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Abstract

The Hawking-King-McCarthy-Malament (HKMM) theorem states that the causal struc-

ture of a distinguishing spacetime alone is enough to determine the geometry of the space-

time, up to conformal isometries. This motivates the treatment of the causal structure as

a more fundamental object than spacetime itself. I investigate Causal Set Theory which

treats spacetime on the Planck scale as a set of points endowed with a causal relation

between them. I show that for simple strongly causal spacetimes one can deduce the

dimension of the continuum spacetime from a causal set using the Myrheim-Meyer dimen-

sion estimator. I then explore how removing line segments from the spacetime affects the

Myrheim-Meyer dimension and propose a method which counters some of these effects. I

investigate one particular spacetime, which I call Spacetime Z, which is distinguishing but

not strongly causal. I confirm that a causal set which has been sprinkled into Spacetime

Z contains all of the information required to deduce the dimension of Spacetime Z.
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Chapter 1

Introduction

1.1 Continuum spacetime

General Relativity tells us that spacetime is a continuous Lorentzian manifold with signa-

ture (−,+,+, ...,+). In the continuum, manifolds have inherent properties which are well

defined, for example the dimension and the metric of the manifold. The difference be-

tween Lorentzian and Riemannian manifolds is fundamental in understanding the causal

structure of spacetime. Distances in Riemannian geometries are guaranteed to be pos-

itive definite and so cannot admit the correct causal structure. However, distances in

Lorentzian manifolds can be positive, negative or null. This allows the causal structure to

be characterised by the light cones, which are null geodesics from events in the spacetime

[30]. An event A can only affect the set of events which lie in the future light cone of

A. Similarly, A can only be effected by events which lie in the past light cone of A. All

event outside of A’s light cones can have no effect on A and A cannot affect those events.

In this way the causal structure determines which events can physically influence other

events [12].

1.2 Discrete spacetime

The singularities that General Relativity permits provides evidence that spacetime is not

continuous but is instead discrete on some small scale [3]. Theories which consider space-

time as a discrete object have been considered by both physicists and philosophers alike

[26, 22]. The well defined quantities that continuum manifolds have, such as dimension,

are not well defined for a discrete spacetime. Therefore, an important validation for a
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discrete theory of spacetime is that it must somehow recover these continuous quantities.

In the particular instance of dimension, Riemann suggested that the dimension of discrete

space can be deduced by ‘counting’ [2, 3]. One technique proposed by Hausdorff defines

dimension in terms of the Hausdorff p-measure [7, 15].

Definition 1.2.1 The Hausdorff p-measure of a metric space X is defined with a count-

able collection of balls Bi ∈ X each with diameter, diam, less than a small parameter ε

such that the set of balls Bi covers X. The p-measure is then

mp(X) = sup
ε>0

[
inf

∞∑
i=1

[diam(Bi)]
p

]
. (1.1)

Definition 1.2.2 The Hausdorff dimension HD(X) of a metric space X is defined in

terms of the Hausdorff p-measure mp(X) (definition 1.2.1) as

HD(X) = sup {p;mp(X) =∞} = inf {p;mp(X) = 0} . (1.2)

Riemann’s counting idea is shown in the (positive definite) sum over the subsets in the

metric space X. Since the sum is positive definite, this technique (and similar tech-

niques) can only recover the dimension of Riemannian manifolds and cannot be used on

the Lorentzian structure of General Relativity. The causal behaviour appears to play

a vital role in Lorentzian geometry so is it possible that causality could be a basis for

recovering continuous Lorentzian manifolds? In chapter 3 I demonstrate that counting

the number of causal relations in discrete subsets is able to deduce the dimension of a

Lorentzian manifold using the Myrheim-Meyer dimension estimator [19, 16].

1.3 Causal Sets

Causal Set Theory (CST) is a discrete theory of spacetime that replaces a continuous

Lorentzian manifold with a finite set of points endowed with a “relation” between the

points [5]. The discreteness scale for causal sets is on orders of the Planck length `p =
√
G~c−3 [4, 28]. Causal Set Theory treats this discrete set, along with the order relations,

as the fundamental make up of spacetime. The causal set then approximates a continuum

manifold in the limit of a large number of points and on scales much greater than `p.
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Definition 1.3.1 A causal set, or causet, C is a finite set of N points with an order

relation, denoted ≺, with the following properties [3]:

1) if x ≺ y and y ≺ z then x ≺ z ∀x, y, z ∈ C (transitivity);

2) x ⊀ x ∀x ∈ C (acyclicity);

3) {z|x ≺ z ≺ y} is finite for every pair of elements x, y ∈ C

Acyclicity is not required generally and breaking this condition gives rise to logical para-

doxes where one’s future can influence one’s past [28]. In this thesis I have assumed that

we live in a universe where such paradoxes do not exist, hence the requirement for acyclic-

ity. Definition 1.3.1 item 3) is the statement that the number of elements in a subset of C

is finite even in the ‘large N limit’. Readers with a background in graph theory might be

familiar with the concepts above and, in the vernacular of graph theory, a causal set is a

transitive directed acyclic graph. A Directed Acyclic Graph (DAG) can be defined using

only item 2) and item 3) but the additional transitivity condition makes this a transitive

DAG.

1.3.1 The Hawking-King-McCarthy-Malament theorem

A strong motivation for studying Causal Set Theory comes from a theorem which was

originally presented by Hawking, King and McCarthy [8]. The original HKM theory

concerns two strongly causal spacetimes (M1, g1) and (M2, g2) that have dimension d > 2.

It states that if there exists a homeomorphism f : M1 → M2 between the spacetimes

which is also a causal isomorphism, that is f and f−1 preserve causal order, then M1

and M2 are conformally isometric [20]. This theorem states that knowing just the causal

structure of a spacetime can determine it’s differential and topological structure up to

a conformal factor [29]. An important development of this theorem was then made by

Malament which relaxes the requirement for the two spacetimes to be strongly causal to

being distinguishing [14]. The combined HKMM theorem is essential for deducing the

topological information of spacetime from a causal set.

1.3.2 Discrete-continuum correspondence

For a causal set to be physically relevant it must approximate the Lorentzian spacetime

required by General Relativity when the causal set becomes very dense. This relation can
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be encapsulated in the discrete-continuum correspondence which requires the definition of

Planck scale faithful embedding as follows [3, 6]:

Definition 1.3.2 A Planck scale faithful embedding from a causal set C to a continuous

manifold M is an injective map φ : C →M satisfying the properties:

i) (Planck-scale uniform): The number of causal set elements embedded in any suf-

ficiently large, physically nice region of M is approximately equal to the spacetime

volume of the region in fundamental volume units.

ii) (Order-preserving): The elements x, y ∈ C are ordered, x � y, if and only if the

embedding, φ, preserves the ordering; φ(x) � φ(y).

iii) The length scale on which the continuous geometry (M, g) fluctuates is much larger

than the Planck length `p.

‘Physically nice region’ in this context means there are no Planck scale features and the

region in question is approximately flat [6]. The requirement in definition 1.3.2 item i)

explicitly uses Riemann’s idea of counting to determine volume. Item ii) is a very im-

portant requirement that will be used later in chapter 5. It claims that the causal order

of the embedded causal set must be the same as the order of the causal set itself. The

discrete-continuum correspondence then goes as follows [6, 10]:

Lemma 1.3.1 A causal set (C,≺) recovers the spacetime of General Relativity (M, g) if

there exists a Planck scale faithful embedding.

The discrete-continuum correspondence is fundamental for determining whether a causal

set can recover the continuum spacetime.

1.4 My contribution

1.4.1 Deducing dimension

I show in chapter 3 that a causal set alone can deduce the dimension of the background

manifold using a technique called the Myrheim-Meyer dimension estimator [19, 16]. I

explain how to determine the causal order of causets in strongly causal Minkowski back-

grounds and demonstrate that the Myrheim-Meyer dimension converges to the dimension

of these spacetimes using two different interpretations. Similar work has been conducted
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in [16, 23, 1] although I also illustrate a different method for calculating the Myrheim-

Meyer dimension. I detail the way that I have calculated the Myrheim-Meyer dimension

which is useful for studying rectangular Minkowski spacetime and show where errors ap-

pear in my approach. Analysis of the apparent dimensional reduction or augmentation

for small causets is conducted in [1, 17] however this thesis will not focus on these small

causets. Instead I focus on the statistical properties of the causets, determining how well

the dimension estimates represent the global spacetime. This is an important validation

for Causal Set Theory as the HKMM theorem states that the topological and differentiable

information of a spacetime can be recovered from it’s causal structure alone.

1.4.2 Featureful spacetimes

In chapter 4 I discuss certain features that a spacetime can have and how the features

effect the ability to determine it’s causal structure. I show that using straight lines between

pairs of points is not sufficient to induce the complete causal order of a causal set which

has been sprinkled into one particular featureful spacetime. I illustrate the detrimental

effects that the incomplete order has on the global properties of the causet. I then discuss

an alternative method for determining the causal structure and argue that this method is

more complete for causets sprinkled into featureful spacetimes.

1.4.3 Spacetime Z

Chapter 5 then combines the results of chapters 3 and 4 to investigate causets which

have been sprinkled into a particular spacetime called Spacetime Z. This is a spacetime

which is distinguishing but not strongly causal [9, 20] and is therefore useful for evaluating

Malament’s extension to the HKM theorem for causal sets which have been sprinkled into

Spacetime Z. I repeat similar statistical analysis that is done in chapter 4 to show how

frequently elements of the causet are sampled over and use this to show the Myrheim-

Meyer dimension of Spacetime Z.

1.4.4 Causal set simulations

I have also developed a comprehensive Python library to enable me to run substantial

causal set simulations efficiently. A significant amount of work went into designing use-

ful, reusable and well tested modules for others to use and contribute to. The code for
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the project can be found here: https://gitlab.com/awr.trumpet/causal_sets and I

encourage anyone that wants to develop my work to contribute.
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Chapter 2

Causal definitions

This chapter contains the relevant definitions required to talk about the causal structure

of a spacetime. These definitions can be found in numerous texts and in this chapter I

frequently refer to texts [9, 12, 21] although alternative definitions can be found in [8]. I

initially reiterate the definitions in the context of the continuum spacetime of General Rel-

ativity. Section 2.4 then makes the necessary adjustments and additions to the continuum

definitions required for Causal Set Theory.

2.1 Causal relations in the continuum

In the continuum we assume that spacetime is a C∞ manifoldM with a global, Lorentzian,

non-degenerate tensor field g of type (0, 2) with signature (−,+,+, ...,+) [21].

Definition 2.1.1 A tangent vector X to any point x ∈M is said to be:

1) timelike, if gµνX
µXν < 0,

2) null, if gµνX
µXν = 0,

3) spacelike, if gµνX
µXν > 0.

To navigate the geometry the following definition is required

Definition 2.1.2 A curve γ : < → M is a smooth map which maps an open interval of

the real numbers into the manifold.

This definition requires a curve to have non-zero extent since it must map open intervals.

Whilst this is a rather formal definition, the usual notion of a curve being a (not necessarily

linear) line, parameterised by some real parameter in the manifold, applies.
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Definition 2.1.3 A curve, γ, is called timelike (spacelike, null) if the tangent vector at

each point on the curve is everywhere timelike (spacelike, null) [9].

Mathematically, a curve can follow any path in the manifold, it needn’t remain timelike,

spacelike or null. However, the class of curves which do remain timelike, spacelike or null

are useful in physics, hence the more restrictive definition of 2.1.3. Throughout this thesis

I make references to the following definition

Definition 2.1.4 A causal curve is a curve that is everywhere non-spacelike.

Definition 2.1.5 A spacetime (M, gµν) is time orientable if for each point p ∈ M one

can choose a consistent component of each timelike vector at p [21].

An equivalent way to form this definition is that the same half of the light cone for

each point must represent the future and the other half of the light cone the past [30].

Definition 2.1.3 together with definition 2.1.5 create the class of future and past directed

timelike curves which represent the possible paths through the spacetime taken by massive

objects.

2.1.1 Endpoints and extensibility

Taking our definition of curve from 2.1.2 then we can define endpoints on this curve:

Definition 2.1.6 A point p ∈ M is a future (past) endpoint of a future (past) directed

causal curve if ∃t0 such that for every neighbourhood N of p, γ(t) ∈ N∀t > t0 (t < t0)

[30].

Physically this means, for future endpoints, that for all times t greater than some value

t0 the future directed causal curve at the value of t lies in a neighbourhood of the future

endpoint p. For an infinitely big neighbourhood of p this is trivial since the causal curve will

always be in this infinitely big neighbourhood but will not necessarily terminate. However,

the key part to this definition is that p is only an endpoint if this condition holds for every

neighbourhood of p. This includes an infinitely small neighbourhood around p and means

that the causal curve must “terminate” arbitrarily close to p. An analogous interpretation

can be given for past endpoints.
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2.1.2 Chronology

The following three definitions of Chronology, Horismos and Causality have similar dis-

tinctions between past and future. For the sake of brevity I explicitly state the definitions

with regards to the future and make the appropriate changes in the subsequent parentheses

for the past. First I will begin with the definition of chronology.

Definition 2.1.7 The chronological future (past) of a point p ∈ M, denoted by I+(p)

(I−(p)) is the set of points that can be reached from p by a future (past) directed time-like

curve starting at p.

This definition involves purely time-like curves and the chronological future is always an

open set since it’s compliment is closed [9]. It is common to also see the notation p � q

which is equivalent to saying ‘p is in the chronological past of q’ or p ∈ I−(q) [12].

2.1.3 Horismos

Definition 2.1.8 The horismos future (past) of a point p ∈M denoted by E+(p) (E−(p))

is the set of points that can be reached from p on null geodesics from p.

In this way the term horismos is rather apt since it is the horizon of points that can be

reached by null geodesics from an initial point. E±(p) forms the boundary of I±(p) which

I write as E±(p) = Bnd [I±(p)] using the ± as an abuse of notation to denote either future

or past [9]. Again it is common to see the notation p→ q which is equivalent to p ∈ E−(q).

2.1.4 Causality

The horismos and chronological futures (pasts) of a point are subsets of the causal future

(past) of a point such that it can be thought of as the union of the two.

Definition 2.1.9 The causal future (past) of point p ∈M, denoted J+(p) (J−(p)) is the

set of points that can be reached from p by a non-spacelike curve.

Two points p, q ∈ M are causally related to each other if p is in either the causal future

or past of q. J± can be defined in terms of I± and E± by

J±(p) = I±(p) ∪ E±(p) (2.1)

14



which suggests the causal structure is made up of the chronological and horismos relations

[9]. In texts it is common to see p ≺ q to represent p ∈ J−(q) but I will deliberately

reserve this notation purely for the ordering relation between elements in a causal set and

will always refer to continuum causal relations using the set J±.

Another useful definition which uses the chronological relations is that of and Alexan-

drov interval [6, 18]:

Definition 2.1.10 An Alexandrov interval A[p, q] between two points p, q ∈ M where

p ∈ I−(q) is a “causal diamond” consisting of I+(p) ∩ I−(q).

Since I± is an open set this definition of the Alexandrov interval is also open and just

contains the interior of the causal diamond. The Alexandrov interval can be considered to

be a spacetime in it’s own right in isolation from the spacetime from which is was created.

2.2 Hierarchy of causal spacetimes

When defining causal conditions on spacetimes there is a hierarchy of conditions with

which a causal space can obey [18]. These imply increasingly restrictive conditions on

the space-time in relation to it’s causal structure. Here I will be focusing on causal, past

or future distinguishing, past and future distinguishing and strongly causal spacetimes

although there are other causal conditions one can impose.

2.2.1 Causal spacetime

The weakest condition discussed in this thesis is that of causality.

Definition 2.2.1 A causal spacetime is a spacetime in which there are no closed causal

curves [9].

For causality to hold it means that for any point p in the spacetime, a causal curve cannot

move away from p and re-intercept p again. The existence of such a curve would mean

that one could perform some action at p and it’s effect could change the initial action.

2.2.2 Past or future distinguishing spacetime

I now describe the condition for a spacetime to be individually future or past distinguish-

ing. As before, the parentheses show the changes required to separate future and past

respectively.
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Definition 2.2.2 A spacetime is future (past) distinguishing at p ∈M if every neighbour-

hood N of p contains a (sub)neighbourhood U of p which no future (past) directed causal

curve starting from p intersects U more than once [12].

Physically this condition enforces that, on a path through p, once you pierce the boundary

of the (sub)neighbourhood, U , you cannot re-pierce the boundary of U . This must hold

for every neighbourhood of p and if this condition holds for all p ∈M then the spacetime

itself is said to be future or past distinguishing. An equivalent statement given in [9]

is that if I+(q) = I+(p) (I−(q) = I−(p)) then q = p which can be interpreted as the

chronological future (past) of each point in the spacetime must be distinct. Being future

or past distinguishing is a stronger condition than being causal because it states that there

is a neighbourhood of each point that causal curves cannot re-enter.

2.2.3 Past and future distinguishing spacetime

Definition 2.2.3 A past and future distinguishing spacetime at p ∈ M is a spacetime

that satisfies both past and future distinguishing conditions at p simultaneously.

Such a spacetime is commonly referred to simply as ‘distinguishing’. Figure 2.1 shows a

spacetime which is only future distinguishing but not past distinguishing and so is therefore

not generally distinguishing.

2.2.4 Strongly causal spacetime

Definition 2.2.4 A strongly causal spacetime at p ∈M is one such that every neighbour-

hood N of p contains a sub-neighbourhood U of p which no causal curve intersects more

than once.

The reason that being strongly causal is more restrictive than distinguishing is that

in a strongly causal spacetime the causal curve in question merely starts in the sub-

neighbourhood of p and need not pass through p itself.
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Identify

Null geodesic

Excise line
segment

Figure 2.1: A diagram depicting a spacetime that is past distinguishing but not future
distinguishing [21]. The excised line segment is enough to prevent any point on the high-
lighted null geodesic from having the same past as any other point. However the spacetime
is not future distinguishing as every point on this null geodesic has the same future.
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2.3 Strong causality violation

In this section I will focus on one particular spacetime, which I have called Spacetime

Z, which is distinguishing but not strongly causal. A similar spacetime is described in

[9] in figure 38 on page 193. Spacetime Z is a 1+1 Minkowski space that features two

horizontal excised lines at different time coordinates. The excised lines overlap in such

a way that the endpoints of the excised lines can be connected by a “characteristic null

line”, thus forming a Z shape. The spacetime depicted in [9] has a finite temporal axis

but with it’s boundaries identified and the spatial axis extends to infinity. Similar to this,

Spacetime Z has a finite and identified temporal axis however the spatial axis is also finite

and identified. To make the distinction clear I have shown both spacetimes in figure 2.2.

(a) (b)

Figure 2.2: Two similar figures both showing non-strongly causal spacetimes. The blue
lines on the diagram represent excised lines and the dotted line is a null curve which
connects the endpoints of the excised lines. The identification of the axis is indicated by
a double headed arrow on the boundary of that axis. Figure 2.2a shows the spacetime
from [9] in figure 38 on page 193. The temporal axis is identified forming a cylinder in
time and the spatial axis, along with the excised lines, continue off to infinity. Spacetime
Z (figure 2.2b) however has finite spatial axis between xmin and xmax but the boundaries
are identified forming a cylinder in both space and time.

2.3.1 Enforcing distinguishability

The reason Spacetime Z is so interesting is because it is a spacetime that is distinguishing

but not strongly causal. Figure 2.3 depicts a causal curve which is allowed to re-enter

a sub-neighbourhood of a particular point which lies exactly on the characteristic null
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Figure 2.3: Figure depicting a causal path in Spacetime Z which breaks the strong causality
condition. The temporal axis is identified which allows the curve to “wrap around” the
spacetime. The solid blue lines are the two excised lines and the point p lies exactly on the
characteristic null line which joins the endpoints of the excised lines. The larger red circle
around p is a large neighbourhood of p and the smaller black circle a sub-neighbourhood.
The green arrow then shows a future directed causal curve which starts just inside the
sub-neighbourhood of p and wraps around to re-enter the sub-neighbourhood of p thus
breaking definition 2.2.4.

line. In fact it is only the points that lie exactly on the characteristic null line which

do not satisfy definition 2.2.4. The distinguishing nature of Spacetime Z is subject to a

constraint however; if the temporal separation of the excised lines is too big then a causal

curve will inevitably intersect one of the excised lines. Moving the excised lines further

apart could mean that the spacetime becomes globally strongly causal and therefore we

require a condition on the separation of the excised lines to avoid this happening.

2.3.2 Determining the separation of the excised lines

We want to determine the necessary requirement for Spacetime Z to be distinguishing

but not strongly causal. In words, this is the statement that the excised lines must not

be “too far” separated. To algebraically quantify “too far” I ask the reader to refer to

figure 2.4 for the algebraic quantities used in this derivation. A causal curve must be able

to start arbitrarily close to p travel away and return arbitrarily close to p which can be

summarised as

∆x > xp +
a

2
tan(θ) (2.2)
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Figure 2.4: Diagram showing an annotated Spacetime Z which is related to figure 2.2b
by a change of coordinates The blue lines indicate lines that have been excised from the
spacetime. Both the temporal and spatial boundaries are identified as indicated by the
double arrows. A point p has been marked which lies on the midpoint between the two
excised lines and the dotted lines around p show the null cones from p. A causal curve
following exactly the null cones is the limiting condition which satisfied the strong causality
condition.

where ∆x is the minimum distance along the x axis that our causal curve has to reach in

order to avoid the excised line. It is then possible to find another expression for ∆x by

considering the path that starts at p, travels along the future directed null curve from p

to the end point of the upper excised line and then travels along the future null curve to

reach ∆x1. This can be written as

∆x = xp +
(
b− a

2

)
tan(θ). (2.3)

We can now eliminate ∆x by substituting equation (2.3) into equation (2.2) to get b > a.

Finally, using that a + b = tmax − tmin, we get the condition for the separation of the

excised lines,

a <
tmax − tmin

2
. (2.4)

This says that Spacetime Z is distinguishing but not strongly causal as long as the distance

between the excised lines is less than half the total temporal distance of the spacetime.

1Remember that we cannot travel along the null lines because we would hit the endpoints of the excised
line. Instead we can get arbitrarily close to the null lines.
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Figure 2.5: Diagram of Spacetime Z with a closed causal curve indicated by the green
arrows. The line starts at p and uses the identification of the spatial axis to avoid hitting
the excised line. It then continues upwards to wrap around in time and then uses the
spatial axis again to meet back at p. The existence of such a curve means that Spacetime
Z as it is does not even satisfy the basic causality condition

2.3.3 Non-causal paths in Spacetime Z

One very important difference between the spacetime proposed by [9] and Spacetime Z

is that Spacetime Z is finite and both the temporal and spatial boundaries are identified.

This presents a problem; as it is Spacetime Z is not causal! It is possible to trace causal

paths that use the identification of the spatial boundaries to skip around the excised lines

and use the identification of the temporal axis to create a closed timelike curve, as in

figure 2.5. This doesn’t mean we have to abandon Spacetime Z however because there

is a small correction that can be made to it which is shown in figure 2.6. This modified

Spacetime Z is strictly distinguishing as it is not possible to create closed causal curves.

For the purposes of this thesis I still regard the original Spacetime Z as distinguishing and

use it to run computational simulations. The non-causal paths are difficult to reproduce on

a computer so according to the simulations the unmodified version is still distinguishing.

2.4 Amendments for causal sets

As mentioned at the start of this chapter, all of the definitions given so far have been for

a continuum spacetime. This section will make amendments to the above definitions as

well as providing additional definitions to be able to define and describe causal sets.
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Figure 2.6: A diagram showing a modified Spacetime Z which is required to keep the
spacetime distinguishing and not allow any closed causal curves unlike in the original
spacetime. There are now two characteristic null lines which make a shape similar to a
jigsaw puzzle piece.

2.4.1 The Hauptvermutung

As stated in section 1.3, the central idea of Causal Set Theory is that the continuum

nature of the spacetime of General Relativity is an approximation of a more fundamental

object, a causal set. The continuum spacetime can only be recovered if the causal set

(C,≺) can be faithfully embedded into a GR spacetime (M, g) [3]. The Hauptvermutung,

meaning “central conjecture”, further states that this embedding must be unique up to

diffeomorphisms. If two spacetimes (M1, g1) and (M2, g2) both embed (C,≺) by φ1 : C →

(M1, g1) and φ2 : C → (M2, g2) then there exists a diffeomorphism which maps M1 to M2,

meaning g1 and g2 are approximately isometric [3]. Ensuring that the Hauptvermutung

holds means that discrete-continuum correspondence also holds and this is essential for

determining the causal order of the causal set [6].

2.4.2 Poisson sprinkling

How does one allocate points to create a causal set? One could consider the collection of

points to have a lattice structure. However, a lattice spacetime is not generally Lorentz

covariant as one can perform a boost such that the spacetime has a high density of points

along one axis and a low density of point on another [28]. Instead consider dividing the

spacetime into regularly spaced regions of volume ε and set the probability of placing a
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point in each of the volumes to some fixed value δ. Then the probability of putting n

points into a spacetime region of volume v follows the binomial distribution. In the limit

of the binomial distribution, ε → 0, the probability Pv(n) of placing n elements into a

spacetime region of volume v is given by the Poisson distribution [26]

Pv(n) =
(ρcv)n

n!
e−ρcv. (2.5)

ρc is an adjustable discreteness scale which represents the scale on which spacetime is

considered discrete [29]. The expected number of points 〈N〉 in the whole spacetime volume

V is related to the discreteness scale in such a way that 〈N〉 = ρcV [23, 24]. This means

that the coordinates of each point in the spacetime can be chosen uniformly at random

covering the whole spacetime volume. This process of dividing spacetime and randomly

assigning points in this way is commonly called a Poisson process. The Poisson process is

the only way achieve a random sprinkling of points which is also Lorentz covariant [25].

2.4.3 Causal order

After creating a sprinkling of causal set elements using the Poisson process what’s left

is to establish the causal order of the sprinkling to form a causal set. This is where the

discrete-continuum correspondence becomes vitally useful. Of particular importance is

definition 1.3.2 item ii) which states that the causal order between any two points in C

must be the same as the causal relation between those points after embedding them in

the continuum spacetime. In practice this means the causal order on C can be inherited

directly from it’s faithful embedding in (M, g). This is used extensively in my causal set

simulations described later in chapter 3.

2.4.4 Causal intervals

In analogy to definition 2.1.10 we can define an interval in a causal set which I call a causal

interval [28]:

Definition 2.4.1 The causal interval I[p, q] ⊂ C between two points p, q ∈ C for which

p ≺ q is the set of points {z ∈ C|p ≺ z ≺ q}.

Since I[p, q] is a subset of C, all of the elements in I[p, q] are also elements of the causal

set C. One important distinction between a causal interval and an Alexandrov interval is
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that the causal intervals cannot be considered as it’s own causal set. The causal order of

the interval must be inherited from the causal set from which the interval was created. In

practice this means you have to know the causal order of the whole causet before creating

causal intervals. This is discussed further in section 3.2.1.
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Chapter 3

Deducing dimension from causal

sets

This chapter aims to show if that a causal set C which faithfully embeds into a continuum

spacetime (M, g) contains all of the necessary information required to deduce the dimen-

sion of (M, g). There are two popular techniques for estimating the dimension based on

a causal set: the Myrheim-Meyer dimension estimator [19, 16] and midpoint scaling [26].

I will only discuss the former in this thesis as it has been already been established that

the Myrheim-Meyer dimension estimator converges to the dimension of the continuum

spacetime for large causal intervals in [16, 23]. I use a different approach to calculating

the Myrheim-Meyer dimension and confirm that for a 1+1 Minkowski space the Myrheim-

Meyer dimension converges to two. Section 3.2 then investigates how frequently each

causal set element contributes to the dimension estimates and I demonstrate errors that

can occur close to the spatial boundaries.

3.1 Myrheim-Meyer dimension estimator

The Myrheim-Meyer dimension estimator uses only the information of a causal set to

estimate the dimension of the background manifold. The information that is required

is the number of points N and the number of causal relations R in the causal set. By

the number of causal relations we mean pairs pi, pj ∈ C such that pi ≺ pj . By Lorentz

invariance, the quantities N and R can only depend on the volume and the dimension

of the interval (which is approximately equal to the volume and the dimension of the
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Figure 3.1: Plots related to calculating the Myrheim-Meyer dimension. Figure 3.1a shows
the right hand side of equation (3.1) which half what is called the ordering fraction [19, 17].
This function is monotonically decreasing and so can be inverted to produce figure 3.1b.
The ordering fraction asymptotes to zero as the dimension increases which corresponds to
an infinite value of the Myrheim-Meyer dimension for very small fractions.

background manifold) [27]. That gives the following equation

〈R〉
〈N〉2

=
Γ(d+ 1)Γ(d2)

4Γ(3d2 )
(3.1)

and the Myrheim-Meyer dimension is the value d for which equation (3.1) holds true [1].

The angular brackets appear because of the randomness of the Poisson process so above

holds true only for the expectation values of N and R. The right hand side of equation (3.1)

is a monotonically decreasing function so can be numerically inverted and an value for

d computed. Figure 3.1a shows the value of the right hand side of equation (3.1) for

increasing values of d and figure 3.1b shows it’s numerical inverse.

The work done previously in [16, 1, 23, 17] uses a fixed sprinkling into a Minkowski

diamond to calculate the Myrheim-Meyer. They then take multiple Alexandrov intervals

of fixed sizes inside the Minkowski diamond and calculate the Myrheim-Meyer dimension

inside this Alexandrov interval. They average over the many Alexandrov intervals of

different sizes to account for the randomness of the Poisson process. To explore rectangular

spacetimes, such as Spacetime Z, I decided to take a different approach. I initially sprinkled

a causal set into a rectangular spacetime and selected two random points p, q ∈ C from

the causal set. If p ⊀ q then I discarded these points. If, however, p ≺ q I formed a

causal interval I[p, q] between the two points. I did this multiple times and calculated the

Myrheim-Meyer dimension by counting the number of points and causal relations in each

interval.
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3.1.1 Determining the causal order

Crucial to calculating the Myrheim-Meyer dimension is to know the number of causal

relations in each interval and for that one needs to know the causal order. A useful way

to represent the global causal order of a causal set is to use the causal matrix which is

defined using pairs of points pi, pj ∈ C as [11]

Cij =


1 if pi ≺ pj

0 otherwise.

(3.2)

From this global causal matrix, each interval then samples only the pairs of points which

are contained within the interval to build up a sub-causal matrix. The number of causal

relations in a given interval then is simply the number of non-zero elements of the sub-

causal matrix. The question then is to determine whether pi ≺ pj and this is where one

can use the discrete-continuum correspondence. We know that if a causal set faithfully

embeds into a continuum spacetime (M, g) then the causal order of the causet must be

preserved by the embedding [6]. The causal order of the embedded points must also be

the same as the continuum causal relations between the embedded points. That means

that if there is a future directed causal curve connecting the embedding of pi and pj then

pi ≺ pj . For a causal set C which has been sprinkled into an empty Minkowski space we

can determine the causal order using the metric g [1]. Using a two dimensional Minkowski

space as an example, the metric is ds2 = −dt2 + dx2 and the proper time is dτ2 = −ds2.

The proper time between two points pi, pj ∈ C can be calculated as

dτ2ij =
(
p0i − p0j

)2 − (p1i − p1j)2 (3.3)

and the causal matrix becomes

CSLij =


1 if dτ2ij >= 0

0 otherwise.

(3.4)

This is not the only way of determining the causal order on the causal set C. There

only needs to exist one causal path connecting the two points for them to be causally

ordered, that path needn’t be the straight line between them. In section 4.2 I describe an
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(a) (b)

Figure 3.2: Two figures showing a discrete lattice spacetime with different types of intervals
defined by points p and q where p ≺ q. The red points are the points which are within the
causal interval defined by the two points p and q. Figure 3.2a includes the extrema of the
causal interval and is therefore called an inclusive causal interval. Figure 3.2b shows both
p and q excluded from the interval and is therefore called an exclusive causal interval.

alternative way for determining the causal order using the null geodesics from each of the

embedded causal set elements.

3.1.2 Inclusive or Exclusive intervals

The definition of a causal interval I[p, q] contains an ambiguity because it does not enforce

that the endpoints p, q are included in the interval. These two different types of intervals,

where p, q ∈ I[p, q] or p, q /∈ I[p, q], I call inclusive and exclusive causal intervals respec-

tively. An inclusive interval is guaranteed to contain at least one more causal relation than

an exclusive interval but only two more points. By equation (3.1), we therefore always

expect the Myrheim-Meyer dimension of an inclusive interval to be lower than that of

the equivalent1 exclusive interval. Since the MM dimension scales as N2, distinguishing

between the two cases is highly irrelevant in the large N limit. However the difference

is evident when calculating the Myrheim-Meyer dimension of smaller causal sets. To

demonstrate the significance of this, figure 3.2 shows an idealised 1+1 Minkowski lattice

spacetime2 with an inclusive and exclusive causal interval highlighted. For the inclusive

interval, the left hand side of equation (3.1) is well defined; the number of points is five

and the number of causal relations is seven. Inverting the right hand side of equation (3.1)

then gives the MM dimension of this interval as ≈1.848. However, for the exclusive inter-

1Equivalent in this sense means that the interior of both inclusive and exclusive intervals contain exactly
the same points, the only difference between the two is the respective inclusion or exclusion of the endpoints.

2Lattices are never used in causal sets but I am making an idealisation for the purposes of illustration.
Similar problems can arise from a Poisson sprinkling.
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val there are three points in the interval but zero causal relations between them. Using

figure 3.1b gives the MM dimension of this interval to be ∞! This impacts how the

Myrheim-Meyer dimension converges to the background dimension when sampling many

intervals over the causal set. To illustrate this I randomly sprinkled a causal set ≈1000

points into a 1+1 dimensional Minkowski diamond and deduced the causal order. I then

formed 10,000 inclusive causal intervals and 10,000 exclusive causal intervals from ran-

dom pairs of points within the causet. I counted the number of points contained in each

interval and calculated the Myrheim-Meyer dimension of each interval which I then plot

in figure 3.3. The blue dots in the diagram represent the mean value for the dimension

and the error bars show ±1 standard deviation. As expected, both diagrams converge

to the background manifold dimension but using an inclusive causal interval causes the

dimension to converge from below and the dimension of exclusive intervals converge from

above. For causal intervals which contain a low number of points both types of interval

show large differences from the background manifold dimension and this is studied more

in [1, 17]. For this thesis I will only focus on intervals with more than twenty points for

which the Myrheim-Meyer dimension begins to converge.

Since an exclusive causal interval does not include the endpoints of the interval, it is

more akin to the previous work in [16, 1, 23, 17]. For this reason for the rest of the paper

I use exclusive causal intervals in my analysis of other causal sets.

Despite there being ≈1000 points in the original sprinkling, when calculating the

Myrheim-Meyer dimension I discarded any intervals which contained more than 100 points.

Figure 3.4 shows that there is a very small probability of picking intervals with sizes com-

parable to the size of the original causet. This means that more statistical anomalies arise

when calculating the MM dimension for larger intervals and because of this these intervals

alone do not show convergence to the background dimension. However, the probability of

picking a large interval scales with the number of points in the original causet so in the

large N limit these anomalies seemingly disappear.
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Figure 3.3: Figures showing the Myrheim-Meyer dimension of different sizes of causal in-
tervals. The background manifold for both plots was a 1+1 Minkowski diamond sprinkled
with ≈1000 points according to the Poisson process. Figure 3.3a uses inclusive causal in-
tervals when sampling across the spacetime and figure 3.3b uses exclusive intervals. Each
plot makes 10,000 samples of the spacetime. The points on the plot show the mean di-
mension from all of the different intervals of the given size and the error bars indicate ±1
standard deviation from the mean.
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Figure 3.4: Figure which show the probability that a random exclusive interval from a
causet contains a certain number of points. The initial causet had ≈100 points sprinkled
into a 1+1 Minkowski causal diamond. I then created 10,000 exclusive causal intervals
from the initial causet and registered the number of points in each interval. The plot
shows that it is most likely that any one of those 10,000 intervals would contain a small
number of points.

3.2 Frequency of occurrence within an interval

Having showed that the Myrheim-Meyer dimension estimator does converge to the di-

mension of the background manifold, I was then curious to see how well a sampling of

intervals covers the whole causet. To do this I made a sprinkling of ≈10,000 points into

two different 1+1 Minkowski spacetimes. One spacetime was the 1+1 Minkowski diamond

I used when calculating the Myrheim-Meyer dimension in section 3.1 which is bounded by

−
√

2/2 ≤ t ≤
√

2/2 and 0 ≤ x ≤
√

2. I also investigated a rectangular spacetime bounded

by 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1. From each of the sprinklings I made 1000 random inclusive

causal intervals and counted the number of times each point in the causet appeared in

one of the intervals. Using this I can determine which areas of the causet are sampled

from most frequently and I have highlighted these areas in figure 3.5. The plots show that

points which lie in the centre of the causal set are sampled from most frequently.

3.2.1 Errors in a rectangular spacetime

As mentioned in section 2.4.4, the order relation between each pair of points in a causal

interval must be the same as the order of those points in the global causet. For a simple

1+1 dimensional spacetime which does not identify the boundaries (as in figure 3.5) one
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Figure 3.5: Figure 3.5a shows the same Minkowski diamond used in section 3.1 when
calculating the Myrheim-Meyer dimension and figure 3.5b shows a regular Minkowski
space, bounded by 0 ≤ t, x ≤ 1. Both spacetimes contain a sprinkling of ≈10,000 causal
set elements. I made 1000 inclusive causal intervals over each of the sprinklings and the
colour scale shows how frequently each point appeared in an interval.

can accurately calculate the causal order of an interval in isolation from the larger causet.

This is not the case however for spacetimes which do identify the boundaries as only the

global causal order reveals the wrap around. To demonstrate this I make the following

definition for causal sets which have been sprinkled into a 1+1 dimensional Minkowski

spacetime:

Definition 3.2.1 A complete causal interval is one such that both the intersection points

of the future light cones from p with the past light cones of q can be embedded into the

continuum manifold.

The exact intersection points may not be an elements of the causal set but it should be

possible to embed the intersection points into the spacetime. Otherwise, if an interval is

“cut-off” by the spatial boundaries it is called incomplete. See figure 3.6 for examples.

Consider the specific example of a spacetime with it’s spatial boundaries identified

and sprinkle a causal set into it. Every causal interval created from this sprinkling must

be complete and therefore should not discriminate against points which are close to the

spatial boundaries. To show this I sprinkled ≈10,000 points into such a spacetime and

sampled 1000 random causal intervals, ensuring that each interval inherited the global

causal order. I then recalculated how many times each point in the global causet was
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inside a causal interval and figure 3.7 correctly illustrates a uniform frequency band across

the centre of the causet.
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Figure 3.6: Two figures depicting the same spacetime sprinkling and a causal interval
between the same two points in a 1+1 Minkowski spacetime. The past and future point
of the causal interval are (0.1, 0.1) and (0.9, 0.1) respectively for both plots. Figure 3.6a
shows the interval when the x boundary is not identified and figure 3.6b does have the
boundary identified, thus allowing the causal interval to continue onto the other side of
the spacetime.
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Figure 3.7: Figure depicting a random Poisson sprinkling of ≈10,000 elements into a
rectangular 1+1 Minkowski spacetime that has the spatial boundaries identified. The
colour map, similar to figure 3.5, is generated by sampling 1000 causal intervals from
the sprinkling. It is vital that the intervals inherit the global causal order to realise the
identification of the spatial boundaries. The result of this is the uniform colour band
through the middle of the causet meaning that the causal intervals do not discriminate
against points close to the spatial boundaries.
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Chapter 4

Causal intervals in featureful

spacetimes

In this chapter I investigate how identifying the temporal boundaries and removing line

segments from a spacetime affects the causal structure. I demonstrate the consequences

that these particular features have on a causal set which has been sprinkled into such

spacetimes. Most notably this includes the ability to determine the causal order of the

causet and therefore it’s ability to be embedded in a continuum spacetime. I propose a

new technique for calculating the global causal order of causets which have been sprinkled

into featureful spacetimes. I claim that this new technique more reliably determines the

causal order for these causets than the method described in section 3.1.1.

4.1 Excised lines

First let us consider a causet which has been sprinkled into a 1+1 dimensional Minkowski

spacetime that excises a horizontal line though the centre of the spacetime, as in figure 4.1.

To begin to evaluate whether such a causet can be faithfully embedded into a continuum

spacetime we must determine the causal order of the causet. The excised line plays an

important role in the causal order as it prevents causal relations between certain pairs of

points. The straight line method as outlined in section 3.1.1 needs to be modified slightly

to account for the excised line. Consider two points p, q ∈ C which are separated by the

excised line. To calculate the causal order we use the straight line method which would

determine that p ⊀ q because the straight line between the two intersects the excised line.
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Figure 4.1: Figure showing a 1+1 Minkowski spacetime with a line removed from the
spacetime which is shown in blue. Approximately 1000 points have then been sprinkled
into the spacetime via a Poisson process. The excised line plays an important role in
determining the causal order of this sprinkling because it prevents some points below the
excised line from causally preceding points above the excised line.

Figure 4.2: Figures showing a continuum 1+1 Minkowski spacetime with an excised line
shown in blue. The points in the diagrams represent embedded causal set elements. In
figure 4.2 the causal order of p and q has been determined using the straight line method
meaning that p ⊀ q. After embedding p and q however, one can follow the causal curve
shown in green which connects the two embedded points. The existence of such a causal
path shows that p ∈ J−(q) and therefore causal set is not a faithful embedding.
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Now if one faithfully embeds these two points into the continuum such that the order

between them is preserved then we see that this order does not match the causal structure

of the continuum. In the continuum, one may be able to construct a causal curve between

the embedded points such that p ∈ J−(q). Such a scenario has been depicted in figure 4.2.

Clearly we cannot use the straight line method to accurately determine the correct causal

order of the causet.

I investigated how much the excised line affected how often elements of the causet were

picked in a random sampling of causal intervals when using the straight line method to

determine the causal order. I started by sprinkling ≈10,000 points into a 1+1 Minkowski

spacetime which has the horizontal line between the coordinates (0.5, 0.4) and (0.5, 0.6)

removed. Using the technique described earlier I sampled 1000 exclusive causal intervals

across the causet and counted the number of times each element of the causet was contained

within an interval. I plotted this using a colour map which is shown in figure 4.3a. The

diagram highlights that the areas close to the spatial boundaries, which the excised line

doesn’t extend into, are sampled the most. Areas above and below the excised line are

scarcely sampled from which is expected because the straight line method determines there

are fewer causal relations in this area.

I also wanted to see if such a causal set could still accurately deduce the dimension of

the background manifold. As shown above, the excised line has an effect on the points

that are contained in certain intervals, with those points which straddle the excised line

less likely to be included in an interval. The excised line therefore changes the value of the

Myrheim-Meyer dimension for intervals which overlap the excised line. The right hand

side of equation (3.1), 〈R〉/〈N〉2, scales by N2 with R ∝ O(N) the subdominant term for

large intervals. Smaller intervals are less likely to be effected by the excised line because

there is less chance that a small interval will overlap the excised line. However, for larger

intervals which straddle the excised line there are fewer points contained in the interval

when compared to an empty spacetime so we expect that the Myrheim-Meyer dimension is

lower. To show that this was the case I sprinkled ≈1000 elements into the 1+1 dimensional

Minkowski spacetime that has the same horizontal line excised as in figure 4.3a. I again

used the straight line method to determine the causal order of the causet. I then sampled

10,000 exclusive causal intervals randomly and calculated the Myrheim-Meyer dimension

of each interval. Figure 4.3b shows a plot of the average Myrheim-Meyer dimension against
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Figure 4.3: Figures showing the effects that an excised line has the causal order of a
causal set. Figure 4.3a shows a sprinkling of ≈10,000 points into the spacetime described
by figure 4.1. I then sample 1000 causal intervals across the sprinkling and the heat map
shows the number of times each point is contained within one of the intervals. Figure 4.3b
is generated from the same spacetime with approximately 1000 causal set elements. I
then make 10,000 causal intervals from this sprinkling and calculate the Myrheim-Meyer
dimension of each interval. I plot the mean dimension against the size of the intervals with
the error bars representing ±1 standard deviation from the mean. The Myrheim-Meyer
dimension approaches 2 for relatively small intervals but for larger intervals the standard
deviation increases and the mean dimension decreases.

the size of the causal interval and the error bars show ±1σ. As expected, for small intervals

the Myrheim-Meyer dimension begins to approach the correct value of two. As the size

of the intervals increase the average MM dimension begins to decrease below two and the

deviation does not appear to converge. However the deviation does consistently overlap

two which shows this causet is well approximated by a 1+1 dimensional Minkowski space.

4.2 Using the null line intersections

I now propose a new method which more correctly calculates the causal order of a causal

set which has been sprinkled into particular featureful spacetimes. The causal order of

an embedded causet should agree with the continuum causal relations between embedded

points. In the continuum, the light cones determine the causal structure [13, 30] so is it

possible to use a similar structure to determine the causal order of a causet? I claim that

it is possible and I show that such a method is more reliable than using straight lines when

calculating the causal order of a particular spacetime. I stress that this method does not

work for a general spacetimes but it does work for previous examples and, importantly,
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Figure 4.4: Figure which shows a continuum 1+1 Minkowski spacetime with an excised
line shown in blue. The points p and q represent causal set elements which have been
embedded into this spacetime. The dotted lines show the future null cone of p and the
past null cone of q. The other point s1 is the intersection point of the future null line from
p with the past null line from q. The excised line in prevents the other intersection point
from the positive gradient null line of p with the negative gradient null line from q from
existing. However because of the existence of s1 (and it is between p and q) we can still
conclude that p ∈ J−(q).

for Spacetime Z.

4.2.1 Infinite Minkowski space

Consider a causal set which has been sprinkled into an empty infinite 1+1 dimensional

Minkowski space. Pick two random points p, q ∈ C with p0 < q0 and we want to determine

whether p ≺ q. We also want the order between p and q to agree with the causal relation

between φ(p) and φ(q) into a continuum spacetime, where φ is the embedding. In the

continuum one can draw the null cones extending φ(p) and φ(q). Since the spacetime

is infinite the future null cones of φ(p) will intersect the past null cones of φ(q) at some

point. If the intersection points, which I call s1 and s2 are such that φ(p)0 < s01, s
0
2 < φ(q)0

then φ(p) ∈ J−(φ(q)). This is because any timelike curve between φ(p) and φ(q) in the

spacetime can continuously reparameterised to follow arbitrarily close to the null lines and

still remain timelike [13, 30, 9]. We can then use this to determine the causal order of the

points in the causet such that, if the above holds, p ≺ q. Crucially, the causal order as

determined using the null line method agrees with the causal order as determined by the

straight line method in an infinite 1+1 dimensional Minkowski space.
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4.2.2 Finite Minkowski space

A slight adjustment must be made to the null line method if instead the background

manifold is a finite 1+1 dimensional Minkowski space. For “skinny” spacetimes which are

taller than they are wide there is no way to adjust the null line method to work globally

and this is one example where the null line method fails. Instead consider a sufficiently

wide spacetime where the space is larger than time. Again we embed the points p, q ∈ C

with φ and extend the null lines from φ(p) and φ(q) off to the edge of the spacetime. There

is now no guarantee that both intersection points of the null lines are in the spacetime,

however the existence of one of them is enough to determine that φ(p) ∈ J−(φ(q)). If

neither intersection point exists, or an intersection point is not temporally between φ(p)

and φ(q) then φ(p) and φ(q) are not causally related. This means that for p, q ∈ C, p ⊀ q.

Again this agrees with the causal order between p and q determined using the straight

line method.

4.2.3 Spacetimes with excised lines

In order to study spacetimes with excised lines, it is necessary to make another adjustment

to the null line method. Consider the spacetime shown in figure 4.1 which has a horizontal

line excised in the middle of the spacetime. Select two points p, q ∈ C from a causet C

which has been sprinkled into the spacetime, such that p is close to the origin and q is

in the upper left region of the spacetime. Drawing the null lines from the embedding

of the p and q shows that neither intersection point exists in the spacetime; one of the

intersections lies outside of the spacetime and the other is prevented by the excised line.

For the null line method to work in this situation we must identify the spatial boundaries

of the spacetime so that the null lines can wrap around in space. This will still cause errors

for very large intervals as even after wrapping around the spacetime the intersection of

the null lines will be blocked. However, as shown by figure 3.7, the vast majority of causal

intervals sampled elements from C are not in these incorrect regions so these errors should

be insignificant in the analysis of C.

With that adjustment to the null line method I want to justify it’s use in causal sets

with excised lines. The benefit that the null line method presents over the straight line

method is that there are two possible paths which one can trace to determine whether two

elements of the causal set are causally related. Consider again points p, q ∈ C straddling
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an excised line in the spacetime as in figure 4.4. The straight line method would incorrectly

determine that p ⊀ q. However, after embedding p and q, an intersection of the null lines

does exist and it is temporally between p and q. Therefore the null line method would

correctly determine that p ≺ q. It is also important that the null line method correctly

identifies unrelated points. The following conditions determine whether p ⊀ q ∀p, q ∈ C

using a faithful embedding φ:

1. The intersection points of the null cones from φ(p) and φ(q) are not temporally

between p and q OR

2. A single excised line intersects both the future directed null lines from φ(p) OR

3. A single excised line intersects both the past directed null lines from φ(q) OR

4. A single excised line intersects both the future directed positive gradient null line

from φ(p) and the past directed positive gradient null line from φ(q) OR

5. A single excised line intersects both the future directed negative gradient null line

from φ(p) and the past directed negative gradient null line from φ(q).

If any of these conditions are met then we conclude that p ⊀ q. As we will see later, these

are sufficient conditions to investigate Spacetime Z which is the overall aim of this thesis.

4.2.4 The effectiveness of the null line method

I now show whether a causal order determined using the null line method is well approxi-

mated by a 1+1 dimensional Minkowski background that contains an excised line. If we

use the null line method to determine the global causal order of the causet then the causal

matrix becomes

CNLij =


1 if one can draw at least one null line from pi and pj

0 otherwise.

(4.1)

To make a fair comparison between the null line method and the straight line method I

repeated the same analysis conducted in section 4.1. I begin by showing how frequently

each element of a causal set is included in a sampling of exclusive causal intervals. I

sprinkled ≈10,000 causal set elements into a spacetime with a horizontal excised line
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between (0.5, 0.4) and (0.5, 0.6). I then calculated the causal matrix using the null line

method, which now showed more causal relations than when calculating the causal matrix

using the straight line method. I then sampled 1000 causal intervals over the causet and

counted the number of times each element was contained in an interval. This generated

the plot shown in figure 4.3a. The plot reveals that, using the null line method, there

is no discrimination against points surrounding the excised line and causal set essentially

becomes blind to the excised line.

I also wanted to see how the null line method influenced the Myrheim-Meyer dimension.

We still expect that the excised line decreases the number of points and the number of

relations in intervals straddled by the excised line. However, the null line method should

include more points and more causal relations than the straight line method for such

intervals. To make a fair comparison to the straight line method I again sprinkle ≈1000

points in to the 1+1 dimensional Minkowski spacetime described above and use the null

line method to determine the causal order of the causet. I then used the causal order

to sample 10,000 exclusive causal intervals. Calculating the Myrheim-Meyer dimension

of each interval generates the plot in figure 4.5b. The blue dots represent the average

dimension of each size of interval and the error bars are again ±1σ. For smaller intervals

the effects of the excised line are minimal and the dimension begins to approach two. For

larger intervals the average dimension again falls below the background dimension of two

which reflects that the excised line reduces the number of points that are in intervals close

to it. However the deviation consistently overlaps two and therefore we conclude that this

causet alone is able to deduce the dimension of the background manifold.

4.3 Excised line and temporal axis identification

I now describe another particular subtlety which arises when the temporal boundary is

identified, making a cylinder in time. A particularly useful property for rectangular space-

times that do not allow wrap around in time or space is that, if calculated as an indepen-

dent causal set, the causal order of an interval is the same as the causal order of the larger

causal set. Practically this means that in simulations it is an easy task to calculate the

causal order of any given interval as it can be determined in isolation. As talked about in

section 3.2.1, identifying the spatial boundaries is a small extension one can make. Not so

42



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

50

100

150

200

250

frequency

x

t

(a)

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Number of points in causal interval

D
im

en
si

on

(b)

Figure 4.5: Figures depicting results from causets where the causal order has been de-
termined using the null line method. The background manifold is a 1+1 dimensional
Minkowski space that excises a horizontal line between (0.5, 0.4) and (0.5, 0.6). Figure 4.5a
shows a dense sprinkling of ≈10,000 points into the spacetime. From this sprinkling I cre-
ate 1000 exclusive causal intervals and the colour shows how frequently each point is
included in one of the intervals. The region in the centre of the causal set is sampled
from less frequently than the edges but in comparison to figure 4.3a points in this region
are picked more frequently. Figure 4.5b shows the Myrheim-Meyer dimension for 10,000
random intervals across the causet of density ≈1000 points. In comparison to figure 4.3b
the standard deviation, indicated by the error bars, stays more compact.

simple, however, is the identification of the temporal axis. Now there is no causal interval

in the causet which can be considered independent of the larger causet; indeed one has to

calculate the causal order of an entire causet before creating causal intervals from it. A

sprinkling into a non-causal spacetime would break item 2) of definition 1.3.1 and so an

order relation cannot be introduced on this sprinkling. Introducing excised lines into the

spacetime can enforce the acyclicity property on sprinklings in such a spacetime however

determining the causal order of the sprinkling becomes highly non-trivial. One could of

course consider each combination of pairs of points in the causet and, through a series

of conditions, determine whether they are causally ordered or not. The computational

running time to calculate the global causal order in this way scales quadratically with

the number of points in the causet. Investigations into even sparse causal sets becomes

computationally expensive and time consuming. Ideally one would like a vectorisable al-

gorithm which utilises modern CPU SIMD arrays. Unfortunately such algorithms do not

exist generally but may be considered for particular spacetimes such as for Spacetime Z.

It is possible to write a vectorised algorithm that uses the null line method which can also

be applied to Spacetime Z.
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Chapter 5

Deducing the dimension of

Spacetime Z

In this chapter I analyse Spacetime Z. I first prove that using the null line method within

this spacetime determines the continuum causal structure of the spacetime. I then describe

an algorithm that uses the null line method to determine the causal matrix of a causal

set that has been sprinkled into Spacetime Z. Using the causal matrix I then proceed to

sample exclusive causal intervals on the causet to calculate the Myrheim-Meyer dimension.

I show that this causal set does approximate a 1+1 dimensional spacetime.

5.1 Proof of the null line method in Spacetime Z

In this section I want to prove that we can use the null line method for Spacetime Z, which

only works because of the particular structure of the excised lines. For this proof I will

rely heavily on figure 5.1 which shows Spacetime Z split into several regions. Each of the

regions are defined by the boundaries of the spacetime and important null lines though

the spacetime. Regions A and B are divided by the characteristic null line of Spacetime Z

so it is of extra importance that these regions have the correct causal structure. The null

line that divides regions B and C is the continuation of the null line that passes through

the endpoint of the upper excised line after the temporal wrap around. For the proof I

use two causal set elements which have been embedded into the continuum spacetime and

I call the embedded points p and q.
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Figure 5.1

5.1.1 Local Minkowski space

Much of the following proof relies on dividing the spacetime up into sub-regions which

locally look like Minkowski space. Since the null method works for wide Minkowski spaces,

it works in the following scenarios. For example, a causal curve which starts in a region

cannot use the time wrap around to re-enter the same region. As such each of the individual

regions look like a bounded Minkowski space and any pair of points p, q which are both

in A,B,C,D or E are only causally related if they are causally related in the associated

Minkowski space.

5.1.2 Causally disjoint regions

For some regions of Spacetime Z there is no causal curve which can travel between them.

In this sense they are “causally disjoint”.

p ∈ A, q ∈ E

For this case there is no causal curve that can join p and q so A and E are causally disjoint

p ∈ A, q ∈ C

Since region C can be considered as the “temporal continuation” of region E the same

argument can be applied for points in A and C.
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p ∈ D, q ∈ C

The null line which is the boundary of D is also the boundary of C after the null line

wraps around the time axis. For a causal curve to connect region C and D using the wrap

around in time it would have to cross this null line which is not possible. There are paths

that can use the wrap around in space to travel from C to D however the null line method

algorithm described later in section 5.2.2 does not take into account these paths and so

we can treat them as causally disjoint.

5.1.3 Conditional causality

For the other choices of points we have to be a bit more careful because the causal relations

depend on the exact positioning of the points. For the following I divide the large regions

in to smaller sub-regions using imaginary null lines from various points. The descriptions

of these null lines are given in terms of a start point and a nautical direction with respect

to the diagram.

p ∈ D, q ∈ E

The majority of D and E are causally disjoint, the only difficult region is the rectangular

patch which is bisected by the null line which joins them. This small rectangular region

again looks locally like Minkowski space since it is bounded by the excised lines and so

no curve can wrap around in time. Therefore p and q are only causally related if they are

related in Minkowski space.

p ∈ A, q ∈ D

Since there is no way for a future directed causal curve to leave D and enter A, the

temporal identification does not effect the causal relations. However causal curves can

leave A and enter D. Consider an imaginary null line which starts from the lower left

corner of A and heads north west to the boundary of Spacetime Z. This sub-region ∪A

can be considered as Minkowski space.

p ∈ D, q ∈ B

The majority of B and D are causally disjoint because of the lower excised line which

prevents many of the future directed curves which start in D from leaving D. For the
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small sub-region which is defined by a null line which runs parallel to the null line which

bounds D this is not true. In this region causal curves are allowed to enter B. This small

sub-region ∪B can be treated as Minkowski space.

p ∈ E, q ∈ B ∪ C

As mentioned previously, C can be considered as the “temporal continuation” of E and

therefore E ∪C can be considered as Minkowski. There are also sections of B that causal

curves starting in E can also reach and are considered here because every such causal curve

must also pass through C. If q is in the triangular region of B defined by the null line

which divides B and C and another imaginary null line heading north west from the lower

left corner of C then it is possible for p to be causally related to it. This small extension

into B, along with E ∪C, can be considered as Minkowski so the causal relations are the

same as for Minkowski space.

p ∈ A, q ∈ B

There is one small problem region in this case which is for points which lie on the char-

acteristic null line which divides A and B. Consider the sub-region of B which is defined

by the null line starting from the endpoint of the lower excised line heading north east

until it intersects the upper excised line. This sub-region ∪A is another section of this

spacetime which locally looks Minkowski so it’s causal relations can be inherited from that

of Minkowski space. Much of this is redundant though and only includes relations which

lie exactly on the characteristic null line. Any point in the interior of A can reach any

point in the interior of B because of the temporal identification so any of these points are

causally related.

5.2 Determining the global causal order in Spacetime Z

I now describe the algorithm that I use to determine the causal order of causal sets which

have been sprinkled into Spacetime Z1. The algorithm is incomplete although I have put

measures in place to reduce the impact of the errors that this causes.

1The code which implements this algorithm can be found in my causal set package which is published
at https://gitlab.com/awr.trumpet/causal_sets.
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Figure 5.2: Figure showing two causal set element p and q which are embedded in Space-
time Z and the image of p and q (p′, q′) as well as the image of the excised lines. Consid-
ering just the original spacetime (the lower diagram with solid lines) without identifying
the boundaries, there is no order between p and q because there is not causal path which
connects them. However by identifying the time axis we see that the future null cone of q
intersects the past null cone of p′ and therefore we conclude that q ≺ p.

5.2.1 Algorithm outline

The algorithm works by first considering the spacetime without temporal identification.

It is important to correctly determine the causal order of a causet in such a spacetime

because if two points are ordered without wrapping around in time, then they are still

ordered after wrapping around. To accurately calculate the causal order in the unidentified

version I first ignore the excised lines and treat the spacetime as an empty 1+1 Minkowski

spacetime for which we know the null line method works. I then consider each excised line

in Spacetime Z in turn to remove those relations that are blocked by each excised line.

Now I consider the temporal identification which adds causal relations. To do this I

“map” an image of the causet above the original (see figure 5.2). I then repeat the pro-

cedure outlined above for this new larger spacetime, first determining the causal relations

without the excised lines and then considering the excised lines in turn. The difference

is now that I look for the causal relations between the original points and their mapped

counterparts in the image. This will then tell whether a causal path can be traced between

points using the temporal identification.
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5.2.2 Unfinished business

One thing that I am yet to implement in this algorithm is to consider points which are

causally related by using the spatial wrap around. This is because including such paths

would also include the non-causal paths described earlier in section 2.3.3. The errors that

come from not including these additional relations can be put down to edge effects and

their contribution still needs to be calculated. However if the spacetime is sufficiently

wide then the contribution from the edge effects would be small. To minimise the edge

effects I only sprinkle the causet into a smaller region of the spacetime which still covers

the characteristic null line. This way I do not effect the main feature of Spacetime Z.

5.2.3 Subtleties in the algorithm

I want to highlight a small subtlety with the algorithm. Let us again consider p ∈ A, q ∈ B

and the picture drawn in figure 5.3. Here the two points in the original spacetime are space-

like to each other however using the mapped spacetime a causal curve can be connected

from q to p′. Both the future directed positive gradient null line from q and the past

directed positive gradient from p′ intersect an excised line; wouldn’t the algorithm deter-

mine them to be unrelated? It does not for exactly this reason! As stated in section 4.2.3

a single excised line must intersect both of the positive or negative gradient null lines for

the points to be deemed unrelated. If, as in this case, there are two different excised lines

which intersect the null lines the the causal relation is undetermined. By considering each

excised line in turn in the algorithm I ensure that relations for cases similar to this one

are not calculated incorrectly.

There is also a region for which this subtlety is a disadvantage and incorrectly deter-

mines the causal relations. Causal set elements that lie either side of the null line which

separates D and E will be shown as causally related by the null line method as a single

excised line between these points also does not match all of the conditions required in

section 4.2.3. One suggestion to fix this is to locate the point where the null lines re-enter

the spacetime after wrapping around in time and tracing the null lines from this point. I

have not done this but I minimise the issue by making the separation of the excised line

very close to the limit for which this spacetime becomes strongly causal, as described in

section 2.3.2. This also has the added bonus that we study the maximal effects of the

non-strongly causal nature of the spacetime.
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Figure 5.3: Figure showing Spacetime Z with two embedded causal set elements p and q
and the image of the same spacetime with the mapped points p′ and q′. A single excised
line between q and p′ does not satisfy all the conditions in section 2.3.2 and therefore this
means that the null line method deems q ∈ J−(p′). This is what is expected of two points
which straddle the characteristic null line of Spacetime Z. It is particularly important to
study these points because the closer they get to the characteristic null line the more they
show the non-strongly causal nature of this spacetime.

5.3 Causal sets in Spacetime Z

Now that I am able to determine the causal order of causets which are sprinkled into

Spacetime Z I want to see whether the causal set alone can deduce the dimension of

Spacetime Z. To do this I created Spacetime Z with the spatial boundaries going between -4

and 4 and the temporal boundaries between 0 and 1 with both boundaries being identified.

The coordinates of the endpoints of the lower excised line were (0,−4) and (0, 0.2). I then

set the separation of the lines to be 0.4999 (close to 0.5) and calculated the coordinates

of the endpoints of the upper excised line which are (−0.2999, 0.4999). I then made

sprinklings into a slightly smaller region; between -3 and 3 in space and 0 and 1 in time.

This is to avoid the edge effects which I described in section 5.2.2 and focus more on the

main part of the spacetime, the Z! This setup can be seen in figure 5.4. Once the points

have been sprinkled I determine the causal matrix of the whole causet, which represents

the causal order, using the null line method.
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Figure 5.4: Figure which shows a causal set of unit volume density of ≈1000 points
sprinkled into Spacetime Z. I use the shifted version of the spacetime so one excised line is
on the bottom of the diagram and the other is a separation of 0.4999 away from the first
in time.

5.3.1 Coverage of the sprinklings

To see how frequently points are sampled from the causet I repeat similar analysis done

in previous chapters. I then created Spacetime Z as described above and sampled 10,000

random exclusive causal intervals across the causet. As detailed previously, because of

the structure of Spacetime Z it is important that each interval inherits the global causal

order. Counting the number of times each element was contained in an interval produced

the plot in figure 5.5. As the diagram shows, the points which are sampled from most

frequently are away from the excised lines, where the space has the same order locally as

Minkowski space. It should be noted that even those points close to the excised lines are

still sampled but less frequently than the other regions.

5.3.2 Myrheim-Meyer dimension of Spacetime Z

Now I evaluate whether the information contained in the causet is enough to deduce the

dimension of Spacetime Z. For this I again sprinkle a causal set of ≈1000 elements into

the spacetime within the spatial region of -3 to 3. I then created 3000 random exclusive

intervals from across the causet and calculated the Myrheim-Meyer dimension for each

one. Figure 5.6 shows the mean dimension of the interval against the number of points

contained in the interval with the error bars again representing one standard deviation
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Figure 5.5: Figure showing the sprinkling from figure 5.4 into Spacetime Z where the range
of the spatial axis only shows the sprinkling. 10,000 random exclusive intervals have been
sampled across this sprinkling and the frequency with which each point is contained in
an is shown as a colour map. The frequency is uniform in the areas that locally look like
Minkowski space, with fewer points being sampled close to the excised lines.

from the mean. In comparison to an empty Minkowski spacetime shown in figure 3.3b

there is a larger deviation from the mean for larger causal intervals. However the standard

deviations seem to overlap the background manifold dimension of 2 and the mean values

converge to 2 as well. This demonstrates that a causet which has been sprinkled into

Spacetime Z can accurately deduce the dimension of Spacetime Z using the Myrheim-

Meyer dimension estimator.
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Figure 5.6: Plot which shows the Myrheim-Meyer dimension of a causet of unit volume
density ≈1000 sprinkled into Spacetime Z. 3000 random exclusive causal intervals were
sampled from across the causet and the Myrheim-Meyer dimension of each of them cal-
culated. The plot shows the various sizes of the intervals with the blue dots representing
the mean dimension for each size and the error bars show ±1σ from the mean.
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Chapter 6

Conclusion

6.1 Further work

There is a lot of scope for further work based on the findings of this thesis. The null line

method algorithm described in section 4.2 still causes a few erroneous regions for sprin-

klings into Spacetime Z which I have highlighted in section 5.2.2. It would be interesting

to see the contributions due to boundary effects once the spacial identification has been

properly accounted for. Another area of interest is to vary the separation of the excised

lines and see the effects this has on the Myrheim-Meyer dimension for Spacetime Z.

The work in this thesis has also only concentrated on causets in 1+1 dimensional space-

times, including for Spacetime Z. The HKMM theorem however requires the dimension of

the spacetime to be strictly greater than two [8, 14]. Future work could therefore involve

generalising the work in chapter 5 to look at a higher dimensional Spacetime Z, where the

excised lines become planes or hyperplanes. If one is able to deduce the dimension and

other topological information from causets sprinkled into a higher dimensional spacetime

it further indicates that a causal set is the fundamental make up of spacetime.

Mentioned earlier in section 2.3.3, Spacetime Z as it has been described in this thesis

does not obey the basic causality condition of definition 2.1.9. However this closed causal

curves have been ignored because they do not show up in the algorithms for determining

the causal order which, in a simulation, makes Spacetime Z distinguishing. The modifi-

cation to Spacetime Z to not allow the closed causal curves has been shown in figure 2.6

and further work could examine causal sets sprinkled into this “puzzle spacetime”.
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6.2 Closing remarks

In this thesis I have presented Causal Set Theory as a theory of discrete spacetime [27,

4]. I outline the Hawking-King-McCarthy-Malament theorem [8, 14] which is one strong

motivation for studying Causal Set Theory. It implies that, under certain conditions, the

causal structure of spacetime alone is enough to recover the topological and differentiable

structure of spacetime [20]. I describe continuum spacetimes which exhibit different causal

properties including the main focus of this thesis, Spacetime Z which is distinguishing but

not strongly causal [21]. I then show the differences between a continuum spacetime and

a causal set, making necessary definitions to distinguish the two. I describe one method of

determining the causal order on a causet which has been sprinkled into a strongly causal

spacetime. Using the causal order, I demonstrate how one can deduce the dimension of

the background manifold using the Myrheim-Meyer dimension estimator. I confirm results

already shown in [16, 23, 1] for a causal sets sprinkled into a 1+1 dimensional Minkowski

spacetime. I also investigate how frequently each causal set element is represented when

calculating the Myrheim-Meyer dimension. I then describe featureful spacetimes and the

problems they present for causets which are sprinkled into them. I propose a new method

for determining the causal order in such causets that uses the light cone structure of the

embedded points. I show that this new method alleviates some of the problems that arise

in certain featureful spacetimes and illustrate that it is a valid method. I prove that

the new method can be used in Spacetime Z and describe a particular implementation

for calculating the causal order of a causal set which has been sprinkled into Spacetime

Z. Using the causal order, I calculate the Myrheim-Meyer dimension of random causal

intervals and show that the Myrheim-Meyer dimension converges to two. This shows that

a causal set which has been sprinkled into Spacetime Z contains all of the information

required to deduce the dimension of Spacetime Z.
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