(xm). (2.119)

The necessity to recover flat space far away from the brane for r → ∞ requires

H(r) = 1 +

(
L

r

)7−p

(2.120)

where L is related to the only dimensionful parameter

L7−p = Ngs(4π)
(5−p)/2Γ

(
7− p

2

)
α′(7−p)/2. (2.121)

For the special case of 3-branes the solution for the supergravity equations of
motion is

ds2 = ηµν
dxµdxν√
f(r)

+
√
f(r)dxmdxm (2.122)

where µ, ν ∈ {0, . . . , 3}, m ∈ {4, . . . 6}, r2 = xmxm, f(r) = 1 + L4

r4
and

L4

α′2 = 4πgsN = λ, (2.123)

which is the solution for N 3-branes. For r � L, the metric simplifies to

ds2
r�L
= ηµνdx

µdxν + dxmdx
m (2.124)

since √
1 +

L4

r4
= 1 +O

(
L4

r4

)
,

1√
1 + L4

r4

= 1 +O
(
L4

r4

)
. (2.125)

Therefore, we have 10d free supergravity in Minkowski space far away from the
brane. For r � L, the metric becomes

ds2
r�L
=

r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + L2dΩ2

5 (2.126)

since

1√
1 + L4

r4

=
r2

L2
+O

(
r4

L4

)
,

√
1 +

L4

r4
=
L2

r2

(
1 +O

(
r4

L4

))
. (2.127)
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Let us replace z = L2/r. Then, we find

ds2 =
L2

z2
ηµνdx

µdxν +
L2

z2
dz2 + L2dΩ2

5

=
L2

z2
(ηµνdx

µdxν + dz2) + L2dΩ2
5

= ds2AdS5
+ ds2S5 . (2.128)

Hence, close to the branes the metric looks like AdS5×S5 with AdS5 and S5 having
a common radius L.

For the Polyakov action in the AdS5 × S5 background, we can factor out the
common L2 and get the prefactor

L2

4πα′ =

√
λ

4π
. (2.129)

Therefore, 1/
√
λ is the parameter counting quantum loops in the string worldsheet

theory. Consequently, if the coupling λ in the gauge theory in the planar limit is
large, the coupling in string theory is small.

2.5 Maldacena’s decoupling argument

One important discovery in the course of the second string revolution in the mid
1990s was Polchinski’s insight that D-branes in string theory, i.e. extended objects
on which strings can end due to Dirichlet boundary conditions, and p-branes in
supergravity are in fact the same thing [58]. This is due to the fact that D-branes
carry mass as well as charge and therefore excite bulk gravity modes. This motivates
to look at a stack of 3-branes in ten dimensional space from two different points of
view. Firstly, we take the open string point of view and consider the theory arising
from open strings ending on N D3-branes. Secondly, we will look at the 3-branes
as supergravity solutions and study closed strings in the background deformed by
the branes. We will see, that in the low energy limit, α′ → 0, the theory of open
strings on the stack of D-branes splits into two sectors. The same happens to closed
strings in the p-brane supergravity background in the low energy limit. Thus, we
can motivate the identification of N = 4 SYM and type IIB superstring theory in
AdS5 × S5.

Let us work out the details. From the open string point of view, D-branes are
extended objects in spacetime on which strings can end. As we have seen in sec-
tion 2.3, N branes give rise to N = 4 SYM SU(N) gauge theory on the worldvolume
of the branes in the low energy limit. In this limit, the string mass scale ms =

1√
α′ is

larger than any occurring excitation. So, the low energy limit corresponds to α′ → 0.
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Closed strings live in the bulk and bulk excitations interact with the excitations on
the D-branes. For example, two open strings can join to form a closed string and
leave the brane. Hence, the action af the theory has the form

S = Sbrane + Sint + Sbulk. (2.130)

We want the theories on the brane and bulk to decouple in order to split the theory
into two sectors. One can show that the interaction terms are

Sint ∝ gsα
′. (2.131)

Therefore, these interactions drop out in the low energy limit α′ → 0. Moreover,
in this limit the theories on the brane and in the bulk simplify. On the brane, we
get N = 4 SYM as we have seen in section 2.3. In the bulk, type IIB string theory
reduces to type IIB supergravity.

Based on our treatment of heuristic motivations of the gauge/string duality in
section 2.1, we know that we can approach the same situation from a different
viewpoint. So secondly, consider closed strings in the background given by the
p-brane solution of supergravity seen in section 2.4.4. The background metric is
given by equation (2.122). Therefore, we obtain a redshift factor

√
gtt =

(
1 +

L4

r4

)− 1
4

∼

{
1, r � L
r
L
, r � L

. (2.132)

Consequently, the energy of an object observed at a certain distance r � L and at
infinity, Er and E∞, are related via

Er
E∞

=

√
gtt(∞)

gtt(r)
r→0
=

L

r
⇒ E∞ =

r

L
Er. (2.133)

Therefore, as an object approaches the D-branes, r → 0, its energy appears to be
lower and lower. Thus, the low energy limit of the theory contains both massless
particles in the bulk and particles close to r = 0. In the low energy limit, the two
sectors of the N 3-brane supergravity solution, r � L and r � L, decouple. Bulk
massless excitations are decoupled from the particles close to r = 0 since the latter
are trapped by the gravitational potential in the AdS5 × S5 region which we have
discovered in the global coordinates (2.105) of AdS-space.

Naively, we only expect the supergravity solution to be valid for the long range
description of branes since we do not expect supergravity to hold on short distances.
For supergravity to be a valid approximation of the string theory in the AdS5 × S5
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background, its radius must be large in comparison to the string length ls:

L =
√
α′(4πgsN)

1
4 �

√
α′ = ls. (2.134)

Since we are in the low energy limit, α′ → 0, we must have λ = gsN � 1. We also
need the string coupling gs to be small, gs → 0, and therefore N → ∞. For N → ∞,
gs → 0 and gsN = const. � 1, superstring theory in the AdS5 × S5 background
(2.128) is approximated by classical supergravity.

We can motivate the limit gs → 0 also from our heuristic description in sec-
tion 2.1.1 where we have argued that the perturbative 1/N expansion on the field
theory side corresponds to a genus expansion on the string side with expansion pa-
rameter 4πgs = g2YM = λ

N
. For a sensitive expansion, we need a small expansion

parameter gs.

This leads us to the weakest form of the AdS/CFT conjecture. We identify the
two decoupled sectors from both viewpoints. On both sides, one of the sectors is
supergravity in ten dimensional flat space. When identifying the two descriptions of
the other sector, we claim: N = 4 SYM with gauge group SU(N), N → ∞ in R1,3 in
the planar limit with large t’Hooft coupling λ = g2YMN � 1 is dual to classical type
IIB supergravity in AdS5 × S5. In this formulation, we might find disagreements if
we go to full string theory, i.e. when λ is not large and, therefore, ls 6� L.

AdS/CFT is a strong/weak correspondence. The gauge theory is strongly coupled
since the coupling is λ � 1 as we have seen in section 2.1.1. On the string theory
side, the worldsheet theory coupling is 1√

λ
as we saw in equation (2.129). In this

limit, the string theory is therefore weakly coupled. Perturbation theory on the
gauge theory side is only valid for λ� 1, which is the opposite case. But then, the
supergravity description on the other side of the correspondence breaks down. This
is the reason why the correspondence is called a duality. Both sides of the duality
have the same symmetries. The symmetries of AdS5 agree with the superconformal
symmetry of the gauge theory while the symmetries of S5 agree with theR-symmetry
on the gauge theory side.

There are generalisations of the duality which claim that it also holds under less
restrictive constraints. A modestly strong form states that the duality holds under
gs → 0, N → ∞, but any fixed λ. This means, since λ is now arbitrary and we
are not necessarily in the supergravity limit, we get string theory rather than just
supergravity on the side of the closed string point of view. However, since gs → 0

we still have non-interacting, classical type IIB string theory. On the gauge theory
side, we have arbitrary coupling in the planar limit. In particular, the perturbative
regime becomes accessible and we can perform calculations using Feynman diagrams.
So, the claim of this version of the AdS/CFT correspondence is that N = 4 SYM
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N = 4 SYM Type IIB strings in AdS5 × S5

N → ∞, λ large planar limit, non-perturbative classical supergravity

N → ∞, λ small planar limit, perturbative classical string theory

N small, λ large non-planar, non-perturbative quantum supergravity

N small, λ small non-planar, perturbative quantum string theory

Table 2.1: Different limits of the two independent parameters in the AdS/CFT cor-
respondence. Recall that the string parameters are related to N and λ
via 4πgs = λ/N and L2/l2s = L2/α′ =

√
λ.

with gauge group SU(N) in R1,3 in the planar limit is dual to classical type IIB
superstring theory in AdS5 × S5.

The strongest form of the AdS/CFT correspondence conjectures that N = 4 SYM
with gauge group SU(N) in R1,3 is exactly equivalent to full quantum type IIB su-
perstring theory in AdS5×S5. Here, both gs and N are arbitrary. However, it is not
possible to test this to date since we do not know how to perform non-perturbative
quantization of string theory in general. An overview of the different limits and their
effects on the gauge theory and the string theory side can be found in table 2.1.

Since the boundary of AdS5 in global coordinates is R × S3, we can think of the
gauge theory being located on the boundary of the Anti-de Sitter space. The time
coordinate in the bulk and on the boundary agree as we have seen in section 2.2.6.
Furthermore, we have seen in equation (2.53) that the energies in a conformal field
theory in R × S3 correspond to scaling dimensions in R1,3. This is why we can
conclude that for operators OA in N = 4 SYM with gauge group SU(N) and
corresponding string states |OA〉 in AdS5 × S5 we have

〈OA(x)OB(y)〉 =
CδA,B

(x− y)2∆A

(
λ, 1

N

) ⇔ Hstring|OA〉 = EA

(
R2

α′ , gs

)
|OA〉 (2.135)

where
∆A

(
λ,

1

N

)
= EA

(
L2

α′ , gs

)
(2.136)

if the parameters are identified in the way we have seen before:

λ =
L4

α′2 ,
λ

N
= 4πgs. (2.137)

In the following we will use equation (2.136) to check the correspondence by calcu-
lating the energies and scaling dimensions on the two sides and compare them.





3 The BMN limit and plane-wave
string/gauge theory duality

In 2002, Berenstein, Maldacena and Nastase (BMN) derived in an ifluential paper
that N = 4 SYM and type IIB string theory have an overlapping perturbative
regime, in which results of calculations on both sides of the duality can be com-
pared [16]. They established the so-called plane-wave string/gauge theory duality
by showing that operators with high R-charges on the gauge theory side of the
AdS/CFT duality correspond to strings in a plane-wave background. In the limit
of large R-charges a new perturbative expansion parameter λ′ arises on both sides
of the duality. Significantly, the plane-wave string/gauge theory duality is not a
strong/weak correspondence. Since the same parameter appears on both sides, the
weak and strong coupling regimes of the two theories coincide. The key idea is that
for a string solution with large R-charge J we get

E − J = E2(λ
′) +

1√
J
E4(λ

′) + . . .
J→∞→ E2(λ

′) (3.1)

So in the large J limit with λ′ constant, we see that the lowest order approximation
becomes exact. The reason for this simplification on the string theory side of the
correspondence is that a particle moving very fast on the S5 component of AdS5×S5

effectively sees a plane-wave background, the so-called Penrose limit of AdS5 × S5.
Therefore, strings with high R-charges will live in a simplified background which
leads to a quadratic action. Metsaev and Tseytlin [51, 52] found that we can quantize
strings in this background, unlike general strings in AdS5×S5, by going to lightcone
coordinates. Consequently, we can explore the string side of the duality beyond the
supergravity limit as we know how to handle real stringy excitations. On the gauge
theory side the Penrose limit corresponds to a new non-t’Hooftian double scaling
limit, called BMN limit, which sends λ→ ∞, J → ∞ while keeping λ/J2 constant.
An accessible and comprehensive review of the subject was written by Plefka [57].

In the first section of this chapter, , we describe how the plane-wave geometry
arises from AdS5×S5 in the Penrose limit. This explains why particles with a large
R-charge effectively live in a plane-wave background.

In section 3.2, we introduce two conserved charges p+ and p−, the lightcone mo-
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menta, which are a natural choice in lightcone coordinates. We derive their relation
to the equivalent set of charges given by the energy E and the R-charge J . Based
on those new charges we can judge which states will be present after taking the
Penrose limit and which part of the spectrum will be projected out.

In section 3.3, we translate the effect of the Penrose limit to the gauge theory
operators. We can conclude what kind of limit we have to take on the gauge theory
side to project out the same parts of the spectrum. The resulting limit on the gauge
theory side is, as we already metioned, called the BMN limit.

In section 3.4, we quantize type IIB string theory in a plane-wave background
along the lines of Metsaev and Tseytlin [51, 52]. We will focus on the bosonic sector
and stress the conceptual similarities to the lightcone quantization of superstrings in
flat space [34]. We will arrive at having complete knowledge about the perturbative
quantum theory of strings in the plane-wave background, i.e. we know all states and
their energies.

In section 3.5, we will match the string theory states we have found to operators
in the N = 4 SYM. We check agreement between the string theory energies and the
gauge theory scaling dimensions. We will see that the scaling dimensions come as a
perturbative expansion in the new effective coupling λ′ = λ/J2. In order to check
the agreement beyond the small λ′ case, we must perform a resummation of graphs
from all orders of the t’Hooft expansion to obtain an all-loop result for the scaling
dimension on the gauge theory side.

In the last section of this chapter, section 3.6, we consider a specific example
to show how graphs of all genera contribute to the resummation from the previous
section. We also present how the effective parameter g2 = J2/N arises as an effective
genus expansion parameter.

3.1 The Penrose limit of AdS5 × S5

Using the metric of AdS5 in global coordinates (2.105), we can write the metric of
AdS5 × S5 as

ds2Ads5×S5 = L2(− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
3

+ cos2 θ dψ2 + dθ2 + sin2 θ dΩ′
3
2). (3.2)

We want to find the easiest string solution with high R-charge. Firstly, this means
that we restrict ourselves to a pointlike string solution, i.e. the spacetime coordinates
of the string only depend on the worldsheet time τ , but not spacelike worldsheet co-
ordinate σ. Secondly, the string is stationary in the centre of the AdS5 component of
spacetime. Thirdly, the pointlike string moves on a great circle of the S5 component



3.1. THE PENROSE LIMIT OF ADS5 × S5 47

and by Symmetry we can locate the great circle in the equatorial plane. Altogether,
we consider a massless particle stationary in the centre of AdS5 and moving on a
great circle in the S5. The lightlike trajectory of the particle, parametrized by τ , is
given by

t = t(τ), ψ = ψ(τ), ρ = 0 and θ = 0. (3.3)

The equations of motion, derived using the Polyakov action in AdS5 × S5, are

ṫ2 = ψ̇2. (3.4)

Here, the dot denotes a derivative with respect to τ . We define x̃± = 1
2
(t± ψ) and

then introduce the coordinates

x+ =
x̃+

µ
, x− = µL2x̃−, ρ =

r

L
and θ =

y

L
. (3.5)

The parameter µ will be useful later to examine the flat space limit. Clearly, the
lightlike trajectory

x̃− = τ, x̃+ = c = const. ⇔ t = c+ τ, ψ = c− τ (3.6)

solves the equations of motion (3.4).

We transform the metric (3.2) to the coordinates defined above in equation (3.5).
We are interested in the metric close to the lightlike trajectory, so we choose the
limit L→ ∞, the so-called Penrose limit. Using

cosh2 ρ = 1 +
r2

L2
+O

(
L−4

)
, cos2 θ = 1− y

L2
+O

(
L−4

)
(3.7)

and
t = µx+ +

1

µL2
x−, ψ = µx+ − 1

µL2
x− (3.8)

to transform the metric to the new coordinates and to take the scaling limit L→ ∞,
we obtain

ds2AdS5×S5 =L2

[
−
(
1 +

r2

L2
+O

(
L−4

))(
µdx+ +

1

µL2
dx−

)2

+
1

L2
dr2 +

(
r2

L2
+O

(
L−4

))
dΩ2

3

+

(
1− y2

L2
+O

(
L−4

))(
µdx+ − 1

µL2
dx−

)2

+
1

L2
dy2 +

(
y2

L2
+O

(
L−4

))
dΩ′

3
2

]
=L2

[
−µ2(dx+)2 + µ2(dx+)2

]
+
[
− 2dx+dx− + µ2r2(dx+)2 + dr2 + r2dΩ3

2
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− 2dx+dx− − µ2y2(dx+)2 + dy2 + y2dΩ′
3
2
]
+O(L−2)

=− 4dx+dx− − µ2(y2 + r2)(dx+)2 + dy2 + dr2 +O(L−2). (3.9)

We have introduced four new coordinates y = (y1, . . . , y4) and r = (r1, . . . , r4) using

dr2 = dr2 + r2dΩ3
2, r2 = r2, (3.10)

which is the Euclidean metric in Cartesian coordinates on the left hand side and
spherical coordinates on the right hand side. The equivalent statement is true for
y. Taking the limit L → ∞ in equation (3.9), we see that the AdS5 × S5 metric
(3.2) becomes the plane-wave metric,

ds2AdS5×S5 → ds2pw = −4dx+dx− − µ2(xi)2(dx+)2 + (dxi)2, (3.11)

in the Penrose limit. We introduced the coordinates xi, i = 1, . . . , 8, to replace
ri = xi and yi = xi+4 for i = 1, . . . , 4. For µ → 0, equation (3.11) becomes the
Minkowski metric. Consequently, the auxiliary parameter µ controls the flat space
limit.

3.2 Lightcone momenta

In the coordinates (3.2), the energy is the conserved charge corresponding to time
translations, i.e. it is given by E = i∂t. The angular momentum is J = −i∂ψ. The
two charges are conserved because the metric does not explicitly depend on t and
ψ. Hence, t and ψ are cyclic coordinates of the Lagrangian associated with the
Nambu-Goto or Polyakov action. To translate these two charges to the dual gauge
theory we recall that the gauge theory lives on the R×S3 boundary of AdS5. Because
the time coordinates in the bulk and boundary are the same, the energy in the bulk
corresponds to the energy on the boundary. However, we have seen in section 2.2.3
that the conformal mapping from R× S3 to R1,3 identifies time translations on the
cylinder to scale transformations on the plane. So the energy E of a string state
corresponds to the scaling dimension ∆ of the corresponding operator in N = 4

SYM. The rotations in the S5 factor correspond to R-symmetry transformations in
the gauge theory. This can be inferred from comparing the symmetry groups. The
symmetry transformations of S5 are associated to the SO(6) factor of the AdS5×S5

symmetry. The R-symmetry corresponds to the same factor in the bosonic subgroup
of the symmetry group of N = 4 SYM. Hence, J corresponds to an R-charge on the
gauge theory side of the duality.

Since both t and ψ are cyclic coordinates, x+ and x− are cyclic, too. The two
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associated conserved charges are equivalent to E and J . We can relate E and J to
the conjugate momenta of x±. The plane-wave metric is

gpw =

−µ2(xi)2 −2 0

−2 0 0

0 0 18×8

 ⇒ g−1
pw =

 0 −1
2

0

−1
2

−µ2(xi)2

4
0

0 0 18×8

 . (3.12)

Therefore, the conjugate momenta are

Hlc ≡ 2p− = 2g−−p− + 2g−+p+

= −µ
2(xi)2

2
(−i∂−)− (−i∂+)

=
µ2(xi)2

2

i

µL2
(∂t − ∂ψ) + iµ(∂t + ∂ψ)

= iµ(∂t + ∂ψ) +O(L−2)

= µ(E − J) +O(L−2), (3.13)

2p+ = 2g+−p− =
i

µL2
(∂t − ∂ψ)

=
E + J

µL2
. (3.14)

In equation (3.13), Hlc is the lightcone Hamiltonian. Comparing the above expres-
sion for this Hamiltonian to equation (3.1) from the introduction, we see that the
large R-charge limit simplifies E− J of a string state to Elc/µ. This quantity Elc/µ

is the exact difference of the energy and the angular momentum of a state in the
large J limit. In section 3.5, we will see that it only depends on a new parameter
λ′, which is finite in the Penrose limit. It is clear from equation (3.14) that generic
string states have vanishing p+ in the Penrose limit L → ∞ unless J and L are
correlated as

J ∼ L2. (3.15)

For the lightcone Hamiltonian Hlc to remain finite in the Penrose limit, we can
conclude from

Hlc = µ(E − J) that E ≈ J (3.16)

since otherwise Hlc diverges.

3.3 The Penrose limit in the dual gauge theory

We want to know what the Penrose limit L→ ∞ corresponds to in the N = 4 SYM
in order to translate it from the string theory to the gauge theory. In section 3.1 we
have seen that close to the geodesic of a pointlike string moving on great circles in
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S5 the metric simplifies to the plane-wave metric. Therefore we expect a simplified
string spectrum, which we will confirm in section 3.4. In order to compare the string
theory results to gauge theory, we have to take the same limit on the gauge theory
side, i.e. the same part of the spectrum needs to be projected out on both sides of
the duality. We use the two crucial relations (2.24) and (2.123) that connect the
parameters on the gauge and string theory side,

L4

α′2 = g2YMN, 4πgs = g2YM . (3.17)

In equation (3.15), we saw that the R-charge has to obey J ∼ L2. Furthermore,
the string coupling gs is not affected by the Penrose limit and is therefore to be
held fixed. The two relations in equation (3.17) then tell us that the Penrose limit
translates to the gauge theory according to

N → ∞, J ∼
√
N and gYM = fixed. (3.18)

Let us stress that this limit is different from the standard planar t’Hooft limit (2.22).
In the planar limit, we have gYM → 0 while N → ∞ such that λ = g2YMN is fixed.
In contrary, the t’Hooft coupling λ diverges in the limit (3.18) we consider here.

Translating the right hand side of equation (3.13) to the gauge theory side leads
to the crucial correspondence in the plane-wave string/gauge theory duality:

Hlc

µ
=̂ ∆− J. (3.19)

From equation (3.16) we get that only operators with

∆ ≈ J (3.20)

will remain after taking the Penrose limit since only those correspond to finite light-
cone energy states.

3.4 Quantization of the type IIB plane-wave
superstring

When quantizing the string in the plane-wave background (3.11), we have to consider
that the plane-wave supergravity solution is supported by a Ramond-Ramond (RR)
5-form flux [19]. This RR background field forces us to work in the Green-Schwarz
formulation defined by the worldsheet fields xµ(τ, σ) and θAα (τ, σ), a 10d vector
and two Majorana-Weyl spinors with µ = 0, . . . , 9, A = 1, 2 and α = 1, . . . , 16.
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The quantization of strings in this background was accomplished by Metsaev and
Tseytlin [51, 52] in 2002 and is most conveniently performed in lightcone gauge. In
this gauge choice, the problem is dramatically simplified. A precise treatment of the
procedure is too extensive for this dissertation, so we refer to the given references
for details. We restrict ourselves mainly to the bosonic sector and focus on the
crucial steps. First, we note that the process is along the lines of quantizing the
superstring in a flat background in lightcone gauge [34]. In the limit µ = 0, we can
always restrict to the flat case and we should therefore be able to reproduce the
known results.

We first use diffeomorphism invariance of the Polyakov action to go to conformal
gauge. In consequence, the worldsheet metric γab is given by

γab = eφηab. (3.21)

Residual conformal invariance allows us to set x+(τ, σ) = p+τ . After using κ-symmetry
to gauge away half of the fermionic degrees of freedom as in the flat case, we obtain
a free, quadratic action

S =
1

2πα′

∫
dτdσ

[
1

2
(∂ax

i)2 − 1

2
m2(xi)2 + iθ1(∂τ + ∂σ)θ

1

+ iθ2(∂τ − ∂σ)θ
2 − 2mθ1Γ1234θ

2

]
(3.22)

with i = 1, . . . , 8 as before. We set m = µp+ to simplify the notation. The bosonic
mass term, for example, comes from

g++η
ab∂ax

+∂bx
+ = −µ2(xi)2(∂τ (p

+τ))2 = −µ2(p+)2(xi)2 = −m2(xi)2. (3.23)

The fermionic mass term arises from the coupling of the fermions to the RR 5-form.
We see that we get the action for eight massive bosons and two massive fermions.
For the bosons, the equations of motion become

(∂2τ − ∂2σ +m2)xi = 0 (3.24)

subject to the closed string boundary condition xi(τ, σ+1) = xi(τ, σ) where we have
chosen the length of the string to be 1. We clearly see that the flat case arises if we
set m = 0.

In order to absorb the dependence on the string tension for convenience (see [52]),
we perform a rescaling that involves x+ → x+, x− → 2πα′x−, xi →

√
2πα′xi and

θi →
√
2πα′θi. The dependence is restored by taking p+ → 2πα′p+ ⇒ m→ 2πα′m.
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Furthermore, the metric (3.11) becomes

dspw → 2πα′dspw. (3.25)

Therefore, the action (3.22) does not depend on the string tension any more. The
equations of motion (3.24) are then solved by an oscillator mode decomposition
ansatz which is very similar to the flat case,

xi(σ, τ) = xi0 cosmτ + pi0
m

sinmτ +
∑
n6=0

i

ωn

(
αine

−i(ωnτ−knσ) + α̃ine
−i(ωnτ+knσ)

)
, (3.26)

where ωn = sign(n)
√
k2n +m2 and kn = 2πn. A similar ansatz is made for the

fermions. Since the complex conjugate of equation (3.26) is

x†i = x†i0 cosmτ + p†i0
m

sinmτ +
∑
n 6=0

−i
ωn

(
α

†i
n e

i(ωnτ−knσ) + α̃
†i
n e

i(ωnτ+knσ)
)

= x†i0 cosmτ + p†i0
m

sinmτ +
∑
n 6=0

i

ω−n

(
α

†i
n e

−i(ω−nτ−k−nσ) + α̃
†i
n e

−i(ω−nτ+k−nσ)
)
,

(3.27)

reality of the xi, x†i = xi, implies that

x†i0 = xi0, p†i0 = pi0,

α
†i
n = αi−n, α̃

†i
n = α̃i−n. (3.28)

Now, we follow the usual procedure of canonical quantization known from the flat
case [34]. Based on the mode expansion ansätze for the bosons and fermions, we can
calculate the corresponding conjugate momenta, e.g.

pi = ẋi = pi0 cosmτ −mxi0 sinmτ +
∑
n6=0

(
αine

−i(ωnτ−knσ) + α̃ine
−i(ωnτ+knσ)

)
, (3.29)

and impose canonical commutation and anticommutation relations to get the algebra
of the mode expansion coefficients αin, α̃in and the fermionic equivalents. For the
bosonic sector, this procedure yields

[pi0, x
j
0] = −iδij, [αim, α̃

j
n] = 0,

[αim, α
j
n] = [α̃im, α̃

j
n] =

1

2
ωmδm+n,0δ

ij (3.30)
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with i, j = 1, . . . 8 and m,n 6= 0. We introduce the operators

ain =

√
2

|ωn|
αin and ãin =

√
2

|ωn|
α̃in. (3.31)

For n ≥ 1 the ai−n = a†in are creation operators and the ain are annihilation operators
since

[ain, a
j
−n] = δij for n ≥ 1. (3.32)

Moreover, for the zero modes we rewrite

ai0 =
1

2m
(pi0 − imxi0). (3.33)

Consequently, we get the commutator

[ai0, a
†j
0 ] = δij, (3.34)

which shows that the a†i0 are creation operators and the ai0 are annihilation operators.

We can write the lightcone Hamiltonian from equation (3.13) as

Hlc =
1

p+

∫ 1

0

dσ
[
(pi)2 − (∂σx

i)2 +m2(xi)2 + fermions
]

= µ(ai0)
†ai0 +

1

α′p+

∞∑
n=1

√
n2 + (α′p+µ)2

(
ai−n︸︷︷︸
a†in

ain + ãi−n︸︷︷︸
ã
†i
n

ãin
)
+ fermions. (3.35)

Here, we can identify the number of bosons in the nth mode,

N b
n ≡ α

†i
n α

i
n. (3.36)

If we let N f
n be the equivalent number operator for fermions, the full expression for

the lightcone Hamiltonian turns out to be

Hlc = µ(N b
0 +N f

0 ) +
1

α′p+

∞∑
n=1

√
n2 + (α′p+µ)2

(
N b
n + Ñ b

n +N f
n + Ñ f

n

)
= µN0 + µ

∞∑
n=1

√
1 +

n2

(α′p+µ)2
(Nn + Ñn) (3.37)

where N f
n , Ñ

f
n count the two types of fermions and Nn = N b

n +N f
n , Ñn = Ñ b

n + Ñ f
n .

Finally, the Virasoro constraints coming from the equations of motion of the aux-
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iliary worldsheet metric amount to the physical state condition

(N − Ñ)|phys〉 = 0, where N =
∞∑
n=1

(N b
n +N f

n )

and Ñ =
∞∑
n=1

(Ñ b
n + Ñ f

n ). (3.38)

In conclusion, we can state that we have full control over the spectrum of the free
superstring in the plane-wave background supported by a RR 5-form. The vacuum
state |0〉 is defined as being annihilated by all bosonic annihilation operators ai0, ain,
ãin,with n ≥ 1 and by all the fermionic ones. All states are formed by acting with
creation operators a†i0 , ai−n, ãi−n, with n ≥ 1 and the ferionic equivalents on the
vacuum respecting the physical state condtition (3.38). The energies of these states
are then given by

Elc = µN0 + µ
∞∑
n=1

√
1 +

n2

(α′p+µ)2
(Nn + Ñn). (3.39)

The next steps are obvious now that we have full knowledge about the string spec-
trum in the Penrose limit. We will try to identify the gauge theory operators corre-
sponding to the string theory states. If we manage to compute the scaling dimensions
∆ of the operators, we can compare them to the lightcone energies Ecl of the dual
string states via the relation (3.19), which states

Elc

µ
= ∆− J. (3.40)

3.5 Plane-wave strings from N = 4 SYM

In section 3.3, we have seen that the Penrose limit corresponds to (3.18),

N → ∞ and J → ∞ with J2

N
and gYM fixed (3.41)

in the dual gauge theory. On this side of the duality, we call it BMN limit. We have
also seen that, in order to have finite lightcone momentum p− = 1

2
Hlc in the BMN

limit, we must require equation (3.20),

∆ ≈ J, (3.42)

to hold for the dual gauge theory operators. We recall from section 2.2.1 that
the dual gauge theory, N = 4 SYM with gauge group SU(N) in 4d, contains a
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vector Aµ, four Majorana fermions ψa, ψa and six scalars φi, i = 1, . . . , 6. The
conserved charge J is an R-charge, one of the three Cartan generators of the SO(6)
R-symmetry, which we have examined in section 2.2.2. The R-symmetry rotates the
six scalars φi among themselves and also the four spinors as SO(6) ∼= SU(4). We
chose J to rotate around the equator of S5 which corresponds to the SO(2) ⊂ SO(6)

subgroup rotating only φ5 and φ6 in the gauge theory.

Since we are interested in operators with ∆ − J ≈ 0, we first consider the op-
erator with ∆ − J = 0. This operator is Tr [ZJ ] where Z = φ5 + iφ6. Since this
is a chiral primary, its scaling dimension is protected from quantum corrections by
supersymmetry [26, 1, 2]. This stability under quantum corrections makes chiral
primary operators crucial in the BMN plane-wave string/gauge theory duality. We
have seen in section 2.2.6 that the scaling dimension gets quantum corrections com-
ing with powers of λ. Therefore, it seems useless to consider the BMN limit as it
includes λ→ ∞, which makes quantum corrections absolutely uncontrollable. Nev-
ertheless, since chiral primaries remain uncorrected, their scaling dimension in the
BMN limit is equal to the classical dimension and they can be conformal primaries
or descendants. For example, in the scalar sector the chiral primaries are

Ok
CP = Ci1i2...ikTr [φi1φi2 . . . φik ] (3.43)

where Ci1i2...ik is symmetric and traceless. The scaling dimension of an operator
Ok
CP is

∆Ok
CP

= k, (3.44)

which is simply its classical mass dimension. Even though the chiral primary op-
erators have such a remarkably convenient property, Berenstein, Maldacena and
Nastase did not restrict themselves to these. Their crucial insight was, that we can
perturb chiral primaries in a controlled way such that the resulting operators still
receive small quantum corrections in the BMN limit.

Let us first explore the available operators that satisfy (3.42), ∆ ≈ J . We build
operators out of the building blocks in table 3.1. Tr [ZJ ] is of the form (3.43), satisfies
(3.42) and, therefore, is a chiral primary surviving the BMN limit. By inserting a
small number of operators with ∆−J = 1 in a string of Z’s we form so-called BMN
operators, e.g.

Tr [DµZ . . . ZφiZ . . . ZDνZ . . . ZψAZ . . . Z], (3.45)

These are not always chiral primaries. We will see at the end of this section that
BMN operators receive quantum corrections coming with powers of the counting
parameter

λ′ =
g2YMN

J2
, (3.46)
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φi Aµ Z Z ψA ψȦ

∆0 1 1 1 1 3/2 3/2

J 0 0 1 -1 1/2 -1/2

∆0 − J 1 1 0 2 1 2

Table 3.1: Classical scaling dimensions and R-charges of fundamental building
blocks of operators in N = 4 SYM. Here, i = 1, . . . , 4, µ = 1, . . . , 4
and A = 1, . . . , 8.

which is finite in the BMN limit. Therefore, we have perturbed the chiral primary
Tr [ZJ ] in a controlled way, such that its scaling dimension is still well bahaved in
the BMN limit.

Let us use the crucial relation from equation (3.19),

Hlc

µ
=̂ ∆− J, (3.47)

in order to match states in the plane-wave string theory with operators in the gauge
theory. We have already identified the unique operator with ∆ − J = 0, Tr [ZJ ],
which corresponds to the plane-wave string vacuum state |0, p+〉 satisfying

Hlc|0, p+〉 = 0. (3.48)

The operators satisfying ∆ − J = 1 correspond to string states with Elc = µ

according to equation (3.47). We derived three types of string excitations with
this energy in section 3.4. We match these excitations with operators in the gauge
theory:

a†i0 |0, p+〉 =̂
1√
NJ

Tr (φiZJ) for i = 5, . . . , 8, (3.49)

a†µ0 |0, p+〉 =̂
1√
NJ

Tr (DµZZ
J−1) for µ = 1, . . . , 4, (3.50)

θ†0A|0, p+〉 =̂
1√
NJ

Tr (ψAZJ) for A = 1, . . . , 8 (3.51)

where θ†0A is the fermionic zero mode creation operator, which we have not explicitly
mentioned before as we focused on the bosonic sector above. Now, we can see what
the operators corresponding to the higher string excitations look like. For example,
for ∆− J = 2 the energy is Elc = 2µ and one possible state/operator pairing is

a†µ0 a
†ν
0 |0, p+〉 =̂ 1√

(J − 2)NJ

J−2∑
l=0

Tr [DµZZ
lDνZZ

J−2−l]. (3.52)
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Next, let us consider the non-protected first stringy states

ai−nã
j
−n|0, p+〉, (3.53)

which fulfil the physical state condition (3.38). The corresponding operators are
called Oij

n and should have

∆Oij
n
− J =

Elc

µ
= 2

√
1 +

n2

(α′p+µ)2
. (3.54)

In order to check this we must translate the string parameters α′, p+, µ to gauge
theory parameters. First, we use equation (3.14),

2p+ =
E + J

µL2
∼ 2J

µL2
⇒ (µp+)2 =

J2

L4
. (3.55)

Next, we make use of L4 = g2YMNα
′2, which leads to

1

(α′p+µ)2
=

L4

J2α′2 =
gYM2N

J2
≡ λ′. (3.56)

Hence, to first order, we obtain

Elc

µ
= 2

√
1 + n2λ′ ≈ 2 + n2λ′ +O(λ′) (3.57)

as a function of the newly introduced quantum correction counting parameter λ′,
which is finite in the BMN limit. Interestingly, we see in equation (3.56) that pertur-
bation theory around λ′ = 0 is exactly the opposite limiting case of the Minkowski
limit µ→ 0, since µ→ ∞ ⇔ λ′ → 0.

Now, we have to find the operators Oij
n and calculate their dimensions on the

gauge theory side and see if we get the same result as in equation (3.57). Berenstein,
Maldacena and Nastase managed to show that that the relevant operators are [16]

Oij
n =

1√
JNJ

J∑
l=0

Tr [φiZ lφlZ
J−l]e2πinl/J (3.58)

with

∆Oij
n
= J + 2 +

g2YMN

J2
n2 +O(g4YM) = J + 2 + λ′n2 +O(λ′2). (3.59)

The two results obtained from calculations on both sides of the duality yield the
same result to order λ′. In order to check if we get the same result to all orders in
gauge theory on the one hand and, on the other hand, in equation (3.57) for the
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plane-wave string spectrum, we have to sum diagrams of the full planar perturbation
expansion on the gauge theory side. This is necessary if the parameter λ′ is not
small and the expansion in equation (3.57) is not appropriate. This resummation
of graphs beyond the planar limit was done for two loops in [35] and then, under
certain assumptions, to all orders in [62]. This resummation confirmed the square
root in equation (3.57) from the gauge theory side. We conclude that the evidence
seems to strongly support that the scaling dimensions in BMN gauge theory in the
planar sector reproduce the energy spectrum of the free plane-wave string.

3.6 Non-planarity in BMN gauge theory

In this last section of the chapter, we consider a specific operator as an example
to show how graphs of all genera contribute to the resummation from the previous
section, i.e. that we have to go beyond the planar limit to find the full expressions
to all orders in the effective genus counting parameter. We stress again that the
BMN limit is a new type of scaling limit and, in particular, it is non-t’Hooftian.
Graphs of all genera survive when we take N ∼ J2 → ∞, which was shown in
[47, 22]. Non-planar graphs are still suppressed by factors of 1/N . However, this
is balanced by the growing combinatorics of diagrams involved if J → ∞ at the
same time. We will see an explicit example of this balancing shortly. In addition to
the parameter λ′ controlling the quantum expansion, there is a second parameter
arising, the tuneable quotient

g2 ≡
J2

N
, (3.60)

which controls the effective genus expansion. Therefore, we conclude that BMN
gauge theory is governed by two independent parameters, λ′ and g2.

In order to show that non-planar diagrams contribute to the scaling dimension in
the BMN limit and to see how g2 emerges, we consider an explicit example. We
compute the two point function

〈TrZJ(x)TrZJ
(0)〉, (3.61)

which is the simplest two point correlator in BMN gauge theory. From the action
of N = 4 SYM (2.32), we can read off the scalar propagator

〈(φi)ab(x)(φj)cd(y)〉0 =
g2YMδ

ij

8π2(x− y)2
δadδbc. (3.62)

So, we can effectively reduce the 2-pt. function (3.61) to the correlator of a Gaussian
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matrix model

〈TrZJ(x)TrZJ
(0)〉 =

(
g2YM

8π2|x|2

)J ∫
dZdZ TrZJ TrZJ

e−Tr [ZZ] (3.63)

where the measure is given by

dZdZ =
N∏

a,b=1

dReZabd ImZab
π

(3.64)

and the matrix model correlator is

〈O〉MM ≡
∫
dZdZO eTr [ZZ]. (3.65)

The propagator is given by

〈ZabZcd〉MM = δadδbc. (3.66)

This is essentially the matrix model we know from section 2.1.1.

The correlator of interest 〈TrZJZJ〉MM can be computed for finite N . This was
done in [47] and we quote the result here which is

〈TrZJTrZJ〉MM = JNJ

{
1 +

[(
J

4

)
+

(
J

3

)]
1

N2

+

[
21

(
J

8

)
+ 49

(
J

7

)
+ 36

(
J

6

)
+ 8

(
J

5

)]
1

N4
+ . . .

}
.

(3.67)

To find this is foremost a combinatorical problem: Take two necklaces with J beads
each, one with white and one with black beads. Now, connect white and black beads
with lines pair wise. The genus of a diagram is the genus of the surface with minimal
genus on which the diagram can be drawn without crossing lines. Then, we notice
that in the N, J → ∞, J2/N = const. limit the correlator becomes

1

JNJ
〈TrZJTrZJ〉MM → 1 +

1

24

J4

N2
+

21

8!

J8

N4
+ . . .

[47]
=

2N

J2
sinh

(
J2

2N

)
. (3.68)

We see that in the BMN limit the genus counting parameter g2 = J2/N appears. In
each summand only the term with highest power in J survives. Hence, only a small
amount of the original non-planar graphs survive the limit. However, at every order
(genus) there is a diagram contributing to the correlator. Therefore, the BMN limit
is non-planar. Even the lowest order terms in λ′ contain diagrams that are highly
non-planar, i.e. which have a high genus.
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We have seen in section 2.5 that Maldacena originally proposed the correspondence
to hold in the planar limit only and that today, however, we believe it to hold more
generally. Since graphs of all genera contribute in the BMN limit, we have found a
possibility to test the correspondence beyond the planar limit. If we find that the
resummation of graphs of all topologies on the gauge theory side yields the right
expressions for the scaling dimensions to all powers in J2/N , then this confirms the
stronger formulation of the AdS/CFT correspondence.



4 String solutions with large spins
and R-charges

As we have seen in chapter 3, Berenstein, Maldacena and Nastase [16] found a sub-
sector of string states and the corresponding gauge theory operators enabling them
to test the AdS/CFT conjecture beyond the supergravity limit. Inspired by their
success, string states with high R-charges were studied extensively in the following
years. The BMN string is a very simplified model describing a pointlike string,
stationary in AdS5 and only rotating on a geodesic in S5. The model can be gener-
alised in many ways. Gubser, Klebanov and Polyakov studied closed, folded strings,
which are extended and spinning in the AdS5 component of AdS5 × S5. They also
discussed extended, folded strings spinning in one plane of the S5 component [37].
We will discuss these classical solutions of the superstring σ-model in AdS5 × S5 in
section 4.1.

Frolov and Tseytlin made several contributions to the field. They studied clas-
sical multi-spin solutions and derived the corresponding energies in terms of the
BMN effective coupling λ/J2 in the BMN limit. Partly, they confirmed results that
had already been obtained on the gauge theory side [9]. They also introduced a
semi-classical quantization procedure for rotating strings in AdS5 × S5 [28, 30]. In
section 4.2, we will study the folded and circular string rotating in two orthogonal
planes of the S5, which were derived in [29, 31].

4.1 The GKP string

After Berenstein, Maldacena and Nastase made their discovery [16] that highR-charge
strings effectively live in a simple plane-wave background, the Penrose limit of
AdS5 × S5, and thus could be quantized, it remained unclear if this success was
a hint of a deeper general mechanism that works for all high spin or high R-charge
strings. Gubser, Klebanov and Polyakov found that large spin operators correspond
to certain solitonic solutions of the AdS5 × S5 σ-model. We will study their deriva-
tion [37] in detail and, thus, see another useful application of considering states with
large charges.
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4.1.1 Strings with large spin in AdS5

Let us first consider a string only rotating in AdS5. This is different from the
rotations in S5 that were considered in the BMN approach. In particular, spinning
in the AdS5 component is not connected to supersymmetry in the dual gauge theory
model. We use the global AdS5 metric (3.2),

ds2AdS5
= L2(− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ3

2)

= L2(− cosh2 ρ dt2 + dρ2 + sinh2 ρ (dγ2 + cos2 γ dϕ2
1 + sin2 γ dϕ2

2)), (4.1)

and consider a string that is stretched in the ρ-direction with the maximum ra-
dial coordinate ρ0. Moreover, the string is rotating on the equator of S3, i.e. the
trajectory is given by

t = eτ, ρ = ρ(σ), γ = 0, ϕ1 = eωτ. (4.2)

The Lagrangian L (not the Lagrangian density) in the Nambu-Goto action is

L = − 1

2πα′

∫ 2π

0

dσ
√
−h (4.3)

where h = det(hab) and hab = ∂ay
m∂by

ng
(AdS5)
mn is the pull-back of the spactime

metric to the worldsheet, a, b ∈ {σ, τ}, ym = (t, ρ, γ, ϕ1, ϕ2). This yields

L = − L2

2πα′

∫ 2π

0

dσ

√
(cosh2 ρ ṫ2 − sinh2 ρ ϕ̇2

1)ρ
′2

= − L2

2πα′

∫ 2π

0

dσ
dρ

dσ

√
cosh2 ρ ṫ2 − sinh2 ρ ϕ̇2

1

= − 4L2

2πα′

∫ ρ0

0

dρ

√
cosh2 ρ ṫ2 − sinh2 ρ ϕ̇2

1 (4.4)

where the factor 4 appears since the segment from ρ = 0 to ρ = ρ0 is integrated
four times when we integrate around the folded string once. The maximum radial
coordinate ρ0 is given by

cosh2 ρ0 = ω2 sinh2 ρ0

⇔ coth2 ρ0 = ω2. (4.5)

The conserved charges corresponding to the two cyclic coordinates t and ϕ1 are the
energy E and spin S,

E = −∂L
∂ṫ

=
4L2

2πα′

∫ ρ0

0

dρ
cosh2 ρ ṫ√

cosh2 ρ ṫ2 − sinh2 ρ ϕ̇2
1

,
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S =
∂L

∂ϕ̇1

=
4L2

2πα′

∫ ρ0

0

dρ
sinh2 ρ ϕ̇1√

cosh2 ρ ṫ2 − sinh2 ρ ϕ̇2
1

. (4.6)

For the explicit parametrisation we introduced in equation (4.2), we get

L = − 4L2

2πα′

∫ ρ0

0

dρ

√
cosh2 ρ− ω2 sinh2 ρ,

E =
4L2

2πα′

∫ ρ0

0

dρ
cosh2 ρ√

cosh2 ρ− ω2 sinh2 ρ
,

S =
4L2

2πα′

∫ ρ0

0

dρ
ω sinh2 ρ√

cosh2 ρ− ω2 sinh2 ρ
. (4.7)

Now, considering the case of large ω, we get

tanh ρ0 =
1

ω
� 1 ⇒ ρ0 ≈

1

ω
(4.8)

from equation (4.5). Consequently, the string is not stretched a lot along the radial
coordinate of AdS5. Therefore, we can approximate the metric for ρ ≈ 0 since the
string is located in the centre of AdS5. In this limit, the metric in global coordinates
reduces to

ds2AdS5
= L2(− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ3

2)

≈ L2(−dt2dρ2 + ρ2dΩ3
2), (4.9)

which is simply flat space. This yields the Lagrangian

L = − 4L2

2πα′

∫ 1/ω

0

dρ

√
ṫ2 − ρ2ϕ̇2

1. (4.10)

According to equation (4.7), the conserved charges are

E =
4L2

2πα′

∫ 1/ω

0

dρ
1√

1− ρ2ω2

=
4L2

2πα′

∫ π/2

0

dx

ω

cosx√
1− sin2 x

(substituted ωρ = sinx)

=
L2

α′ω
=

√
λω (4.11)

and

S =
4L2

2πα′

∫ 1/ω

0

dρ
ωρ2√

1− ρ2ω2

=
4L2

2πα′

∫ π/2

0

dx

ω

cosx sin2 x

ω
√
1− sin2 x

(substituted ωρ = sinx)
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=
4L2

2πα′ω2

∫ π/2

0

dx sin2 x

=
L4

2α′ω2
=

√
λ

2ω2
(4.12)

such that we can now write down the sought-after expression for the energy in terms
of spin,

E2 = E2(S) = L22S

α′ = 2
√
λS. (4.13)

However, we see from equation (4.12) that for large ω we have S �
√
λ. We are

more interested in the large spin limit since we want to know if the large spin limit
is similar to or different from the large R-charge limit.

So, let us consider the case
ω = 1 + 2η (4.14)

and examine the limit when η → 0, which corresponds to S �
√
λ. From this

expression for ω, we obtain

ρ0 = arcoth(1 + 2η) ≈ 1

2
ln 1

η
+O(η). (4.15)

An expansion of the expressions for energy and spin in equation (4.7) yields [37]

E =

√
λ

2π

(
1

η
+ ln

(
1

η

)
+O(η)

)
,

S =

√
λ

2π

(
1

η
− ln

(
1

η

)
+O(η)

)
,

⇒ E − S =

√
λ

π
ln
(
S√
λ

)
+ const. +O

(√
λ

S

)
(4.16)

where we have used

ln
(
1

η

)
+O(η) = ln

(
2πS√
λ

)
= ln

(
S√
λ

)
+ const. (4.17)

and

O(η) = O

(√
λ

S

)
. (4.18)

So, the anomalous dimension grows logarithmically with the spin S. In what fol-
lows, we want to contrast this with the extended, folded string rotating in the S5

component, which we examine in section 4.1.2.
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4.1.2 String with large spin in S5

Consider a string whose centre of mass is not moving in S5. However, we assume it
is rotating and, therefore, it is correspondingly being stretched. The centre of mass
is assumed to be located at the north pole of the S5 with the metric

ds2S5 = L2(cos2 θ dψ2 + dθ2 + sin2 θ dΩ′
3
2)

= L2(cos2 θ dψ2 + dθ2 + sin2 θ(dγ2 + cos2 γ dφ2
1 + sin2 γ dφ2

2)). (4.19)

We use the following ansatz for the trajectory:

t = eτ, ρ = 0, γ = eωτ, θ = θ(σ) (4.20)

while the string is stationary in AdS5 and the other angles in S5 are constant. The
Virasoro constraints are

0 = ẏmẏm + y′my′m + ẋmẋm + x′mx′m,

0 = ẏmy′m + ẋmx′m (4.21)

as we will derive later in equation (4.35). The ym are contracted with g
(AdS5)
mn (y),

the xm with g
(S5)
mn (x). The first constraint yields

0 = −ṫ2 + θ′
2 − sin2 θ γ̇2

⇒ θ′
2
= e2(1− ω2 sin2 θ)

⇒ dθ

dσ
= e
√
1− ω2 sin2 θ (4.22)

while the second one is identically fulfilled. The Lagrangian of the Polyakov action
in conformal gauge is

L =
1

4πα′

∫ 2π

0

dσ (∂ay
m∂aym + ∂bx

m∂axm)

=
L2

4πα′

∫ 2π

0

dσ (−ṫ2 + sin2 θ γ̇2 + θ′
2
) (4.23)

Consequently, the energy E and theR-charge are the canonically conjugate momenta
of t and γ,

E = −∂L
∂ṫ

=
L2

2πα′

∫ 2π

0

dσ ṫ

=
L2

2πα′

∫ 2π

0

dσ e =
4L2

2πα′

∫ θ0

0

dθ
1√

1− ω2 sin2 θ
,
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J =
∂L

∂γ̇
=

L2

2πα′

∫ 2π

0

dσ sin2 θ γ̇

=
L2

2πα′

∫ 2π

0

dσ eω sin2 θ =
4ωL2

2πα′

∫ γ0

0

dγ
sin2 θ√

1− ω2 sin2 θ
(4.24)

where we used equation (4.22) to change the integration variable from σ to γ. γ0 is
the maximum value of γ before the string folds back onto itself and is given by

sin γ0 =
1

ω
. (4.25)

Again, choosing ω = 1 + 2η and considering the limit η → 0 ⇒ θ0 = π/2 we find
[37]

E − J → 2L2

πα′ =
2
√
λ

π
. (4.26)

So, in contrast to E−S ∼
√
λ lnS for the extended, folded string rotating in AdS5,

we find E−J ∼
√
λ for the string rotating in the S5 component. We will generalise

and deepen our treatment of the string spinning in S5 in the next section.

4.1.3 Gauge theory implications

The result from equation (4.16) translated to gauge theory means that

∆− S =

√
λ

π
ln
(
S√
λ

)
+O(S0), (4.27)

i.e. the anomalous dimensions ∆ of the operators corresponding to the strings spin-
ning in AdS5 grow logarithmically with the spin S. This is a result known from gauge
theories, even for non-supersymmetric ones, for which it was argued that anomalous
dimensions scale like lnS to all orders both perturbatively and non-perturbatively
[43, 45]. It is exciting to see the same behaviour appearing on the string side of the
AdS/CFT correspondence.

The existence of operators with large spin S, unlike those of large R-charge J ,
does not depend on the supersymmetry of the gauge theory. Consequently, they are
also present in gauge theories, such as QCD. In N = 4 SYM, large S operators look,
for example, like

Tr
[
φi∇(µ1 · · ·∇µS)φ

i
]
, (4.28)

which has bare dimension ∆0 = S + 2. In QCD, anomalous dimensions, such as
∆ = (S + 2) + f(λ) lnS, could be probed experimentally. Gubser, Klebanov and
Polyakov have succeeded in calculating the dimensions for large spin S finding a
soliton solution of the σ-model of type IIB strings in AdS5 × S5 in a classical way.
Consequently, we suspect that highly excited gauge theory operators are identified
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with σ-model solitons in a more general context.
In [28], Frolov and Tseytlin perform a semi-classical quantization of superstrings

in AdS5×S5. They start with the classical solution of a string rotating in AdS5 and
moving on a great circle of S5, i.e. the solution has both angular momentum S and
R-charge J . The energy becomes a function of the two charges. The string one-loop
corrections to the classical energy are derived for small σ-model coupling 1/

√
λ� 1

and the E − S ∼ lnS behaviour in the S 6= 0 sector is recovered. Consequently,
the findings of GKP are confirmed at one loop and the perturbative gauge theory
expectation for the scaling dimension is met.

4.2 Strings spinning in the S5 component

In this section, we generalise the GKP ansatz of a string spinning in the S5 compo-
nent of AdS5×S5 from section 4.1.2. We focus on the results by Frolov and Tseytlin
[29, 31], which have been reviewed by Plefka [56] and Tseytlin himself in [69]. The
purpose is to build up the necessary understanding of the string side large R-charge
solutions in order to see the connection to spin chains in gauge theories, which we
will study in chapter 5.

4.2.1 The general setting

The AdS5 × S5 metric (3.2) is

ds2Ads5×S5 = L2(ds2AdS5
+ ds2S5),

ds2AdS5
= − cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ3

2,

ds2S5 = cos2 θ dψ2 + dθ2 + sin2 θ dΩ′
3
2,

dΩ3
2 = dγ2 + cos2 γ dϕ2

1 + sin2 γ dϕ2
2,

dΩ′
3
2 = dγ2 + cos2 γ dφ2

1 + sin2 γ dφ2
2. (4.29)

Let us denote ym = (ρ, t, γ, ϕ1, ϕ2) and xm = (ψ, θ, γ, φ1, φ2) with m = 1, . . . , 5.
Then, the bosonic part of the Polyakov action in conformal gauge is

SP = −
√
λ

4π

∫
dτdσ ηab

(
∂ay

m∂by
ng(AdS5)

mn (y) + ∂ax
m∂bx

ng(S
5)

mn (x)
)

(4.30)

where we have used that L2/α′ =
√
λ. Examining SP using the metric (4.29),

we observe that the Lagrangian associated with the Polyakov action has six cyclic
coordinates (t, ϕ1, ϕ2, ψ, φ1, φ2), i.e. the Lagrangian does not explicitly depend on
these coordinates. We have seen these symmetries before when we derived the
isometry group of AdS5×S5 in section 2.4.3. The conserved charges associated with
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the six cyclic coordinates are the Cartan generators of SO(2, 4) × SO(6) and they
are given by

E =
∂L

∂ṫ
=

√
λ

∫ 2π

0

dσ

2π
cosh2 ρ ṫ,

S1 = − ∂L

∂φ̇1

=
√
λ

∫ 2π

0

dσ

2π
sinh2 ρ cos2 γ ϕ̇1,

S2 = − ∂L

∂φ̇2

=
√
λ

∫ 2π

0

dσ

2π
sinh2 ρ sin2 γ ϕ̇2,

J1 = − ∂L

∂φ̇1

=
√
λ

∫ 2π

0

dσ

2π
sin2 θ cos2 γ φ̇1,

J2 = − ∂L

∂φ̇2

=
√
λ

∫ 2π

0

dσ

2π
sin2 θ sin2 γ φ̇1,

J3 = −∂L
∂ψ̇

=
√
λ

∫ 2π

0

dσ

2π
cos2 θ ψ̇. (4.31)

The charges E, S1 and S2 are related to the SO(2, 4) factor of the symmetry while
J1, J2 and J3 are associated with SO(6). Therefore, S1 and S2 are angular momenta
while J1, J2 and J3 are R-charges.

Reintroducing the worldsheet metric hab into the action before choosing the gauge
hab = ηab, we can derive the Virasoro constraints, which are given by the equations
of motion for the worldsheet metric. The action before gauge fixing reads

Sungauged = −
√
λ

4π

∫
dτdσ

√
hhab

(
∂ay

m∂by
ng(AdS5)

mn (y) + ∂ax
m∂bx

ng(S
5)

mn (x)
)

(4.32)

where h = | deth|. Now, use that

δ
√
h = −

√
h

2
habδh

ab (4.33)

to conclude that the Virasoro constraints are given by

0 =
δSungauged

δhab

= −
√
h

2
habh

cd(∂cy
m∂dym + ∂cx

m∂dxm) +
√
h(∂ay

m∂bym + ∂ax
m∂bxm) (4.34)

where the xm and ym are contracted with the appropriate metric g(AdS5)
mn and g

(S5)
mn ,

respectively. Upon gauge fixing, hab = ηab ⇒ h = 1, this yields two independent
equations,

0 = ẏmẏm + ẋmẋm + y′my′m + x′mx′m,

0 = ẏmy′m + ẋmx′m. (4.35)
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Figure 4.1: Trajectory of a pointlike string stationary in the centre of AdS5×S5 and
moving on a great circle of S5.

The Virasoro constraints have to be implemented in addition to the equations of
motion, which are given by

∂a

(
g(AdS5)
mn (y)∂ayn

)
= 0 and ∂a

(
g(S

5)
mn (x)∂axn

)
= 0. (4.36)

We conclude that, even though AdS5×S5 is highly symmetric, string theory in this
space is very non-trivial. The equations of motion are non-linear and therefore very
hard to quantize (as we cannot just expand solutions in plane waves and use the usual
canonical quantization). This prevents us from directly checking the conjectured
duality to N = 4 SYM.

From the AdS/CFT correspondence, we know that string solutions in AdS5 × S5

correspond to operators in N = 4 SYM with gauge group SU(N). The relation
between string state energies and SYM operator scaling dimensions is given by
equation (2.136),

∆

(
λ,

1

N

)
= E

(
L2

α′ , gs

)
. (4.37)

We derive several string solutions beyond the pointlike BMN ansatz and express
their energies E in terms of the other conserved charges, E = E(S1, S2, J1, J2, J3).
Then, we will try to identify these energies with gauge theory operators with an
identical set of charges (S1, S2, J1, J2, J3).

4.2.2 Classical BMN solution revisited

We briefly repeat the classical solution from section 3.1 of a pointlike string station-
ary in AdS5 and rotating on a great circle in S5. The symmetries of S5 allow us to
choose this great circle to be the equator. The trajectory is displayed in figure 4.1.
In contrast to earlier, we introduce another parameter κ to parametrize the solution.
We will see its dependence on the parameters from section 3.1, J and λ, later. The
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rotating point particle on S5 is given by

t = κτ, ρ = 0, θ = 0, ψ = κτ (4.38)

with the other coordinates vanishing. We can now compute the conserved charges
from equation (4.31) to be

E =
√
λ

∫ 2π

0

dσ

2π
cosh2 ρ ṫ =

√
λκ,

J3 =
√
λ

∫ 2π

0

dσ

2π
cos2 θ ψ̇ =

√
λκ (4.39)

while the other charges vanish. Hence, the angular momentum on the sphere, J , is

J = J3 =
√
λκ ⇒ κ =

J√
λ
, (4.40)

which is exactly the parameter held constant in the BMN limit, J → ∞ and λ→ ∞
but J2/λ constant.

4.2.3 Spinning string solutions

Let us consider an extended string stationary in AdS5 and rotating in two orthogonal
planes if we think of the S5 being embedded in R6, i.e. the string rotates within an
S3 ⊂ S5. This has first been discussed by Frolov and Tseytlin [31, 29], whose
treatment we will follow in this section. The trajectory of the string is given by

t = κτ, ρ = 0, θ =
π

2
, ψ = 0, γ = γ(σ), φ1 = ω1τ, φ2 = ω2τ. (4.41)

Then, the bosonic part of the Polyakov action (4.30) is

SP = −
√
λ

4π

∫
dτdσ

(
ṫ2 − cos2 γ φ̇1

2 − sin2 γ φ̇2
2 + γ′2

)
= −

√
λ

4π

∫
dτdσ

(
κ2 − cos2 γ ω2

1 − sin2 γ ω2
2 + γ′2

)
(4.42)

The integrand is now independent of τ . In consequence, we have a one parameter
problem, which yields an equation of motion for γ,

0 =
d

dσ

∂L

∂γ′
− ∂L

∂γ

= −
√
λ

2π

(
γ′′ − cos γ sin γ (ω2

1 − ω2
2)
)

⇒ 0 = γ′′ + ω2
21 cos γ sin γ (4.43)
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where we have defined ω2
21 = ω2

2 − ω2
1. We integrate equation (4.43) using an

integrating factor,

γ′′ = −ω2
21 cos γ sin γ

⇒ γ′′γ′ = −ω2
21 cos γ sin γ γ′

⇒ d

dσ
(γ′)2 = −ω2

21

d

dσ
sin2 γ

⇒
(
dγ

dσ

)2

−
(
dγ

dσ

∣∣∣∣
σ=0

)2

= ω2
21

(
sin2 γ

∣∣
σ=0

− sin2 γ
)

⇒ dγ

dσ
= ω21

√
q − sin2 γ (4.44)

where

q = sin2 γ
∣∣
σ=0

+
1

ω2
21

(
dγ

dσ

∣∣∣∣
σ=0

)2

(4.45)

is a constant of integration. The first of the Virasoro constraints (4.35) amounts to

0 = ẏmẏm + ẋmẋm + y′my′m + x′mx′m

= −κ2 + ω2
1 cos2 γ + ω2

2 sin2 γ + γ′2

(4.2.3)
= −κ2 + ω2

1 cos2 γ + ω2
2 sin2 γ + ω2

21

(
q − sin2 γ

)
= −κ2 + ω2

1 + ω2
21q

⇒ q =
κ2 − ω2

1

ω2
21

(4.46)

while the second constraint gives no further restriction. The three non-zero charges
are

E =
√
λ

∫ 2π

0

dσ

2π
cosh2 ρ ṫ2 =

√
λκ,

J1 =
√
λ

∫ 2π

0

dσ

2π
sin2 θ cos2 γ φ̇1 =

√
λω1

∫ 2π

0

dσ

2π
cos2 γ,

J2 =
√
λ

∫ 2π

0

dσ

2π
sin2 θ sin2 γ φ̇2 =

√
λω2

∫ 2π

0

dσ

2π
sin2 γ. (4.47)

Therefore, we can conclude that

√
λ =

J1
ω1

+
J2
ω2

. (4.48)

In the following, we consider three separate cases. First, we consider a folded string
associated with q < 1. In the second, trivial case for ω1 = ω2, we obtain a circular
string with equal charges J1 and J2. Finally, we study circular strings associated
with the solution for q > 1.
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The folded string

If the spinning, closed string is folded, it reaches some maximum angle γ0 before it
folds back onto itself. Let us choose the coordinate σ such that σ = 0 is at one of
the two points where the string folds. In consequence, we get an explicit expression
for the integration constant q:

γ|σ=0 = σ0,
dγ

dσ

∣∣∣∣
σ=0

= 0
(4.45)⇒ q = sin2 γ0. (4.49)

From this expression, it is obvious that the folded string corresponds to the case
q < 1.

We introduce two elliptic integrals that will appear in our further discussions,

E(x) =

∫ π/2

0

dγ

√
1− x sin2 γ and K(x) =

∫ π/2

0

dγ
1√

1− x sin2 γ
. (4.50)

Now, let us find a simplified expression for J1. Since the string folds back onto itself,
we only have to integrate over σ such that 0 ≤ γ ≤ γ0 is only covered once, i.e.∫ 2π

0

dσ (. . .) = 4

∫ γ0

0

dγ
dσ

dγ
(. . .) = 4

∫ γ0

0

dγ

ω21

√
sin2 γ0 − sin2 γ

(. . .) (4.51)

where we have made use of equation (4.2.3). Now, we can derive an expression for
the R-charge J1,

J1 =

√
λω1

2π

∫ 2π

0

dσ

2π
cos2 ψ

=
4
√
λω1

2π

∫ γ0

0

dγ
cos2 γ

ω21

√
sin2 γ0 − sin2 γ

(substitute sin γ = sin γ0 sinχ⇒ cos γ dγ = sin γ0 cosχdχ)

=
2
√
λω1

πω21

∫ π/2

0

dχ sin γ0 cosχ︸ ︷︷ ︸
=dγ cos γ

√
1− sin2 γ0 sin2 χ︸ ︷︷ ︸

=cos χ

1√
sin2 γ0 − sin2 γ0 sin2 χ

=
2
√
λω1

πω21

∫ π/2

0

dχ

√
1− sin2 γ0 sin2 χ

=
2
√
λω1

πω21

E(sin2 γ0). (4.52)

Furthermore, we get another relation with the help of the same substitution

2π =

∫ 2π

0

dσ = 4

∫ γ0

0

dγ

ω21

√
sin2 γ0 − sin2 γ
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=
4

ω21

∫ π/2

0

dχ
sin γ0 cosχ√

1− sin2 γ0 sin2 χ

1√
sin2 γ0 − sin2 γ0 sin2 χ

=
4

ω21

∫ π/2

0

dχ√
1− sin2 γ0 sin2 χ

=
4

ω21

K(sin2 γ0) (4.53)

Let us put everything together. From equation (4.31) we get κ = E/
√
λ and we

can therefore write equations (4.52) and (4.53) as

ω1

ω21

=
π

2
√
λ

J1
E(sin2 γ0)

,
κ

ω21

=
π

2
√
λ

E

K(sin2 γ0)
. (4.54)

Using equation (4.48) we get
J1
ω1

=
√
λ− J2

ω2

(4.55)

which yields

K(q)− E(q) =
πω21

2

(
1− J1√

λω1

)
=
πω21

2

(
1− 1√

λ

(√
λ− J2

ω2

))
=

πJ2

2
√
λ

ω21

ω2

⇒ ω2

ω21

=
π

2
√
λ

J2
K(q)− E(q)

. (4.56)

Finally, the Virasoro constraint 4.46 gives us

q2 =
κ2 − ω2

1

ω2
21

=
π2

4λ

E2

K(q)2
− π2

4λ

J2
1

E(q)2

⇒ 4qπ

π2
=

E2

K(q)2
− J2

1

E(q)2
(4.57)

and

1 =
ω2
2 − ω2

1

ω2
21

=
π2

4λ

J2
2

(K(q)− E(q))2
− π2

4π

J2
1

E(q)2

⇒ 4λ

π2
=

J2
2

(K(q)− E(q))2
− J2

1

E(q)

2

(4.58)

The equations (4.57) and (4.58) implicitly define the energy in terms of the other
charges, E = E(J1, J2), upon elimination of q.

Naturally, we are interested in the perturbative expansion of the energy with
parameter λ/J2 in the BMN limit J = J1 + J2 → ∞. In this limit, the results
can be compared to gauge theory calculations, i.e. the energies can be compared to
scaling dimensions of the corresponding operators with the same R-charges J . We
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assume that q and E have an analytic behaviour in λ/J2, which means that we can
expand them in power series,

q = q0 +
λ

J2
q1 +

λ2

J4
q2 + . . . ,

E = J

(
E0 +

λ

J2
E1 +

λ2

J4
E2 + . . .

)
. (4.59)

Plugging these expansions into the equations (4.57) and (4.58) and solving order by
order in λ/J2 yields E0 = 1 and q0 being defined by [56]

J2
J

= 1− E(q0)

K(q0)
. (4.60)

The first non-trivial term in the energy is

E1 =
2

π2
K(q0) (E(q0)− (1− q0)K(q0)) . (4.61)

In the case J1 = J2, Frolov and Tseytlin derived [31]

E(J1, J2 = J1) = 2J1

(
1 +

0.712

8

λ

J2
1

− 1.699

32

λ2

J4
1

+ . . .

)
. (4.62)

We will later also compare this result to other string solutions.

The special case of ω1 = ω2

If ω1 = ω2, then the equations of motion yield

∂γ

∂σ
= 0 ⇒ γ(σ) = nσ (4.63)

with an integer n, the winding number. The quantization is due to the closed string
periodicity condition γ(σ+2π) = γ(σ) + 2πn for the 2π-periodic coordinate γ. The
Virasoro constraints (4.35) lead to

0 = ẏmẏm + ẋmẋm + y′my′m + x′mx′m

= −κ2 + ω2
1 cos2 γ + ω2

2 sin2 γ + γ′
2

= −κ2 + ω2
1 + n2

⇒ κ =
√
n2 + ω2

1. (4.64)

We can now evaluate the energy in terms of the other charges from equation (4.47),

J1 =
√
λω1

∫ 2π

0

dσ

2π
cos2(nσ) =

√
λω1

2
,
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J2 =
√
λω2

∫ 2π

0

dσ

2π
sin2(nσ) =

√
λω1

2
= J1

⇒ E =
√
λκ =

√
λ
√
n2 + ω2

1 =
√
λ

√
n2 +

4J2
1

λ

(4.64)⇒ E(J1) = 2J1

√
1 +

λn2

4J2
1

. (4.65)

In the BMN limit with small λ/J2, this is

E(J1) = 2J1

(
1 +

λn2

8J2
1

− λ2n4

128J4
1

+ . . .

)
. (4.66)

Comparing with the result for the folded string (4.62) shows that for n = 1, i.e. one
winding, the energy of the circular string is bigger than the energy of the folded
string in case both have the same charge J1.

The circular string

If we have q > 1 in equation (4.45), then dγ/dσ never vanishes. This means that
the string is not folded but it is shaped like a circle. The steps are similar to the
folded string, so we will only go through them briefly. First, we use the expression
in equation (4.31) to find the angular momentum J1. For this purpose, we use
equation (4.2.3) to transform the integral

J1 =

√
λω1

2π

∫ 2π

0

dγ
dσ

dγ
cos2 γ

=

√
λω1

2π

∫ 2π

0

dγ
cos2 γ

ω21

√
q − sin2 γ

=
2
√
λω1

πω21

∫ π/2

0

dγ
1− q + q − sin2 γ√

q − sin2 γ

=
2
√
λω1

πω21

∫ π/2

0

dγ

[
1− q
√
q

1√
1− q−1 sin2 γ

+
√
q

√
1− q−1 sin2 γ

]

=
2
√
λω1

πω21

[
1− q

q
K(q−1) +

√
qE(q−1)

]
. (4.67)

In analogy with equation (4.53), we obtain

2π =

∫ 2π

0

dσ = 4

∫ π/2

0

dγ

ω21

√
q − sin2 γ

=
4

ω21
√
q
K(q−1) (4.68)
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Performing the same steps as from equation (4.54) to equation (4.58), we finally
obtain the relations

4λ

π2
=

E2

K(q−1)2
− J2

[(1− q)K(q−1) + qE(q−1)]2
,

4qλ

π2
=

J2
2

[K(q−1)− E(q−1)]2
− q2J2

1

[(1− q)K(q−1) + qE(q−1)]2
, (4.69)

which implicitly define the energy as a function of the two R-charges J1 and J2. If
we expand q and E in powers of λ/J2, J = J1 + J2, as in equation (4.59), we get an
implicit expression for q0,

J2
J

= q0

(
1− E(q−1

0 )

K(q−1
0 )

)
, (4.70)

as well as
E0 = 1, E1 =

2

π2
E(q−1

0 )K(q−1
0 ). (4.71)

This is a prediction for the energy up to one loop in the new coupling constant J2/λ.
In chapter 5, we will see how we can reproduce these energies on the gauge theory

side with the help of integrable spin chains. Therefore, these solutions provide a
powerful test for the AdS/CFT correspondence. In this chapter, we have restricted
ourselves to classical solutions. Frolov and Tseytlin have found a semi-classical
quantization procedure for largeR-charge strings [28, 30]. However, this quantization
is beyond the scope of this dissertation. Consequently, we will focus purely on the
planar limit on the gauge theory side, which corresponds to the free string limit
here.



5 Spin chains and integrable systems

In this chapter, we explore how the gauge theory equivalents of the string theory
solutions, we derived in the chapters 3 and 4, can be translated to spin chains and
their spectra. The problem of finding scaling dimensions of operators will lead to
the task of diagonalizing Hamiltonians of such spin chains, which was first realized
by Minahan and Zarembo [53] as well as Beisert, Staudacher and collaborators [7,
6]. This is a quantum mechanical problem which has been considered for decades
and such spin chains are known to be integrable, which Minahan and Zarembo
first realized in the context of AdS/CFT [53]. We will find that the diagonalization
problem will be solved by the so-called Bethe ansatz proposed in the 1930s [17]. Using
this ansatz, we will be able to reproduce the predictions for the one-loop scaling
dimensions of the gauge theory operators in the planar limit which we obtained
from the string theory side by deriving energies of classical string solutions. A
comprehensive review about spin chains and the Bethe ansatz in N = 4 SYM was
written by Minahan [54].

5.1 Gauge theory operators as spin chains

In chapter 4, we discussed strings stationary in AdS5 and rotating in two orthogonal
planes in the S5 component of AdS5 × S5. Their angular momenta in AdS5 vanish,
S1 = S2 = 0, but in the generic case they carry two non-vanishing R-charges J1 and
J2. The third R-charge J3 is also vanishing. In section 4.2.3, we managed to express
the energy of string solutions with these charges as functions of the charges in a
perturbative expansion with the BMN coupling λ = λ/J2 as expansion parameter.
On the gauge theory side, we should be able to reproduce the same functions as
scaling dimensions of the corresponding operators in the BMN limit.

The R-symmetry rotates the six scalars φi, i = 1, . . . , 6, among themselves. If we
let J1 be the generator of rotations in the SO(2) ⊂ SO(6) subsector corresponding
to the φ1, φ2-plane and J2 the generator in the φ3, φ4-plane, then an operator with
charges J1 and J2 is of the form

OJ1,J2
α = Tr [ZJ1W J2 ] + permutations (5.1)
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where Z = φ1 + iφ2 and W = φ3 + iφ4. Operators of this form can be represented
as an s = 1/2 spin chain. A factor of Z corresponds to spin down | ↓〉, a factor of
W to spin up |↑〉. Let us consider an example of an operator with (J1, J2) = (5, 5):

Tr [Z2WZ2W 3ZW ] = |↓↓↑↓↓↑↑↑↓↑〉cyclic (5.2)

where cyclicity implies that states, whose strings of spins are equal after some cyclic
permutation, must be equivalent. Obviously, we encounter the problem of operator
mixing since all the operators with J1 factors of Z and J2 factors of W will have
the classical dimension ∆OJ1,J2

α
0 = J1 + J2. As described in section 2.2.6, we need

to diagonalize the action of the dilatation operator D on the operators that are
classically degenerate,

D ◦ OJ1,J2
α = −i∆αβOJ1,J2

β , (5.3)

i.e. we must diagonalize the matrix ∆αβ. If we calculate the dilatation operator in
perturbation theory, we find [57]

D =
∞∑
n=0

D(n) (5.4)

with

D(0) = Tr (ZZ̆ +WW̆ ), D(1) = −g
2
YM

8π2
Tr [Z,W ][Z̆, W̆ ] where Z̆ij =

∂

∂Zji
. (5.5)

Obviously, the classical component of D satisfies

D(0)OJ1,J2
α = J1 + J2 (5.6)

since, for example,

Tr (ZZ̆)Tr [ZWZW ] = ZijZ̆ji(ZklWlmZmnWnk)

= Zij(δikδjlWlmZmnWnk + ZklWlmδimδjnWnk)

= 2Tr [ZWZW ]. (5.7)

This result generalises to any number of Z’s and holds analogously for W . It is
what we expect from the classical part of the dilatation operator. Since the scalars
have mass dimension one, the classical scaling dimension is just the sum of the mass
dimensions of the involved fields.

We remember that we are interested in the BMN limit later, which is given by
J → ∞, N → ∞, such that N/J2 is constant. In this limit gYM remains constant.
Here, we will simplify further by additionally considering the planar limit which
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corresponds to free strings on the AdS5 × S5 side. We saw in section 3.6 that a
natural effective genus counting parameter g2 = J2/N arises in the BMN limit and
a generic correlation function receives contributions from all orders in this genus
expansion. This parameter remains tuneable after taking the limit. Therefore, in a
generic case, a correlation function will have a double expansion in the parameters

λ′ =
g2YMN

J2
and g2 =

J2

N
(5.8)

where λ′ controls quantum corrections and g2 the genus expansion. If we take
g2 → 0, i.e. go to the planar limit, in addition to the BMN limit, then this includes
gYM → 0 to keep λ′ constant. On the string theory side, this translates to gs → 0,
i.e. the free string limit.

Now, we arrive at a crucial point. We will derive that, if we consider the planar
limit, D(1) from equation (5.5) only acts on neighbouring fields in the string of fields
that make up an operator. Consider D(1) acting on Z and W separated by two
matrices A and B, then

D(1)Tr (ZAWB) = Tr [Z,W ][Z̆, W̆ ]Tr (ZAWB)

= [Z,W ]ij(Z̆jkW̆ki − W̆jkZ̆ki)ZmnAnpWpqBqm
= [Z,W ]ij(δjnδkmδkqδip − δjqδkpδknδim)AnpBqm
= [Z,W ]ij(AjiBkk −AkkBji)

= −Tr (A)Tr ([Z,W ]B) + Tr (B)Tr ([Z,W ]A). (5.9)

Therefore, there is only a planar contribution if A = 1 or B = 1 as the contribu-
tion of a multi-trace operator is non-planar. From equation (5.9), we can conclude
that the planar part of D(1), which is given in equation (5.5), consists of the iden-
tity minus a permutation when acting on neighbouring fields. It vanishes if the
neighbouring fields are of the same type, Z or W . Furthermore, it does not act on
non-neighbouring fields. Therefore, we can write

D
(1)
planar =

λ

8π2

L∑
i=1

(1i,i+1 − Pi,i+1). (5.10)

where L is the length of the string of operators. Pi,i+1 exchanges the fields in the ith
and (i+1)th position in the string of operators and PL,L+1 = PL,1. When comparing
to equation (5.5), we see that there is an extra factor of N in the prefactor which
comes from the trace of the unit matrix in equation (5.9). When studying this
planar limit of the one-loop dilatation operator, Minahan and Zarembo recognized
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this operator to be the Heisenberg XXX1/2 quantum spin chain Hamiltonian [53],

D
(1)
planar =

λ

8π2
HXXX1/2︸ ︷︷ ︸

≡Q2

. (5.11)

Consequently, the expression of an operator, which is a string of Z’s and W ’s, in
terms of a spin chain, which was introduced above, is not just a notational simplifi-
cation but captures the fact that the action of a planar dilatation on this operator is
equivalent to the action of the Hamiltonian on the corresponding spin chain. The di-
agonalization of equation (5.3) is therefore equivalent to finding the eigenstates and
energies of a Heisenberg spin chain with J1 spins down and J2 spins up. The ground
state is | ↓↓ . . . ↓〉cyclic ⇔ Tr (ZL) and there are J2 excitations, called magnons in the
spin chain picture. Solving this system is a well-studied, long-known problem. It
turns out that the spin chain is integrable, i.e. there exists a set of L− 1 charges Qk

which commute with the Hamiltonian and among themselves. The effect of these
higher charges is that multi-body scattering processes factorize into two-body inter-
actions. Therefore, it is sufficient to find the two-body scattering matrix to solve
higher scattering processes, i.e. we can derive the M magnon case from studying the
two magnon solution. In the next section, we will solve this two-magnon case using
the Bethe ansatz [17]. A full treatment of the subject of integrability is beyond the
scope of this dissertation, but there exists a number of reviews about integrability
in the AdS/CFT correspondence [25, 63, 14]. Rather than describing integrability
in depth, we will focus on its application in our dual gauge theory description of
rotating strings.

5.2 The coordinate Bethe ansatz

The vacuum state for our theory of s = 1/2 spin chains is | ↓↓ . . . ↓〉. Let us forget
about the cyclicity for a moment and reintroduce it later. For now, the spin chain is
only periodic. We denote an excited state by |x1, x2, . . . , xM〉, x1 < x2 < . . . < xM ,
M < L, where the xi are the positions of the up-spins (magnons) in an M -magnon
state. L still denotes the length of the spin chain. The Hamiltonian (5.10) does
not change the number of magnons when acting on a state. This corresponds to
the statement, that the dilatation operator does not mix states of different classical
dimensions.

Now, we will try to find the M magnon energy eigenstates, i.e. we diagonalize the
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Hamiltonian. For one magnon, this is done by a Fourier transformation

|ψ(p1)〉 ≡
L∑
i=1

eip1x|x〉. (5.12)

The reason is that

Q2|x〉 = |x〉 − |x− 1〉+ |x〉 − |x+ 1〉

= 2|x〉 − |x− 1〉 − |x+ 1〉 (5.13)

where we recall the Hamiltonian Q2 from equation (5.11). From this, we obtain

Q2|ψ(p1)〉 =
L∑
x=1

eip1x (2|x〉 − |x− 1〉 − |x+ 1〉)

=
L∑
x=1

(
2eip1x|x〉 − eip1eip1(x−1)|x− 1〉 − e−ip1eip1(x+1)|x+ 1〉

)
=
(
2− eip1 − e−ip1

)
|ψ(p1)〉

= 4 sin2
(p1
2

)
|ψ(p1)〉 (5.14)

where we have used periodicity of the spin chain to make the shifts x → x+ 1 and
x → x − 1. The periodic boundary conditions require p1 = 2πk/L, k ∈ Z. The
spectrum of the spin chain is therefore given by the states

L∑
x=1

e2πik/L|x〉, k ∈ Z, (5.15)

with corresponding energies E2 = 4 sin2 (πk/L).

The two magnon case is more complicated. We can write a general two magnon
state as

|ψ(p1, p2)〉 =
∑

1≤x1<x2≤L

ψ(x1, x2)|x1, x2〉. (5.16)

For x2 > x1 + 1 we have

Q2|x1, x2〉 = 4|x1, x2〉 − |x1 − 1, x2〉 − |x1 +1, x2〉 − |x1, x2 − 1〉 − |x1, x2 +1〉 (5.17)

and for x2 = x1 + 1

Q2|x1, x2〉 = 2|x1, x2〉 − |x1 − 1, x2〉 − |x1, x2 + 1〉. (5.18)
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Therefore, from the Schrödinger equation Q2|ψ(p1, p2)〉 = E2|ψ(p1, p2)〉, we get

E2ψ(x1, x2) = 4ψ(x1, x2)− ψ(x1 − 1, x2)− ψ(x1 + 1, x2)

− ψ(x1, x2 − 1)− ψ(x1, x2 + 1) (5.19)

for x2 > x1 + 1 and

E2ψ(x1, x2) = 2ψ(x1, x2)− ψ(x1 − 1, x2)− ψ(x1, x2 + 1) (5.20)

for x2 = x1+1. We employ Bethe’s ansatz [17] to solve equation (5.19). This ansatz
assumes ψ(x1, x2) to be a superposition of an incoming plane wave and an outgoing,
scattered wave,

ψ(x1, x2) = ei(p1x1+p2x2) + S(p2, p1)e
i(p2x1+p1x2) (5.21)

where S(p2, p1) is the scattering matrix. In the scattered part of the wave the two
momenta are exchanged. Plugging this ansatz into equation (5.19), we find

E2ψ(x1, x2) = 4ψ(x1, x2)− e−ip1ei(p1x1+p2x2) − e−ip2S(p2, p1)e
i(p2x1+p1x2)

− eip1ei(p1x1+p2x2) − eip2S(p2, p1)e
i(p2x1+p1x2)

− e−ip2ei(p1x1+p2x2) − e−ip1S(p2, p1)e
i(p2x1+p1x2)

− eip2ei(p1x1+p2x2) − eip1S(p2, p1)e
i(p2x1+p1x2)

=
(
4− e−ip1 − eip1 − e−ip2 − eip2

)
ψ(x1, x2)

=
(
4 sin2

(p1
2

)
+ 4 sin2

(p2
2

))
ψ(x1, x2)

⇒ E2 = 4 sin2
(p1
2

)
+ 4 sin2

(p2
2

)
. (5.22)

We plug this solution into equation (5.20) and a tedious, but straightforward calcu-
lation shows that

S(p1, p2) =
u1 − u2 + i

u1 − u2 − i
with ui =

1

2
cot
(pi
2

)
. (5.23)

The ui, i = 1, 2, are called Bethe roots. Furthermore, L-periodicity implies

ψ(x1, x2) = ψ(x2, x1 + L)

⇒ ei(p1x1+p2x2) + S(p2, p1)e
i(p2x1+p1x2)

= ei(p1x2+p2(x1+L)) + S(p2, p1)e
i(p2x2+p1(x1+L))

⇒ 1 = S(p2, p1)e
ip1L and S(p2, p1) = eip2L

⇒ S(p1, p2) = eip1L and S(p2, p1) = eip2L (5.24)
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where we have used S(p2, p1)−1 = S(p1, p2) and the linear independence of different
plane waves. These are the so-called Bethe equations. By multiplying the two
relations in equation (5.24) we find

1 = ei(p1+p2)L ⇒ p1 + p2 =
2πk

L
, k ∈ Z. (5.25)

As we already mentioned, the knowledge of the two-body problem is sufficient
to solve the M -body problem in an integrable theory. This phenomenon is called
factorized scattering. All higher scattering processes between more than two bodies
factorize into two-body interactions. Two bodies interact via elastic scattering,
i.e. exchange of their momenta, with the S-matrix S(p2, p1). The M -magnon wave
function is [17]

ψ(x1, . . . , xM) =
∑
σ∈SM

exp

[
i
M∑
i=1

pσ(i)xi +
i

2

∑
i<j

θσ(i)σ(j)

]
(5.26)

where the θij are defined by

S(pi, pj) = exp(iθij). (5.27)

where S(pi, pj) is given by equation (5.23) and consequently θji = −θij. The Bethe
equations (5.24) become M equations,

eipkL =
M∏

i=1,i 6=k

S(pk, pi) ⇒
M∑
i=1

pk =
2πm

L
, m ∈ Z, (5.28)

which can be written in an alternative way using

eipk =
ei

pk
2

e−i
pk
2

=
cos
(
pk
2

)
+ i sin

(
pk
2

)
cos
(
pk
2

)
− i sin

(
pk
2

)
=

cot
(
pk
2

)
+ i

cot
(
pk
2

)
− i

=
uk +

i
2

uk − i
2

(5.29)

which yields

1 = eipkL
M∏

i=1,i 6=k

S(pi, pk) =

(
uk +

i
2

uk − i
2

)L M∏
i=1,i 6=k

ui − uk + i

ui − uk − i
. (5.30)

The energies (5.22) are

E2 =
M∑
i=1

4 sin2
(pi
2

)
(5.31)
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and they can be expressed in terms of the Bethe roots,

1

u2i +
1
4

=
4

cot2
(
pi
2

)
+ 1

=
4 sin2

(
pi
2

)
cos2

(
pi
2

)
+ sin2

(
pi
2

)
= 4 sin2

(pi
2

)
⇒ E2 =

M∑
i=1

1

u2i +
1
4

. (5.32)

Next, we want to reintroduce cyclicity of the spin chain. Therefore, we need to make
the restriction equation (5.28) even more strict,

M∑
i=1

pi = 2πn, n ∈ Z. (5.33)

The reason is that, if we shift the position of all magnons by one, cyclicity requires
the wave function to remain the same, so

ψ(x1 + 1, . . . , xM + 1) =
∑
σ∈SM

exp

[
i
M∑
i=1

pσ(i)(xi + 1) +
i

2

∑
i<j

θσ(i)σ(j)

]

=
∑
σ∈SM

exp

[
i
M∑
i=1

pσ(i)xi + i
M∑
i=1

pσ(i) +
i

2

∑
i<j

θσ(i)σ(j)

]

= exp

[
i
M∑
i=1

pi

] ∑
σ∈SM

exp

[
i
M∑
i=1

pσ(i)xi +
i

2

∑
i<j

θσ(i)σ(j)

]

= exp

[
i
M∑
i=1

pi

]
ψ(x1, . . . , xM) (5.34)

where we have used that
∑M

i=1 pσ(i) =
∑M

i=1 pi for any permutation σ ∈ SM . Now,
we can conclude that

exp

[
i

M∑
i=1

pi

]
= 1 ⇒

M∑
i=1

pi = 2πn, n ∈ Z. (5.35)

This means the integer m in equation (5.28) has to be a multiple of L. We can
express the constraint equation (5.33) in terms of the Bethe roots uk, k = 1, . . . ,M ,
as

M∏
i=1

ui +
i
2

ui − i
2

= 1 (5.36)

where we used equation (5.29) to rewrite eipi in terms of the Bethe roots.

Let us now diagonalize the two magnon case exactly. We can set p = p1 = −p2
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because of equation (5.33) since the two momenta p and p+2π are equivalent. The
Bethe equations 5.24 become

eipL = S(p,−p) =
1
2

cot
(
p
2

)
− 1

2
cot
(
−p

2

)
+ i

1
2

cot
(
p
2

)
− 1

2
cot
(
−p

2

)
− i

=
cot
(
p
2

)
+ i

cot
(
p
2

)
− i

= eip

⇒ eip(L−1) = 1

⇒ p =
2πn

L− 1
, n ∈ Z (5.37)

Therefore, the energy eigenvalues (5.22) are

E2 = 8 sin2

(
πn

L− 1

)
(5.38)

which yields the scaling dimensions of the two magnon operators to be

∆
(1)
planar =

λ

π2
sin2

(
πn

J + 1

)
(5.39)

after reintroducing the prefactor λ/8π2 from equation (5.11) and identifying the
length of the spin chain L with the sum of the R-charges J + 2 = J1 + J2. The
corresponding two magnon operators are [11, 53]

O(J,2)
n =

J∑
p=0

cos
(
πn

2p+ 1

J + 1

)
Tr (WZpWZJ−p). (5.40)

In the BMN limit, J → ∞, N → ∞ and λ/J2 fixed, we see that the scaling
dimension in equation (5.39) obeys

∆
(1)
planar =

λ

π2
sin2

(
πn

J + 1

)
→ n2λ

J2
. (5.41)

Significantly, this agrees with the first term in the expansion of the level-two energy
spectrum of the plane-wave superstring in equation (3.57),

Elc

µ
= 2

√
1 +

n2λ

J2
≈ 2 +

n2λ

J2
+ . . . . (5.42)

We have seen that these level-two excitations correspond to operators of the form
Tr [φiZ lφjZ

J−l]. If we expand W = φ3 + iφ4, we see that the two magnon operators
O(J,2)
n from equation (5.40) are also of this form. Therefore, we had to recover this

one-loop result.
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5.3 The thermodynamic Bethe ansatz
In order to find the scaling dimensions of the operators corresponding to the spinning
folded and circular string solutions we found in section 4.2.3, we have to consider
spin chains with L → ∞ as before. Unlike earlier, the number of magnons M is
also becoming infinite. This is necessary for J2/J (here, J = L and J2 = M) not
to vanish in the BMN limit, where J → ∞. Consequently, we keep J2/J fixed in
the J → ∞ limit. Such thermodynamic solutions were explored in [9, 8, 4, 24].
The description is mathematically non-trivial and requires some tools from complex
analysis. Hence, we will focus on the main ideas and refer to the given references
for the details.

To obtain the thermodynamic limit, we take the logarithm of the Bethe equations
(5.30),

L ln
(
ui +

i
2

ui − i
2

)
=

M∑
k=1
k 6=i

ln
(
ui − uk + i

ui − uk − i

)
− 2πini. (5.43)

The ni, i = 1, . . . ,M , are arbitrary integers that depend on the choice of a branch
of the complex logarithm. We consider the limit L → ∞ in which the pi scale as
1/L. Therefore, the ui scale as L since cot(x) = 1/x+O(x0). We want to simplify
equation (5.43) in this thermodynamic limit. For this, we first observe that

ln
(
1 + ix

2

1− ix
2

)
= ix+O(x3). (5.44)

Using this in equation (5.43) yields

1

ui
=

2πni
L

+
2

L

∑
k=1
k 6=i

1

ui − uk
. (5.45)

in the limit ui ∼ L→ ∞.
In the thermodynamic limit, the roots ui are located on smooth contours Cn,

C =
⋃
nCn, in the complex plane, which allows us to introduce the Bethe root

density

ρ(u) =
1

M

M∑
i=1

δ(u− ui) ⇒
∫
C

du ρ(u) = 1. (5.46)

Using this density, equation (5.43) can be written as∫
C

dv
ρ(v)u

v − u
= − 1

2α
+
πnC(u)u

α
with u ∈ C, α =

M

L
. (5.47)

The nC(u) are called mode numbers and they are constant on each smooth part of
the contour Cn. These numbers and the selection of components Cn determine the
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Figure 5.1: Two-component support C = C1 ∪ C∗
1 of the Bethe root density in the

solution of the Bethe equations corresponding to the folded, rotating
string solution from section 4.2.3. The image is taken from [56].

solutions to the Bethe equations (5.47). The energy of the solutions, which we have
written in terms of the Bethe roots in equation (5.32), becomes

E2 =M

∫
C

du
ρ(u)

u
. (5.48)

Now, the task is to find the contours and mode numbers corresponding to our
string solutions of a folded and a circular string rotating in the S5 component of
AdS5 × S5 from section 4.2.3. It turns out that the folded string belongs to a
two-component support of the root density, C = C1 ∪ C∗

1 , see figure 5.1, with
nC1 = −1 and nC∗

1
= 1. Indeed, a very complicated calculation shows that this

choice reproduces the one-loop energy from the string theory calculation, which we
have performed in section 4.2.3 with the results in the equations (4.60) and (4.61)
[56].

The analysis of the circular string solution is similar. The support of the Bethe
root density is located on the imaginary axis and is symmetric, ρ(u) = ρ(−u). The
result is again in perfect agreement with the string theory results from equations
(4.70) and (4.71) [56].

We conclude that we have found a powerful test of the AdS/CFT correspondence.
The large R-charge sector is perturbatively accessible from both sides of the duality.
Our calculations of the one-loop corrections to the energy on the string theory side
and the scaling dimension on the gauge theory side agree for associated pairs of
string solutions as well as corresponding operators.





6 Conclusions and outlook

In this dissertation, we studied how we can test the non-BPS sector of the AdS/CFT
correspondence by comparing string spectra to the scaling dimensions of the dual
gauge theory operators. We derived that a way to circumvent the problems, that
arise from the fact that AdS/CFT is a strong/weak duality, is to study states and
corresponding operators with large charges. Several examples of such highly charged
classical solutions of the string σ-model in AdS5×S5 have been presented. We have
seen that it is possible to identify the gauge theory equivalents of highly charged
string theory states. Due to the large charges, these gauge theory operators contain
a big number of fields which leads to the problem of operator mixing because the
more fields an operator contains, the higher the classical degeneracy. When the
involved charges are angular momenta in S5, the task of finding the eigenstates
of the dilatation operator can be translated to the problem of diagonalizing the
Hamiltonian of spin chains. We have studied this technique to one loop order in
the planar limit and found an integrable spin chain model. This model can be
solved using the Bethe ansatz to find the eigenstates of the Hamiltonian and thus
the scaling dimensions of operators in the gauge theory. As conjectured by the
AdS/CFT duality, these scaling dimensions agree with the energies of the dual
string states.

In their original paper, that introduced the integrable spin chain structure, Mina-
han and Zarembo considered the full scalar sector [53], which leads to an SO(6) spin
chain of which we have only covered an SU(2) subsector. From the scalar sector we
can generalize to the full theory obtaining a PSU(2, 2|4) spin chain, which is inte-
grable at one loop and was studied by Beisert and Staudacher [13]. This spin chain
has an infinite number of degrees of freedom at every site and its thermodynamic
limit leads to the subject of spectral curves [10].

A natural question would be if integrable models also appear at higher loop orders
or if it is just an artefact of the one loop approximation. Higher loop corrections
of the dilatation operator have been derived corresponding to spin chains with in-
teractions of an increasing range, which have been reviewed in [61]. The two loop
correction in the SU(2) subsector has been shown to be integrable and higher correc-
tions have been found conjecturing integrability [6]. Higher rank chains have firstly
been studied in [12] and two and three loop corrections in the SU(2|3) subsector
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have been proven to be integrable. There has been progress in other subsectors as
well and for those we refer to the review [61] and the references within it.

We should also be able to find integrable structures on the string theory side of
the duality. Integrability of the gauge theory in the planar limit hints at a hidden
integrable structure in the AdS5×S5 string sigma model and its classical integrability
has in fact been shown in [15].

Another question is if integrability can also be found in the non-planar sector
which is dual to interacting strings. A review about aspects of non-planarity is due
to Kristjansen [46]. Attempts to diagonalize the non-planar version of the dilatation
operator have shown no signs of integrability so far. There are still attempts to find
traces of integrable structures in n point functions or Wilson loops [46].

Finally, we want to mention one more possible direction for further research. It
would be interesting to study if integrability extends to more phenomenological
gauge theories such as QCD. It would be exciting to find hidden symmetries that
are not obvious from the Lagrangian but only reveal themselves in the quantum
theory. There is, in fact, a growing amount of evidence for such hidden symmetries
and the progress in this field has been summarized in [44].
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