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Abstract

Braneworlds are fascinating objects. They provide an interesting framework within

which we can explore whether our universe exists in a fundamentally higher dimen-

sional spacetime. This dissertation is devoted to studying braneworlds and some of

their aspects. We begin with an overview of extra-dimensional physics and especially

the mathematical tools needed to investigate braneworlds. The effective Einstein field

equations on the brane are derived, motivating the introduction of the Randall-Sundrum

models. A detailed description of braneworld gravity is provided. We then move on to

braneworld cosmology, where from the view point of a homogeneous and isotropic

brane, we see quadratic deviations from the FLRW results from standard cosmology. We

finally look at black holes, specifically some discussion into static, spherically symmetric

braneworld black hole solutions. We assume an equation of state for the Weyl term in

the Einstein equations, which encodes the effect of extra dimensions, and we employ

this to attempt to classify some characteristics of these solutions. We finally discuss

further interesting ideas, such as holography.
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Chapter 1

Introduction

1.1 The Current State of Affairs...

The Standard Model of particle physics (SM), regarded as an effective field theory

(EFT) near the TeV scale, is one of theoretical physics’ greatest triumphs, explaining

various elementary particles and their fundamental interactions. It is a gauge quan-

tum field theory obeying a set of rules, described by the finite dimensional Lie groups

SU(3)×SU(2)×U(1). SU(3) symmetries describe quantum chromodynamics (QCD),

SU(2) describing the weak interaction and U(1)describing quantum electrodynamics

(QED). It describes the existence of four bosons or force carriers that mediate interac-

tions between fermions, namely: the photon for the electromagnetic interaction, gluons

for the strong interaction and the W± and Z0 bosons for the weak interaction. Fermions

or the ordinary matter particles can be distinguished into quarks and leptons, which

interact with each other through the exchange of bosons. The unification of the electro-

magnetic and weak interactions by Glashow, Salam and Weinberg in 1979 [1] is often

described as the birth of the Standard Model and the idea of unification. Grand Unified

Theories (GUTs) that effectively unify all fundamental interactions are yet to be proven

correct. The SM works remarkably within low energy regimes, as our present colliders

are able to achieve these energies as they fall within the range of theoretical predictions.
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Chapter 1. Introduction 1.1. THE CURRENT STATE OF AFFAIRS...

The enigmatic existence of dark matter, the incompatibility of gravity with the SM, the

hierarchy problem are among some of the plethora of unresolved and open questions,

leading to the fact that the SM is still very incomplete and could be regarded as an

effective field theory.

General Relativity (GR) is another remarkable theory and has been highly successful

in its regime, but it is a classical theory. John Archibald Wheeler, a titan of modern

theoretical physics and especially gravity, once remarked, “Spacetime tells matter how

to move; matter tells spacetime how to curve.” This beautiful quote captures the essence

of the general theory of relativity, a geometrical theory that generalises the compre-

hension of spacetime provided by Special Relativity. [3] The central piece of GR is the

Einstein Field Equations (EFE), which relate the distribution of energy and momentum

to curvature and its manifestation as gravity. These equations are:

Rµν − 1
2
Rgµν = 8πG

c4
Tµν (1.1)

where Rµν is the Ricci tensor, R is the Ricci scalar, gµν is the metric tensor, G being New-

ton’s gravitational constant, c is the speed of light and Tµν is the energy-momentum

tensor.

GR breaks down in extremely strong gravitational fields when quantum effects are non-

negligible, typically in spacetime singularities such as those found at the centre of black

holes or at the Big Bang. We therefore require a quantum theory of gravity to further

probe these problems. [2]
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Chapter 1. Introduction 1.2. EXTRA DIMENSIONS AND GRAVITY IN THE BULK

1.2 Extra Dimensions and Gravity in the Bulk

1.2.1 A bit of history on Extra Dimensions

Kaluza-Klein theory

Our observable universe is 3+1 dimensional. Soon after GR’s appearance on the world

stage, there were attempts to unify gravity with electromagnetism. Around a century

ago, Kaluza and Klein theorised [4; 5] that by adding an extra dimension to space,

one could unify electromagnetism and gravity. They used the metric tensor in five di-

mensional (5D) spacetime in which our universe was a 3+1 dimensional hypersurface,

where you get aM1,3 × S1 theory. To get a basic idea, consider the following - the vac-

uum Einstein equations in 4-D can be derived from varying the Einstein-Hilbert action

SEH =
1

16πG

∫
d4x
√
−g R (1.2)

where g is the determinant of the metric tensor, while the sourceless Maxwell equations

can be derived from

SEM = −1

4

∫
d4x FµνF

µν (1.3)

where Fµν is the electromagnetic field strength tensor. Now, Kaluza’s idea was to con-

sider gravity in 5 dimensions, described the following action

S =
1

16πG(5)

∫
d4xdy

√
g(5) R(5) (1.4)

Here, y denotes the coordinate of the fifth dimension and the superscripts denote 5-

D quantities. To ensure theoretical independence of the fifth dimension imposed a

condition that the metric components are independent of y:

∂g
(5)
µν

∂y
= 0 (1.5)
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Chapter 1. Introduction 1.2. EXTRA DIMENSIONS AND GRAVITY IN THE BULK

Following which, writing out the metric as suggested:

g
(5)
µν = φ−

1
3

gµν + φAµAν φAµ

φAν 0

 (1.6)

Usinig Eqn.1.6, the action in Eqn.1.4 becomes

S =
1

16πG

∫
d4x
√
g
(
R− 1

4
φFµνF

µν − 1

6φ2
∂µφ∂

µφ
)

(1.7)

The action in (1.7) describes 4-D gravity together with classical electromagnetism and

a massless Klein-Gordon scalar field φ. (Refer to [4; 5] for the details)

This was a step towards a ‘unified theory of all interactions’ - although at the cost of

an additional dimension. In recent decades, extra dimensions are an integral part of

fundamental theoretical physics, with a burgeoning focus on making these dimensions

consistent with our existing frameworks in physics, driving progress in string theory,

particle phenomenology and cosmology.

Braneworlds and Domain Walls

Braneworlds are just a part of the general story and represent an interesting way to

deal with extra dimensions. In the 1980’s, Rubakov and Shaposhnikov [6] proposed an

effective theory with a single extra dimension, in which SM fields are located in a 4-

dimensional submanifold, a domain wall, essentially suggesting that ordinary matter is

confined to a potential well which is narrow along the additional dimension(s), thereby

localising matter on the brane. They conjectured that we live on a 4-dimensional brane

embeddeded in a higher dimensional universe. This work laid the foundation for further

extra dimensional models as well as braneworld scenarios. The basic idea of braneworld

scenarios is that our observable universe could be a 3+1 dimensional hypersurface

(the brane) embedded in a higher dimensional spacetime (the bulk). Only gravity can
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Chapter 1. Introduction 1.2. EXTRA DIMENSIONS AND GRAVITY IN THE BULK

propagate freely into the bulk while all matter are confined onto the brane.

ADD Braneworlds

In March 1998, Arkani-Hamed, Dimopoulos and Dvali (ADD) presented a new frame-

work where the universe has 6 dimensions, two of which are compactified in a 2-torus

T 2[7]. Their model stipulated that SM fields were localised on the 4-dimensional throat

(brane) of a vortex in 6 dimensions with a Pati-Salam gauge symmetry

SU(4)×SU(2)×SU(2) in the bulk, which meant gravity was free to propagate into the

bulk. The ADD model allowed for considerations of large extra dimensions, up to a

millimeter. This model was proposed to solve the infamous hierarchy problem, which

will be discussed shortly. Consider the Newtonian gravitational potential between two

test masses on the brane, we see

V (r) ≈


m1m2

M2+n
f

1
rn+1 r� R

m1m2

M2+n
f

1
Rnr

r� R
(1.8)

where R is the supposed size of the extra dimension(s) and Mf is the fundamental mass

scale of gravity in the full (4+n)-D spacetime. We see for small separations r� R, the

potential is that of higher dimensional gravity and otherwise, gravity is insensitive to

the extra dimension(s) and the potential behaves like our usual 4D gravity. Therefore,

we say that an observer on the brane experiences an effective 4-D Planck scale given by

M2
p = M2+n

f Rn (1.9)

So, we see that the fundemantal scale can be much lower than the Planck mass, while

still giving rise to a large effective Planck mass on the brane (Mp ∼ 1016TeV) due to the

large volume of the extra dimensions.
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Chapter 1. Introduction 1.2. EXTRA DIMENSIONS AND GRAVITY IN THE BULK

1.2.2 Randall-Sundrum Models

In 1999, Lisa Randall and Raman Sundrum proposed two different kinds of extra di-

mensional models, RS-1 [8] and RS-2 [9]. In RS-1, the extra dimension is warped

and compact, yielding a braneworld scenario. Here, our world is modeled as a (3+1)-

dimensional brane embedded in a 5-dimensional bulk. Generally, a n-brane can be

modeled as a submanifold of dimension n enclosing a (n+1) space. RS-2 on the other

hand, assumes an extra dimension with infinite size, a negative cosmological constant

in the bulk Λ, a tension λ on the brane making it a gravitating object and a Z2 symmetry

of the bulk with respect to the brane. The idea is that λ is set to a value that yields GR

at low energies.

What is interesting, is the fact that although the RS model is an empirical braneworld

setup, it can be related to string theory in several ways [10]. It is notionally similar to

heterotic M-theory, in that the original RS model had two domain walls at the end of an

interval, and this similarity varies calculationally when examining and comparing the

gravitational spectrum of GR [11; 12]. A more interesting parallel is that with type IIB

string theory, where the RS model can roughly be associated with the near horizon limit

of a stack of D3 branes, which allows us to investigate the AdS/CFT correspondence

[13]. The RS model is particularly useful as an explicit calculator for any theory with

extra dimensions in which gravity can probe these hidden dimensions. Extra dimen-

sions run the risk of creating unwanted addtional physics problems and require that we

reproduce SM and GR physics at the necessary energy scales. With RS, the gravitational

physics is self-consistent and calculable, which lets us investigate an array of interesting

phenomenon in various settings.

Black holes are some of the most intriguing objects we can study within the braneworld

framework of extra dimensions. From the Kaluza-Klein point of view, extra dimensions

manifest as extra charges that black holes might carry from a 4D point of view [14; 15].
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However, these require a black hole to be ’smeared’ across the extra dimension along

the extra dimension rather than be localised. Conversely, braneworld scenarios predict

highly localised and strongly warped extra dimensions, implying that black hole physics

for this gravitating brane is especially important. As stated above, we find braneworld

black hole solutions interesting as they might be able to shed further light upon the

RS model and the AdS/CFT correspondence. (Refer to [16; 17; 18; 19] for further

information)

1.2.3 EFE in the bulk

To study gravity in these various multidimensional braneworld scenarios, it is necessary

to establish how GR works in higher dimensional spaces - especially how the EFEs

change considering the introduction of an extra dimension. It is well known that one

can derive the EFE in vaccuum from the Einstein-Hilbert action. It is also possible to

derive the full 4-dimensional EFE from the following action 1,

S(4) =

∫
d4x
√
−g(4)

(R(4) − 2Λ(4)

16πG(4)
+ L(4)

M

)
(1.10)

and we can attain the energy-momentum tensor from the matter action

S
(4)
M =

∫
d4x
√
−g(4)L(4)

M in the following manner 2 [20]:

T (4)
µν =

−2√
−g(4)

δS
(4)
M

δgµν(4)

(1.11)

One can also include the cosmological constant term in the matter Lagrangian, so that

it can be explicitly considered as the energy density of the vacuum. If this is the only

matter distribution we consider, then we have L(4)
M = −Λ(4). Using this, we can write a

1The superscript (4) indicates that the objects are 4-dimensional. We are setting c=1 but writing out
factors of G.

2The 4D reduced Planck mass is defined in natural units asM(4) = 1√
8πG(4)

7
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4-dimensional action as follows:

S(4) =
1

2

∫
d4x
√
−g(4)

(
M(4)

)2

R4 +

∫
d4x
√
−g(4)(−Λ(4)) (1.12)

thereby, using Eq.(1.11), the energy-momentum tensor will be of the form Tµν = Λ(4)gµν ,

since Λ(4) is a constant.

Using similar arguments, we can generalise this gravitational action to an arbitrary

dimension n,

S(n) =
1

2κ(n)

∫
dnx
√
−g(n)R(n) +

∫
dnx
√
−g(n)

(
− Λ(n)

)
(1.13)

where κ is the appropriate gravitational constant, adjusted using the n-dimensional

Planck scale factor. The superscript (n) is meant to indicate the dimension of interest.

Suppose we do consider n=5, we see that κ = 1
2M3 , which results in an action,

S =

∫
d5x
√
−g
(
M3R− Λ

)
(1.14)

By varying the action of Eq.(1.14) with respect to the metric, we arrive at a 5D analogue

of the EFE,

GAB = RAB − 1
2
RgAB = 1

2M3TAB (1.15)

Note that even in 5D, the reintroduction of the cosmological constant in the matter

action will still give us TAB = −ΛgAB, considering that there is no energy distribution

beyond that of the vacuum.

1.3 Hierarchy Problem

The Hierarchy problem tends to be the overarching name that physicists use to refer to

a number of different phenomenon, first of which being the discrepancy between the

Higgs mass and the Planck mass. As one calculates the mass of the Higgs using QFT

8



Chapter 1. Introduction 1.3. HIERARCHY PROBLEM

of the SM, it can be inferred that it receives contributions from all energy scales, up to

the highest energy limit at which the SM is valid. An obvious choice for this energy is

the Planck mass. This discrepancy between the electroweak scale (≈ 100GeV ) and the

Planck scale (≈ 1018GeV ) is referred to as the hierarchy problem [21]. Further details

can be found at [22].

We know that the Higgs potential can be written as:

V = m2
H |H|2 + λ|H|4 (1.16)

where V is the Higgs potential, H is the Higgs field, mH is the scalar mass of the Higgs

boson and λ is a free parameter determined by the vacuum expectation value. For

λ > 0 and m2
H |H|2 < 0, the vacuum expectation value will be nonzero, giving us <

H >=

√
−m2

H

2λ
. With the observed mass of the Higgs at 125 GeV and 〈H〉 = 174 GeV,

we find m2
H = (−92.9GeV )2. Issues tend to arise when we consider the couplings of SM

fermions to the Higgs fields, resulting in higher order corrections to mH such as:

∆m2
H = − |λf |

2

8π2 Λ2
UV + .. (1.17)

where λf is the Yukawa coupling to a SM fermion and ΛUV is a cutoff to the matrix

element, to prevent divergences. Since there is no physical mechanism within the

framework of the SM yielding a small value of ΛUV to arrive at the observed value

of the mass of the Higgs boson. This implies that the SM is valid upto the Planck scale

(ΛUV = ΛPlanck), requiring very highly fine-tuned higher-order corrections, or it could

also imply the existence of a new physical scale, at which BSM theories begin to domi-

nate [21].

There are various approaches to solving this problem, but here we are interested in ex-

tra dimensional and braneworld scenarios. In layman’s terms, a braneworld is a slice

through the spacetime that we occupy. Viewing these extra dimensions perpendicular

to our slice is not trivial as all of our standard physics is confined. We could study

9
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these extra dimensions by considering how gravity behaves [10]. The possibility that

braneworlds can resolve the hierarchy problem via a geometric renormalisation of New-

ton’s constant [7; 23; 24], indicates a chance for mini black hole productions at the LHC

[25].

1.4 Outline of Contents

This project aims to focus on braneworlds and some of their related intricacies regarding

gravitational collapse and black hole behaviour. Chapter 1 is the introduction aiming

to give an overview and motivation behind braneworld study. Chapter 2 will largely

deal with setting up some prerequisites to familiarise the reader with the needed toolkit

to understand work in this area. It aims to deal with some ideas from GR and dif-

ferential geometry to introduce braneworlds. The chapter ends with a description of

non-perturbative gravity on the brane, where the idea is the use the tools from earlier

in the chapter to project the 5D equations onto the brane to obtain the 4D effective

Einstein equations.

Chapter 3 introduces the two Randall-Sundrum models and some of their intricacies. It

also includes a brief summary of Anti-de Sitter (AdS) spacetime as we come to see how

crucial AdS is to the study of braneworlds.

Chapter 4 is entirely about gravity and its behaviour on braneworlds. The section on

non-perturbative gravity has been covered in Chapter 2, but it is briefly reviewed and

expanded upon. Moving on, the idea is to develop the framework of linearised general

relativity in braneworlds.

Chapter 5 and Chapter 6 is about applying the various techniques to understand strong

gravity on braneworlds, with Chapter 5 focussing on braneworld cosmology and Chap-

ter 6 on braneworld black holes. Finally this dissertation is wrapped up in the conclu-

sion in Chapter 7.

10



Chapter 2

‘Braneworlds 101’

A proficiency in GR will be assumed going forward, although a familiarity with more

formal differential geometry notions would be helpful. [20; 28; 29] would be the best

places to brush up on this material. Seeing as braneworlds are not part of standard GR

instruction, this chapter will expand upon a first course in GR. We begin by introducing

some of the notions in the (d-1)+1 decomposition formalism of GR, and Israel’s junction

conditions, which we need to introduce braneworlds.1 After completing a brief review

of submanifolds and hypersurfaces, we will dive into some introductory ideas about

braneworlds, mainly their general setup and the behaviour of gravity.

2.1 Geometry of Hypersurfaces

2.1.1 Induced metrics and Extrinsic Curvature

The (d-1)+1 decomposition of Einstein’s equations is a generalisation of the 3+1 for-

malism of GR [26; 27]. Let us begin with a (d-1) hypersurface Σ embedded2 in d-

dimensional spacetimeM. As the brane has one dimension less than the bulk, it is said

to be a co-dimension one hypersurface. We can define this (d-1) dimensional submani-

1d is the dimension of the whole spacetime and the metric signature will be (-,+,+,...,+)
2Σ can be thought of as the ‘brane’ in a braneworld.

11



Chapter 2. ‘Braneworlds 101’ 2.1. GEOMETRY OF HYPERSURFACES

fold Σ embedded in a manifoldM via the d parametric equations

xa = xa(φ1, φ2, ..., φd−1) (2.1)

where φµ are the internal coordinates in the submanifold. Looking in the figure below,

Σ dividesM into two parts: M±

Figure 2.1: Hypersurface embedding in a higher dimensional spacetime. We see M is
composed ofM+ (the half sphere) andM− (the plane). We see the intersection ofM± is
the hypersurface Σ (the circular outline). Here we have n± as unit normal vectors of Σ.

Conventionally, n+ points into M+, and n− points out of M−. We see in Fig.(2.1), n+

is not defined in M− and n− is not defined in M+. Generally speaking, Σ can be a

hypersurface within a hypersurface family that will locally foliate spacetime. Consider

a parameter τ that characterises this foliation, where τ is a constant and a specific

hypersurface within our family. Based on the convention, we can see that the direction

of n± is the same as the increasing direction of τ . We normalise n as:

nαnα =


+1 for when Σ is the brane in the braneworld

−1 for when Σ is a constant hypersurface
(2.2)

12
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The (d-1) internal coordinates φµ can be eliminated from the d parametric equations to

give our one constraint equation using τ :

τ (xa) = constant (2.3)

Naturally, we can define a unit normal vector on all points of Σ by

nµ =
∇µτ√

gµν∇µτ∇ντ
(2.4)

with the appropriate signage as in Eqn.(2.2). ∇ is the covariant derivative associated

to our given metric gµν (metric ofM). From this definition of a normal vector, one may

define the induced metric on Σ, as

qµν = gµν − nµnν (2.5)

qµν is the intrinsic metric on the brane, defined only on the hypersurface. qµν is a 4-D

tensor (i.e. It lies in the tangent bundle of the brane as a manifold) and encodes all ge-

ometric information of the submanifold. We can accordingly construct familiar objects

like the Riemann and Ricci tensor.

The induced metric in the form qµν behaves like a projection operator, between the tan-

gent space ofM and the tangent space of Σ. So, generally, the projection of a tensor to

the tangent space to Σ is

T µ1...µkν1...νl
= qµ1ρ1 ...q

µk
ρk
qσ1ν1 ...q

σl
νl
T ρ1...ρkσ1...σl

(2.6)

To further understand this, let us consider a simple example - the projection of a vector

vµ, decomposed into its tangent and perpendicular components to Σ, vµ = vµ‖ + vµ⊥.

13



Chapter 2. ‘Braneworlds 101’ 2.1. GEOMETRY OF HYPERSURFACES

Using Eq.(2.6), we can act on this vector with qµν

qµν v
ν = (δµν − nµnν)(vν‖ + vν⊥) = vµ‖ (2.7)

Equipped with this, we can define a covariant derivative on the brane Dµ, simply pro-

jecting the covariant derivative ∇µ of the bulk, to the brane,

DρT
µ1...µk
ν1...νl

= qµ1σ1 ...q
µk
σk
qλ1ν1 ...q

λl
νl

(
qωρ∇ω

)
T σ1...σkλ1...λl

(2.8)

From Eq.(2.8), we can see that Dµqνρ = 0, showing that Dµ is a unique derivative oper-

ator associated with qνρ.

This brings us to the notion of extrinsic curvature of Σ, defined by

Kµν = Dµnν = qρµq
σ
ν∇ρnσ = qρµ∇ρnν (2.9)

We note that this quantity is symmetric Kµν = K(µν). It gives us the derivative of the

normal vector in a direction tangential to Σ, characterising the extrinsic nature of the

embedding, and so we can interpret it loosely as the ‘bending’ of Σ inM. We can now

define Christoffel symbols and the Riemann tensor in the usual way but just using qµν .

[20; 28; 29]

2.1.2 Gauss-Codazzi equations

The Gauss-Codazzi equations are important to relate and construct (n-1)-dimensional

quantities, constructed from the induced metric ab, from n-dimensional quantities con-

structed from the full metric gab. Basically, they project bulk quantities to the brane,

and corrections are given by the extrinsic curvature. The curvature (n−1)Rabc
dωd of Σ

14
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defined via a dual vector field ωa on Σ

(n−1)Rabc
dωd = DaDbωc −DbDaωc (2.10)

Using the definition in Eq.(2.8),

DaDbωc = qa
fqb

gqc
h∇f

(
qg

eqh
d∇eωd

)
= qa

fqb
eqc

d∇f∇eωd + qa
fqb

eqc
h∇f qh

d∇eωd + qa
fqb

gqc
d∇f qg

e∇eωd

= qa
fqb

eqc
d∇f∇eωd − qb eKac n

d∇eωd − qc dKab n
e∇eωd

= qa
fqb

eqc
d∇f∇eωd +KacKb

dωd +KabKc
dωd

(2.11)

Note: the third equality in Eqn.(2.11) follows from,

qa
fqc

h∇fqh
d = qa

fqc
h∇f (gh

d − nhnd) = −Kacn
d (2.12)

And the fourth equality in Eqn.(2.11) is from,

qb
end∇eωd = qb

e∇e(n
dωd)− ωd qb e∇en

d = −ωdKb
d (2.13)

Now, as we antisymmetrise on a and b, the final term in Eqn.(2.11) vanishes as Kab is

symmetric, meaning Eqn.(2.10) becomes

(n−1)Rabc
dωd = 2qf[aq

e
b]qc

d∇f∇eωd + 2Kc[aKb]
dωd

= 2qa
fqb

eqc
k∇[f∇e]ωk + 2Kc[aKb]

dωd

= qa
fqb

eqc
kqg

d (n)Rfek
gωd +KacKb

dωd −KbcKa
dωd

(2.14)

Here, we have used the definition of curavture (n)Rfek
g ofM,
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2∇[f∇e]ωk = (n)Rfek
g (2.15)

Since ωd is arbitrary, a simple comparison of Eqns.(2.14) and (2.15) gives us the Gauss

equation:

(n−1)Rabc
d = qa

eqb
fqc

gqh
d (n)Refg

h +KacKb
d −KbcKa

d (2.16)

We can derive the Codazzi equation via a similar procedure. Combining Eqns.(2.8) and

(2.9),

DaKbc = qa
dqb

eqc
f ∇d

(
qe

g∇gnf

)
= qa

dqb
gqc

f ∇d∇gnf + qa
dqb

eqc
f ∇d qe

g∇gnf

= qa
dqb

gqc
f ∇d∇gnf −Kab n

gnc
f∇gnf (Using Eqn.(2.12))

(2.17)

Now, antisymmetrising a and b,

D[aKb]c = qda[q
g
b]qc

f ∇d∇gnf = qa
dqb

gqc
f ∇[d∇g]nf

=⇒ DaKbc −DbKac = qa
dqb

gqc
f (n)Rdgfe n

e (Using Eqn.(2.15))
(2.18)

Working with Eqn.(2.18), we raise the c index and contract with a. This yields the

Codazzi equation:

DaK
a
b −DbK = (n)Rcd n

d qcb (2.19)

Gaussian Normal Coordinates

Through each point p ∈ Σ, there exists a unique geodesic with a tangent vector na.

Suppose we considered the chart {xµ} on a portion of Σ containing p, and labelled the

points in the bulk with the parameter y along the geodesic on which it lies. We then
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Chapter 2. ‘Braneworlds 101’ 2.2. DECOMPOSITION OF EINSTEIN’S EQUATIONS

construct the coordinate system, {xµ, y} known as the Gaussian Normal Coordinates 3

(GNC), which is commonly employed in the study of braneworld scenarios. Now, we

have nadxa = dy and then the metric takes a form

ds2 = gabdx
adxb = qµνdx

µdxν + dy2 (2.20)

An important yet attractive feature of the GNC system is that it allows us to construct

the extrinsic curvature in a much more natural way Kµν = 1
2
∂
∂y
qµν , which makes sense

as we defined y tangentially to Σ. Without a loss of generality, one can choose the

hypersurface to be located at y=0 in the GNC. The geodesics originating from Σ may

encounter singularities, but within a certain neighbourhood of the surface, the GNC is

well defined.

2.2 Decomposition of Einstein’s Equations

Following a Gauss-Codazzi-Ricci decomposition [26; 27; 28; 29] (keeping d general),

we can decompose the Einstein tensor Gµν ≡ Rµν − 1
2
gµνR as follows

(d)Gµνn
µnν = 1

2
(−(d−1)R +K2 −KµνK

µν) (Note a ± sign in front of R from Eqn.(2.2))

(2.21)

(d)Gµνn
νqµα = DαK −DµK

µ
α (2.22)

(d)Gµνq
µ
αq

ν
β =

1

α
(LmKαβ − qαβLmK) +(d−1) Gαβ

+
(

2KαµKβ
µ −KKαβ +

1

2
qαβ(K2 +KµνK

µν)
)

+
1

α
(qαβD

µDµα−DαDβα)

(2.23)

3Sometimes referred to as hypersurface orthogonal coordinates
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Lm is the Lie derivative with respect to mµ, where it is defined as mµ = nµ√
gµν∇µτ∇ντ

,

from Eqn.(2.4). The super-indices characterise dimension as before.

Generalising Eqn.(1.15) to d-dimensional spacetime and then imposing it upon the

above equations (2.21,2.22,2.23), we find:

8πGd λ = 1
2

(
−(d−1) R +K2 −KµνK

µν
)

(2.24)

8πGd Sα = DαK −DµK
µ
α (2.25)

8πGd Sαβ =
1

α
(LmKαβ − qαβLmK) +(d−1) Gαβ

+
(

2KαµKβ
µ −KKαβ +

1

2
qαβ(K2 +KµνK

µν)
)

+
1

α
(qαβD

µDµα−DαDβα)

(2.26)

Gd is Newton’s gravitational constant in d-dimensions. Here, α = 1√
gµν∇µτ∇ντ

from

Eqn.(2.4). We define λ ≡ Tµνn
µnν , Sα ≡ Tµνn

νqνα and Sαβ ≡ Tµνq
µ
αq

ν
β. Using this, we can

construct a decomposition as follows Tµν = λnµnν +nµSν +Sµnν +Sµν , which when we

take a trace gives us T = S + λ, where S ≡ Sµνq
µν .

Eqn.(2.24) is called the constraint equation, Eqn.(2.25) is the momentum constrain equa-

tion and lastly Eqn.(2.26) is the evolution equation [27]. We can express Eqn.(2.26)

alternatively as [26; 27]

LmKαβ = DαDβα + α

[
−(d−1) Rαβ +KKαβ − 2KαµKβ

µ + 8πGd

(
Sαβ − qαβ S+λ

d−2

)]
(2.27)

Extrinsic curvature can now be formulated as

Lmqαβ = −2αKαβ (2.28)
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Eqns.(2.27) and (2.28) give us a complete set of evolution equations where we use qµν

and Kµν as the fundamental variables. This formalism is sometimes referred to as the

ADM-York formalism of GR.

2.2.1 Israel’s Junction Conditions

Any physical system with boundary surfaces will require a formulation of proper junc-

tion conditions to deal with discontinuities across the surface. A well known example

from GR is the matching of interior and exterior Schwarzschild metrics at the surface

of a star [28; 29; 31]. In GR, if the stress-energy tensor is highly concentrated on Σ,

it will result in discontinuities. Israel produced a geometric, covariant derivation of of

junction conditions for treating such discontinuities [30].

The first junction condition states that the intrinsic geometry of a hypersurface is well-

defined, meaning that the induced metric obtained from M+ agrees with the one ob-

tained fromM−:

q+
µν − q−µν = 0 = [̂qµν ]̂ (2.29)

(It is convenient to introduce some notation: [̂â] = a+ − a−.)

We define Jµν as the singular part of the projected energy-momentum tensor on Σ,

defined as

Jµν ≡
∫ 0+

0−
Sµν dl (2.30)

where dl ≡ dt(∂t)
µ nµ = αdt is the proper length across Σ and for simplicity, l is set to 0

at Σ.

The second junction condition can be obtained by integrating Eqn.(2.26) over an in-

finitesimal layer of Σ [30]
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Similarly, if we integrate Eqns. (2.24) and (2.25), we get

Jµ ≡
∫ 0+

0−
Sµ dl = 0 ; P ≡

∫ 0+

0−
ρ dl = 0 (2.32)

These two relations are vanishing as the right hand sides of Eqns. (2.24) and (2.25),

along with the non-Lm terms on the right hand side of Eqn.(2.24), are all well-defined

and finite on both sides of the hypersurface.

Combining Eqns.(2.25) and (??), we get

DµJν µ = −[̂Sν ]̂ (2.33)

We can also define {̂qµν }̂ ≡ q+ + q− from the relation for [̂qµν ]̂. A simple algebraic

manipulation will show us that [̂q2̂] = [̂q̂]{̂q}̂. Using which, Eqn.(2.24) can be rewritten

as 8πGd [̂λ̂] = 1
2
(̂[K ]̂{̂K}̂ − [̂Kµν ]̂{̂Kµν }̂). Combining this relation with Eqn.(??),

[̂λ̂] =
1

2

( J
(2− d)

{̂K}̂ − (Jµν − qµν
J

(d− 2)
){̂Kµν }̂

)
= −1

2
Jµν {̂Kµν }̂

(2.34)

Eqns. (2.33) and (2.34) give us conservation laws for singular matter on Σ.

2.3 General Braneworld Formalism

For our purposes, we briefly define a class of braneworlds as 5D spacetime, where SM

matter is confined on a (3+1)-dimensional brane Σ, but we allow gravity to propa-

gate freely into the bulk. Essentially we imagine our universe to be this brane Σ, so

it is natural to expect that the induced equations on the brane become Einstein’s Field

Equations within a certain limit. Using Gauss’ equations (Eqn.(2.16) and d-dimensional

EFEs, [32]
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(d−1)Gαβ =
d− 3

d− 2
8πGd

{
Tµνh

µ
α h

ν
β + hαβ

(
Tµνn

µnν +
T

1− d

)}
+ (KKαβ −KαγKγβ)− 1

2
hαβ(K2 −KµνKµν)− Eαβ

(2.35)

where Tαβ is the stress-energy tensor in d-dimensional spacetime and T is its trace. We

define the tensor Eµν as

Eµν ≡(d) Cαβγσ n
α nγ hµ

β hν
σ (2.36)

Where Cαβγσ is the Weyl tensor defined by

(d)Rαβγσ =(d) Cαβγσ +
1

d− 2

(
gµ[γ

(d)Rσ]ν − gν[γ
(d)Rσ]µ

)
− 1

(d− 1)(d− 2)

(d)

R gµ[γgσ]ν

(2.37)

As seen from Eqn.(2.35), the matter content Tµν needs to be specified.

2.3.1 Effective EFE on the brane

As we consider a 5D model, where gravity can leak into the bulk, how can we really

ascertain that there is a fifth bulk dimension? Essentially, we wish to be able to dif-

ferentiate between a (3+1)-dimensional brane embedded in a higher dimensional bulk

and a (3+1)-dimensional universe independent of any embedding, as described by tra-

ditional GR. The idea is to present the effective EFE in the brane, by projecting the 5D

EFE defined in the bulk onto the embedded brane. [32]

4D Einstein tensor

We will continue to use Σ as the 4-dimensional submanifold with induced metric qµν ,

which is embedded in the 5-dimensional bulkM with a metric gAB. We begin with the

Guass equation, which lets use write the 4-dimensional Riemann tensor in terms of the
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5-dimensional analogue,

(4)Rabc
d =(5) Refg

hqa
eqb

fqc
gqh

d +KacKb
d −KbcKa

d (2.38)

Contracting Eq.(2.38) in its indices b and d, we get to the 4-dimensional Ricci tensor

(4)Rac =(4) Radc
d = (5)Refg

hqa
eqc

g
(
qh

dqd
f
)

+KacKd
d −KdcKa

d

= (5)Refg
hqa

eqc
g
(
qh

f
)

+KacK −KdcKa
d

= (5)Refg
hqa

eqc
g
(
gh

f − nhnf
)

+KacK −KdcKa
d

=
(

(5)Refg
hgh

f
)
qa

eqc
g −(5) Refg

h nhn
fqa

eqc
g +KacK −KdcKa

d

⇒(4)Rac = (5)Reg qa
eqc

g − ψ̃ac +KacK −KdcKa
d

(2.39)

where ψ̃ac =(5) Refg
h nhn

fqa
eqc

g, and we used Eqn.(2.5) in the third equality. Repeat-

ing the contraction, we can obtain the 4-dimensional Ricci scalar

(4)R =(4) Racq
ac = (5)Reg

(
qa

eqc
gqac

)
− ψ̃acqac +

(
qacKac

)
K −Kbc

(
Ka

bqac

)
= (5)Reg

(
qeg
)
− ψ̃acqac + (K) K −Kbc

(
Kbc
)

⇒(4)R = (5)Reg q
eg − ψ̃egqeg +K2 −KegK

eg

(2.40)
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Plugging the above results into the 4-dimensional Einstein tensor

(4)Gac =(4) Rac −
1

2

(5)

Rqac

= (5)Reg qa
eqc

g − ψ̃ac +KacK −KdcKa
d

− 1

2

(
(5)Reg q

eg − ψ̃egqeg +K2 −KegK
eg

)
qac

= (5)Reg qa
eqc

g − ψ̃ac +KacK −KdcKa
d − qac

2

(
K2 −KegK

eg
)

− 1

2

(
(5)Reg q

egqac − ψ̃egqegqac
)

(2.41)

Let us simplify the terms in the final bracket in Eqn.(2.41)

(5)Reg q
egqac = (5)Reg

(
geg − neng

)
qac

=
((5)

Reg g
eg
)
qac −(5) Reg n

eng qac

= (5)R
(
gegqa

eqc
g
)
−(5) Reg n

eng qac

⇒(5) Reg q
egqac = (5)R gegqa

eqc
g −(5) Reg n

eng qac

(2.42)

Similarly,

ψ̃egq
eg qac = (5)Reg n

eng qac (2.43)
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Plugging Eqns.(2.42) and (2.43) into (2.41)

(4)Gac = (5)Reg qa
eqc

g − ψ̃ac +KacK −KdcKa
d − qac

2

(
K2 −KegK

eg
)

− 1

2

[((5)

R gegqa
eqc

g −(5) Reg n
eng qac

)
−
((5)

Reg n
eng qac

)]
= (5)Reg qa

eqc
g − ψ̃ac +KacK −KdcKa

d qac
2

(
K2 −KegK

eg
)

− 1

2

((5)

R gegqa
eqc

g
)

+(5) Reg n
eng qac

⇒(4) Gac =

((5)

Reg −
1

2

(5)

R geg

)
qa

eqc
g +(5) Reg n

eng qac

+KacK −KdcKa
d − ψ̃ac −

qac
2

(
K2 −KegK

eg
)

(2.44)

We see the 5D EFE in the brackets, which yields the 5D stress-energy tensor. Let us

contract this equation,

((5)

Regg
eh
)
− 1

2

(5)

R
(
gegg

eg) = 8πG5

(
Tegg

eg
)

⇒(5) R− 5

2

(5)

R = 8πG5T

⇒(5) R =
−16πG5

3
T

(2.45)

The tensors have all been contracted in the usual way. Now, plugging (2.45) into the

5D EFE,
(5)Reg −

1

2

(−16πG5

3
T
)
geg = 8πG5Teg

⇒(5) Reg = 8πG5

(
Teg −

T

3
geg

) (2.46)

All this labour will soon pay off - we now substitute Eqns.(2.45) and (2.46) into the
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final result in Eqn.(2.44)

(4)Gac =
(
8πG5Teg

)
qa

eqc
g +

[
8πG5

(
Teg −

T

3
geg

)]
neng qac

+KacK −KdcKa
d − ψ̃ac −

qac
2

(
K2 −KegK

eg
)

= 8πG5

(
Tegqa

eqc
g + qac

[
Tegn

eng − T

3

(
gegn

eng
)])

+KacK −KdcKa
d − ψ̃ac −

qac
2

(
K2 −KegK

eg
)

⇒(4) Gac = 8πG5

(
Tegqa

eqc
g + qac

[
Tegn

eng − T

3

])
+KacK −KdcKa

d − ψ̃ac −
qac
2

(
K2 −KegK

eg
)

(2.47)

4D Stress-Energy tensor

We’d like to be able to write an equation for (4)Gac only in terms of the energy-momentum

tensor, for which, we need to write the extrinsic curvature Kac and ψ̃ac in terms of Tac.

Recalling Eqn.(2.37), we set about decomposing our Riemann tensor into the Ricci

tensor and scalar and the Weyl tensor,

(5)Refgd = (5)Cefgd + 1
3

(
ge[g

(5)Rd]f − gf [g
(d)Rd]e

)
− 1

12

(d)
R ge[ggd]f (2.48)
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Using our definition for ψ̃ac,

ψ̃ac = (5)Refg
h nhn

fqa
eqc

g

=
((5)

Refgdg
dh
)
nhn

fqa
eqc

g

=
((5)

Refgd

)(
gdh nh

)
nfqa

eqc
g

= (5)Cefgd n
dnfqa

eqc
g +

1

3

(
ge[g

(5)Rd]f − gf [g
(d)Rd]e

)
ndnfqa

eqc
g

− 1

12

((d)

R ge[ggd]f

)
ndnfqa

eqc
g

⇒ ψ̃ac = ψac +
1

3

(
ge[g

(5)Rd]f n
dnfqa

eqc
g

)
− 1

3

(
gf [g

(d)Rd]e n
dnfqa

eqc
g

)
− 1

12

((d)

R ge[ggd]f n
dnfqa

eqc
g
)

(2.49)

The term ψac = (5)Cefgd n
dnfqa

eqc
g is the electrical part of the Weyl tensor; it is simply

the projection of the 5-dimensional Weyl tensor onto the brane. The term in the first

bracket in the final result in Eqn.(2.49) can be simplified using the energy-momentum

tensor as in Eqn.(2.46),(
ge[g

(5)Rd]f n
dnfqa

eqc
g

)
= geg

(5)Rdf n
dnfqa

eqc
g − ged (5)Rgf n

dnfqa
eqc

g

= (5)Rdf n
dnf
(
geg qa

eqc
g
)
−(5) Rgf n

dnf
(
qa

eged
)
qc

g

=

[
8πG5

(
Tdf −

T

3
gdf

)]
ndnfqac −(5) Rgf n

dnf
(
qad
)
qc

g

= 8πG5

(
Tdf −

T

3
gdf

)
ndnfqac −(5) Rgf n

dnf
(
gad − nand

)
qc

g

= 8πG5

(
Tdf −

T

3
gdf

)
ndnfqac −(5) Rgf

(
nan

f − nanf
)
qc

g

⇒
(
ge[g

(5)Rd]f n
dnfqa

eqc
g

)
= 8πG5

(
Tdf −

T

3
gdf

)
ndnfqac

(2.50)

We can now simplify the other terms accordingly,
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(
gf [g

(d)Rd]e n
dnfqa

eqc
g

)
= −8πG5

(
Tdf − T

3
qdf

)
qc

dqa
f (2.51)

(d)R ge[ggd]f n
dnfqa

eqc
g = −16πG5T

3
qac (2.52)

Plugging the above relations back into Eqn.(2.49)

⇒ ψ̃ac = ψac +
1

3

[(
8πG5

(
Tdf −

T

3
gdf

)
ndnfqac

)
−
(
− 8πG5

(
Tdf −

T

3
qdf

)
qc

dqa
f
)]

− 1

12

[−16πG5T

3
qac

]
=

8πG5

3

[
Tdfn

dnfqac −
T

3

(
gdfn

dnf
)
qac + Tdfqc

dqa
f − T

3

(
qdf qc

dqa
f
)

+
(4πG5T

9
qac) + ψac

⇒ ψ̃ac = ψac +
8πG5

3

[
qac

(
Tdfn

dnf − T

2

)
+ Tdf qc

dqa
f

]
(2.53)

Substituting this result back into Eqn.(2.47)

(4)Gac = 8πG5

(
Tegqa

eqc
g + qac

[
Tegn

eng − T

3

)])
+KacK −KdcKa

d − qac
2

(
K2 −KegK

eg
)

−
[
ψac +

8πG5

3

[
qac

(
Tdfn

dnf − T

2

)
+ Tdf qc

dqa
f
]]

⇒(4) Gac =
16πG5

3

(
Tegqa

eqc
g + qac

[
Tegn

eng − T

4

])
+KacK −KdcKa

d − qac
2

(
K2 −KegK

eg
)
− ψac

(2.54)

Brane Tension

Let us investigate further into stress-energy tensors of branes. Let us consider the energy

density of the brane or commonly referred to as brane tension σ, essentially a sort of

vacuum energy in the braneworld. We may have to alter the stress-energy tensor to
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account for this tension. It is also interesting to have additional fields on the brane,

having a 4-dimensional stress-energy tensor ηac. This prompts us to define Sac = ηac −

σqac, a energy-momentum tensor containing contributions from both the brane fields

and brane tension. To define the 5D energy-momentum tensor, we also include the

cosmological constant of the bulk, Λ5 [32] :

Tac = Sacδ(y)− Λ5gac =
(
ηac − σqac

)
δ(y)− Λ5gac (2.55)

whee we use a delta function of y to localise the brane contributions to Tac. Now with

this fancy new result, we can rewrite Eqn.(2.54) in a more convenient form:

Tegqa
eqc

g = Segqa
eqc

gδ(y)− Λ5gac (2.56)

Tegn
eng − T

4
=
(
Segn

eng − S
4

)
δ(y) + Λ5

4
(2.57)

Using the above two, we can simplify the term in the brackets in Eqn.(2.54),
(
Tegqa

eqc
g+

qac

[
Tegn

eng − T
4

])
= −3Λ5

4
qac , allowing us to write Eqn.(2.54) as

(4)Gac = −4πG5qac +KacK −KdcKa
d − qac

2

(
K2 −KegK

eg
)
− ψac (2.58)

We now need to express the extrinsic curvature tensor in terms of the stress-energy

tensor. Contracting the 5D EFE, Geg = 8πG5

(
Segδ(y)− Λ5geg

)
, gives us

(
(5)Regg

eg
)
− 1

2
(5)R

(
gegg

eg) = 8πG5

(
Segδ(y)− Λ5geg

)
⇒(5) R− 5

2

(5)

R = 8πG5

(
Sδ(y)− 5Λ5

)
⇒(5) R =

−16πG5

3

(
Sδ(y)− 5Λ5

) (2.59)
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The EFE now becomes,

(5)Reg −
1

2

[−16πG5

3

(
Sδ(y)− 5Λ5

)]
geg = 8πG5

(
Sδ(y)− 5Λ5

)
⇒(5) Reg = 8πG5

[(
Seg −

S

3
geg

)
δ(y) +

16πG5Λ5

3

] (2.60)

Recall that in Gaussian coordinates, the extrinsic curvature is given by ac = 1
2
∂yqac. Also,

∂yKac = KcbK
b
a - ψ̃ac. Now, we rewrite the 4-dimensional Ricci tensor (Eqn.(2.39)) as

(4)Rac = (5)Reg qa
eqc

g − ψ̃ac +KacK −KdcKa
d

= (5)Reg qa
eqc

g +
(
∂yKac −KcbKa

b
)

+KacK −KbcKa
b

⇒(5) Reg qa
eqc

g = (4)Rac + 2KbcKa
b −KacK − ∂yKac

⇒(5) Reg qa
eqc

g = Pac − ∂yKac

(2.61)

where Pac ≡ (4)Rac + 2KbcKa
b −KacK. Comparing Eqns. (2.60) and (2.61),

Pac − ∂yKac = 8πG5

[(
Seg −

S

3
geg

)
δ(y) +

16πG5Λ5

3

]
qa

eqc
g

= 8πG5

[((
Seg qa

eqc
g
)
− S

3

(
geg qa

eqc
g
))
δ(y) +

2Λ5

3

(
geg qa

eqc
g
)]

⇒ Pac − ∂yKac = 8πG5

[(
Sac −

S

3
qac

)
δ(y) +

2Λ5

3
qac

]
(2.62)

Notice that in the above equation, Kac remains undetermined. To do this, we have to

integrate Eqn.(2.62) on the brane (y=0), in the interval (−ε,+ε), ε→ 0, as ε→ 0.
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lim
ε→0

∫ +ε

−ε

(
Pac −

d

dy
Kac

)
dy = 8πG5 lim

ε→0

∫ +ε

−ε

[(
Sac −

S

3
qac

)
δ(y) +

2Λ5

3
qac

]
dy

⇒ lim
ε→0

(
Pacy|+ε−ε −Kac|+ε−ε

)
= 8πG5

(
Sac −

S

3
qac

)
+

2Λ5

3
qac lim

ε→0

(
y|+ε−ε

)
⇒ lim

ε→0

(
Kac|+ε−ε

)
= −8πG5

(
Sac −

S

3
qac

)
⇒ [̂Kaĉ] = −8πG5

(
Sac −

S

3
qac

)
(2.63)

where K±ac denotes the extrinsic curvature in the direction of y. Considering the def-

inition of extrinsic curvature, which contains a derivative term, we expect an invari-

ance under y → −y given the symmetry S1/Z2. Thus, we have the neat result of

K+
ac ≡ K−ac ≡ Kac. Thus, we can simplify Eqn(2.63)

Kac = −4πG5

(
Sac −

S

3
qac

)
K = qacKac = −4πG5

(
S − S

3
(4)
)

=
4πG5S

3

Or, using the definition of Sac

Kac = −4πG5

(
ηac +

1

3

(
σ − η

))
qac

(2.64)

Recall also,

Sac = ηac − σqac

S = qacSac = η − 4σ

(2.65)

Extrinsic Curvature

This now allows us to calculate the various terms in Eqn.(2.54) as we now have expres-

sions for the extrinsic curvature in terms of the stress-energy tensor,
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KacK =
[
− 4πG5

(
Sac −

S

3
qac

)](4πG5S

3

)
= −16π2G2

5

3
S
(
Sac−

S

3
qac

)
= −16π2G2

5

3

(
η − 4σ

)[(
ηac − σqac

)
−
(
η − 4σ

)
3

qac

]
= −16π2G2

5

3

[
− (η − 4σ)2

3
qac +

(
η − 4σ

)(
ηac − σqac

)]
=

16π2G2
5

3

[
4σηac +

4σ2qac
3
− 5σηqac

3
− ηηac +

η3qac
3

]
(2.66)

Carrying out similar computations,

KdcKa
d =

[
− 4πG5

(
Sdc −

S

3
qdc

)][
− 4πG5

(
Sda −

S

3
qda

)]
= 16π2G2

5

[((
ηdc − σqdc

)
− η − 4σ

3
qdc

)][((
ηda − σqda

)
− η − 4σ

3
qda

)]
= 16π2G2

5

[
ηdcη

d
a +

2
(
σ − η

)
ηac

3
+

(
σ − η)2qac

9

]
(2.67)

K2 =
(4πG5S

3

)2

=
(4πG5

(
η − 4σ

)
3

)2

=
16π2G2

5

9

(
η2 − 8ση + 16σ2

) (2.68)

KegK
eg =

[
− 4πG5

(
Seg −

S

3
qeg

)][
− 4πG5

(
Seg − S

3
qeg
)]

= 16π2G2
5

[((
ηeg − σqeg

)
− η − 4σ

3
qeg

)][((
ηeg − σqeg

)
− η − 4σ

3
qeg
)]

= 16π2G2
5

[
ηegη

eg +
2
(
σ − η

)
η

3
+

4
(
σ − η)2

9

]
(2.69)
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Effective EFE

We now have all the ingredients to obtain the EFE. We substitute the above results

into Eqn.(2.54) and after some tedious yet straightforward algebra, we can write the

Effective EFE on the brane, or the gravitational equations on the 3-brane [32]

(4)Gµν = −Λ4qµν + 8πG4ηµν + (8πG5)4πµν − ψµν (2.70)

where,

Λ4 = 4πG5

(
Λ5 + 4πG5σ2

3

)
(2.71)

G4 =
64π2G2

5σ

48π
=

4πσG2
5

3
(2.72)

πµν = 1
4

(
ηηµν

3
− η2qµν

6
+

ηαβη
αβqµν
2

− ηµ αηαν

)
(2.73)

Comparing the 5D EFE and the 4D EFE, we see that there are two new terms, (8πG5)4πµν

and ψµν . πµν is quadratic in ηµν and is negligible at low energies. This only becomes

dominating in cases where the energy matter-density in ηµν tends to be larger than the

brane tension σ, like the early universe. [33; 34; 35]. We could view this as a higher-

energy correction, although we must note that this is not due to some higher derivative

terms in the action. As discussed previously, ψµν is part of the 5D Weyl tensor and car-

ries non-local gravitational information from the bulk. It is a non-vanishing quantity

if the bulk spacetime is different to an entirely AdS one. ψµν is also negligible in low

energy regimes, but it is larger than the quadratic terms in πµν .

Interestingly, ψµν is constrained by the motion of matter on the brane. To show this,
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consider Eqns.(2.22) and (2.63). As in [32], we have:

DαK −DµKα
µ ∝ Dνηµ

ν = 0 (2.74)

The contracted Bianchi identities Dµ (4)Gµν = 0 give us a relation

Dµψµν = Kρθ
(
DνKρθ −DθKνρ

)
= 16π2G2

5

[
ηρθ
(
Dνηρθ −Dθηνρ

)
+

1

3

(
ηµν − qµνη

)
Dµη

] (2.75)

We see that ψµν ’s divergence is constrained by the matter term. This implies that the

effective EFE in Eqn.(2.70) is not closed and one must also solve the 5D EFE for the bulk

to get brane solutions. ψµν is due to this non-closure and prompts a possible imposition

of ψµν on the brane. Essentially, a normal gravitational theory can be recovered if the

brane tension is positive, where Einstein’s GR can be recovered in the low energy limit.
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Chapter 3

The Randall-Sundrum Model

This chapter will present the two Randall-Sundrum models, given their key conceptual

importance in a range of ideas regarding braneworlds. Now that we have covered some

background concepts needed to study braneworlds, we can now dive into the subject.

As briefly mentioned in Section 1.2.2 and in [8; 9], the RS model has one(or two)

domain walls situated as submanifolds in an AdS spacetime. The story begins with a

non-factorisable metric, a 4-dimensional metric scaled by a “warp factor”, which is a

function of the additional dimension [8] :

ds2 = e−2krcφηµνdx
µdxν + r2

cdφ
2 (3.1)

where {xµ} are the 4D spacetime coordinates, k is Planck order scale, φ is the coordi-

nate for our extra dimension (0 ≤ φ ≤ π), which is a finite coordinate set by the size of

rc. The idea here is that the spacetime is constructed such that there are 4D flat slices

stacked along the fifth dimension. φ = 0 indicates the presence of a domain wall - the

braneworld, representing a flat Minkowski universe. [10]

The Israel equations (Section 2.2) are a frequently used tool in this area. The idea

is to rewrite the 5D spacetime as a 4D base spacetime with coordinates {xµ}, plus a

normal distance φ from the domain wall. xµ remain constant along geodesics normal to
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the domain wall, forming a 5D coordinate system {xµ, φ}. These coordinates are valid

within rc, a “compactification radius” prior to orbifolding [8]. It splits the tangent space

into parallel and normal components and generally takes the form

ds2 = qµνdx
µdxν − dφ2 (3.2)

This form allows us to encapsulate the nontrivial geometrical aspects within qµν , the

4-dimensional metric, making the fifth metric component 1 as φ is merely the proper

distance from the brane.1

3.1 AdS Spacetime

Before we look into the specifics of the RS models, it is useful to take a slight detour

and briefly review the Anti-de Sitter spacetime. It plays an important part in braneworld

considerations, including the Randall-Sundrum braneworlds, and other related studies,

such as the AdS/CFT correspondence. The AdS spacetime is a spacetime of constant

curvature, which typically can be a solution to the EFE with a constant and negative

cosmological constant. We will follow the presentation layed out in [36].

Spaces with constant curvature

To start, consider a flat spacetime E3 with metric

ds2 = dX2 + dY 2 + dZ2 (3.3)

The sphere S2 defined by a surface satisfying

X2 + Y 2 + Z2 = R2 (3.4)
1na = δaz is the normal to the brane.

35



Chapter 3. The Randall-Sundrum Model 3.1. ADS SPACETIME

We can pull out familiar tools like spherical polar coordinates and solve this constraint.

The surface of S2 is a space of constant positive curvature. S2 has an SO(3) invariance,

as the surface in Eqn.(3.4) obeys the SO(3) invariance of the “ambient” E3 space. This

makes S2 homogeneous, as any point can be mapped to any other via a SO(3) transfor-

mation (or a 3D rotation).

The space with constant negative curvature is called hyperbolic space. In this case, H2

is harder to visualise as we cannot embed it into E3, but we can however embed it into

3-dimensional Minkowski space. We define the hyperbolic space via

ds2 = −dZ2 + dX2 + dY 2

− Z2 +X2 + Y 2 = −L2

(3.5)

The Fig.(3.1) below shows this embedding. We also see a SO(1,2) invariance of the

ambient Minkowski spacetime, similar to the positive curvature case. This shows the

homogeneity of the space, as any point can be mapped to another via a SO(1,2) Lorentz

transform.

Figure 3.1: The embedding of H2 into R1,2, where the superscripts refer to the signature of
the ambient spacetime (+ being spacelike, - being timelike). As seen in [36].
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To solve the constraint equation, we use the following coordinate system

X = L sinh ρ cosφ , Y = L sinh ρ sinφ , Z = L cosh ρ (3.6)

yielding a metric

ds2 = L2
(
dρ2 + sinh ρ2dφ2

)
(3.7)

Spacetimes with constant curvature

Let us shift our focus to the more pertinent matter of spacetimes with constant curva-

ture. Let us start by taking an ambient flat spacetime with two timelike directions, X

and Z,

ds2 = −dZ2 − dX2 + dY 2 (3.8)

The 2D AdS spacetime, AdS2, can be embedded into such a spacetime, defined by a

surface

−Z2 −X2 + Y 2 = L2 (3.9)

where L is referred to as the AdS radius. AdS2 has a SO(2,1) invariance of its ambient

spacetime. We choose a set of coordinates

X = L cosh ρ sin τ , Y = L sinh ρ , Z = L cosh ρ cos τ (3.10)

yielding a metric

ds2 = L2
(
dρ2 − cosh ρ2dτ 2

)
(3.11)

This coordinate system {ρ, τ}, where 0 < ρ <∞ and −∞ < τ <∞, is called the global

coordinates system, which dispels any ambiguity that despite embedding AdS2 in a flat

ambient spacetime with two timelike directions, AdS2 only has one timelike direction.
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Poincaré coordinates

A convenient coordinate system is the Poincaré coordinate system {t, r}, with −∞ < t <

∞ and 0 < r <∞. We define thiis system by

X = Lrt

Y =
Lr

2

(
− t2 +

1

r2
− 1
)

Z =
Lr

2

(
− t2 +

1

r2
+ 1
) (3.12)

wherein, the metric is now

ds2 = −L2r2dt2 + L2

r2
dr2 (3.13)

Sometimes L is set to 1. An important point to note is that AdS spacetimes have a bound-

ary, the AdS boundary. The existence of the boundary means that one must specify the

boundary conditions on the AdS boundary to solve initial-value problems [36]. It is

interesting to study the AdS boundary in Poincaré coordinates, located at r →∞ - refer

to [37] for further details. For interest, this boundary plays a role in the study of the

AdS/CFT correspondence, where it corresponds to specifying which external sources

one must add in the gauge theory side.

Let us generalise the above results to higher dimensions. We simply add d spatial di-

mensions to the ambient spacetime,

ds2
d+3 = −dX2

0 − dX2
d+2 + dX2

1 + · · ·+ dX2
d+1 (3.14)

where the (d+2)-dimensional version of AdS spacetime is defined by

−X2
0 −X2

d+2 +X2
1 + · · ·+X2

d+1 = −L2 (3.15)
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giving us in Poincaré coordinates

X0 =
Lr

2

(
x2
i − t2 +

1

r2
+ 1
)

Xi = Lrxi

Xd+1 =
Lr

2

(
x2
i − t2 +

1

r2
− 1
)

Xd+2 = Lrt

(3.16)

2giving us the following metric

ds2 = −L2r2dt2 + L2r2δijdx
idxj + L2

r2
dr2 (3.17)

Note here that δij is the d-dimensional Kronecker delta. Additionally, AdSd+2 is SO(d+2,1)

invariant of its ambient spacetime, making it a maximally symmetric spacetime, allowing

us to write a Riemann tensor and associated quantities as follows

Rαβγδ = − 1

L2

(
gαγgβδ − gαδgβγ

)
Rαβ = −d+ 1

L2
gαβ

R = −(d+ 1)(d+ 2)

L2

(3.18)

Thus, for AdSd+2,

Rαβ − 1
2
Rgαβ = −d(d+1)

L2 gαβ (3.19)

which is the same as the vacuum EFE with a negative cosmological constant

Λ = −d(d+1)
L2 (3.20)

2i runs from 1 . . . d
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For completeness, let us present the metric for AdS5 spacetime

ds2
AdS5

= −r2dt2 + r2
(
dx2 + dy2 + dz2

)
+ 1

r2
dr2 (3.21)

AdS Black Holes

Black holes are possible in an AdS spacetime. Whilst, we will cover black holes on

branes later on, the metric for a AdS-Schwarzschild black hole is presented

ds2
SAdS5

= −r2f(r)dt2 + r2
(
dx2 + dy2 + dz2

)
+

1

r2f(r)
dr2

f(r) = 1−
(rs
r

)4
(3.22)

The horizon is located at r = rs. Notice that the horizon extends infinitely in the

(x,y,z) directions - a planar horizon. Also note that for rs = 0, Eqn.(3.22) reduces to

Eqn.(3.21).

3.2 RS I

The RS1 model introduces one extra dimension y 3 which is compactified in a S1/Z2

orbifold (a circle folded across a diameter), S1 being a circle of radius rc and Z2 =

{1,−1} is the multiplicative parity group. Essentially, the extra dimension is a circle

with both sides identified in an equivalence class. There are two fixed points in the

orbifold y = (0, πrc), taken as the locations for two 3-branes extending in the {xµ}

directions, which form the boundary for our 5D bulk. It is important to note that rc is

independent of {xµ} by 4D Poincaré invariance. A crucial aspect of this construction as

stated previously, is that matter is confined to the brane whereas gravity can access the

entire 5D bulk.

While it would be convenient, we cannot formally recover RS1 from M-theory. It is,

however, worthwhile to consider that the preservation of Poincaré invariance leading to
3Following notation used in Chapter 2.
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the emergence of certain relations in RS1, are the same as the 5D effective theory of the

11-dimensional theory on the orbifold R10 × S1/Z2 as presented by Witten and Horava

[38].

EFE for RS1

The metric of the full 5D spacetime must be such that it is flat on the brane, since we are

discarding any energy-momentum source that could result in a curvature, apart from

vacuum energy. We demand a Poincaré invariance compatibility in the {xµ} directions.

In Gaussian normal coordinates, established on the brane (y=0), the metric is

ds2 = e−2A(y)qµνdx
µ ⊗ dxν + dy2

gmn = e−2A(y)qµν + δ5
mδ

5
n

(3.23)

From the above equation, it is clear that gmn = gmn(y), giving us ∂µgmn = 0. Let’s move

onto the non-vanishing Christoffel symbols

Γ5
µν = −1

2
g55
(
∂5gµν

)
= −1

2
∂y
(
e−2Aqµν

)
= −1

2
qµν
(
− 2e−2A∂yA

)
⇒ Γ5

µν = gµν∂yA

(3.24)

Γµν5 =
1

2
gµρ
(
∂5gρν

)
=

1

2
e2Aqµρ∂y

(
e−2Aqρν

)
=

1

2
e2Aqµρqρν

(
− 2e−2A∂yA

)
⇒ Γµν5 = −δµν ∂yA

(3.25)

(
The above symbols are calculated using Γρµν = 1

2
gρσ
(
∂µgνσ + ∂νgσµ − ∂σgµν

)
.
)

To calculate the Ricci tensor components, we use this formula, Rµν = ∂σΓσµν − ∂νΓσµσ +

ΓσσλΓ
λ
µν − ΓσνλΓ

λ
µσ . We can see that Rµ5 = R5µ = 0, leaving the remaining Ricci tensor
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components as

Rµν = ∂5Γ5
µν + Γσσ5Γ5

µν − Γσν5Γ5
µσ − Γ5

νρΓ
ρ
µ5

= ∂y
(
gµν∂yA

)
+
(
− δσσ∂yA

)(
gµν∂yA)−

(
− δσν ∂yA

)(
gµσ∂yA)−

(
− δρµ∂yA

)(
gνρ∂yA

)
= ∂y

(
e−2Aqµν∂yA

)
− 4gµν

(
∂yA

)2
+ gµν

(
∂yA

)2
+ gµν

(
∂yA

)2

= e−2Aqµν

(
− 2
(
∂yA

)2
+
(
∂2
yyA
))
− 2gµν

(
∂yA

)2

⇒ Rµν = gµν

((
∂2
yyA
)
− 4
(
∂yA

)2
)

⇒ R55 = 4
((
∂2
yyA
)
− 4
(
∂yA

)2
)

(3.26)

We now compute the Ricci scalar from the above result

R = gmnRmn = gµνRµν + g55R55

= gµν
[
gµν

((
∂2
yyA
)
− 4
(
∂yA

)2
)]

+ 4
((
∂2
yyA
)
− 4
(
∂yA

)2
)

= 4
(
∂2
yyA
)
− 16

(
∂yA

)2
+ 4
(
∂2
yyA
)
− 4
(
∂yA

)2

⇒ R = 4
(

2
(
∂2
yyA
)
− 5
(
∂yA

)2
)

(3.27)

Finally, we can now compute the Einstein tensor Gmn = Gµν +G55

Gµν = Rµν −
1

2
Rgµν

=
(
gµν

((
∂2
yyA
)
− 4
(
∂yA

)2
))
− 1

2

(
4
(

2
(
∂2
yyA
)
− 5
(
∂yA

)2
))

gµν

⇒ Gµν = 3gµν

(
2
(
∂yA

)2 −
(
∂2
yyA
))

(3.28)

And,

G55 =
(
4
((
∂2
yyA
)
− 4
(
∂yA

)2
))
− 1

2

(
4
(

2
(
∂2
yyA
)
− 5
(
∂yA

)2
))

g55

⇒ G55 = 6
(
∂yA

)2

(3.29)
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Now, we can use Eqn.(1.15), setting TAB = −ΛgAB. For the fifth dimension’s compo-

nent,

G55 = −Λg55
2M3 ⇒ ∂yA = ±

√
− Λg55

12M3 (3.30)

Notice that since M > 0, we need the warp factor term to represent an exponential

decay of sorts, to allow for A(y) to be a real function, as seen in Fig.(3.2). This requires

us imposing a condition that Λ < 0, an AdS spacetime, as discussed in Section(3.1). This

implies that the bulk between the branes is a 5-dimensional AdS space, AdS5. Let’s now

define κ ≡
√
− Λg55

12M3 , where g55 = 1. Thus, integrating Eqn.(3.30) gives us A(y)=±κy.

Recalling the orbifold symmetry, one has A(y) = κ|y|.

Figure 3.2: The behaviour of the warp factor in the RS1 model.

Brane tension in RS1

We have only looked at the extra component of the EFE - there may be additional

information in the µν components. Begin by taking the first derivative of A(y)

dA(y)
dy

= κd|y|
dy

= κ y
|y| (3.31)
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It is also a simple observation that ( y
|y|)

2 = 1, ∀y ∈ (−rc, rc). The derivative of y
|y| is 2δ(y),

but since y ∈ S1/Z2, we express the delta function within both bounds of our orbifold,

κ d
dy

y
|y| = d2

dy2
A(y) = 2κ

(
δ(y)− δ(y − rc)

)
(3.32)

Now, we proceed to check the above solution using the µν components of the EFE,

Gµν = −Λgµν
2M3

⇒3gµν

(
2
(
∂yA

)2 −
(
∂2
yyA
))

= −Λgµν
2M3

⇒3gµν

(
2κ2
( y
|y|

)2

− 2κ
(
δ(y)− δ(y − rc)

))
= −Λgµν

2M3

⇒(6κ2)gµν − 6κ
(
δ(y)− δ(y − rc)

)
gµν = −Λgµν

2M3

(3.33)

One can easily identify that 6κ2 = 6
(√
−Λ/12M3

)2
= −Λ/2M3, whereas −6κ

(
δ(y) −

δ(y − rc)
)
gµν 6= 0, meaning there is an absence of something in the µν components of

the 5D EFE. This absence or discrepancy is referred to as the brane tension from Sec-

tion(2.3).

We deal with this, by adding to the action in Eqn.(1.14), the matter action of each brane

(y = 0, rc) due to their respective brane tensions σ1 and σ2:

S1 =

∫
d4xdy

√
−g
(
− σ1

)
δ(y) =

∫
d4x
√
−q1

(
− σ1

)
S2 =

∫
d4xdy

√
−g
(
− σ2

)
δ(y − rc) =

∫
d4x
√
−q2

(
− σ2

) (3.34)

Note, how a second derivative of A(y) when evaluated and integrated in each brane,

leaves a 4-dimensional action. Also, q1 and q2 are the determinants of the induced

metrics on either brane. Consider SM =
∫
d5x
√
−g
(
− Λ− σ1δ(y)− σ2δ(y − rc)

)
, where

both brane tensions are constant, the µν components of the energy-momentum tensor

44
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becomes

Tµν = −
(
Λ + σ1δ(y) + σ2δ(y − rc)

)
gµν (3.35)

Parameter Setting

Despite this new definition, Eqn.(3.30) holds water as brane tensions are not defined in

the bulk - the extra dimensional component has no contributions from S1 and S2. So,

Gµν =

(
− Λ

2M3
− σ1δ(y)

2M3
− σ2δ(y − rc)

2M3

)
gµν

⇒ (6κ2)gµν − 6κ
(
δ(y) + 6κδ(y − rc)

)
gµν =

(
− Λ

2M3
− σ1δ(y)

2M3
− σ2δ(y − rc)

2M3

)
gµν

(3.36)

Leading to,

−6κ = −σ1
2M3 ⇒ σ1 = 12κM3 (3.37)

6κ = −σ2
2M3 ⇒ σ2 = −12κM3 (3.38)

Giving us the result that the brane tensions are equal in magnitude but have opposite

signs. Also,

σ2 = (12)2
(
−Λ

12M3

)(
M3

)2 ⇒ Λ = −σ2

12M3 (3.39)

Eqn.(3.39) provides a fine tuning mechanism in the model, as σ the brane tension is a

free parameter freely chosen to determine the high energy scale of the theory [39]. The

negative cosmological constant prevents gravity from leaking into the extra dimension

at low energies [40]. Now, finally we can write the full metric for the RS1 model

ds2 = exp

(
− 2
√

−Λ
12M3 |y|

)
qµνdx

µ ⊗ dxν + dy2 (3.40)
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3.3 RS II

When we started talking about braneworlds, we stated that SM fields were localised on

the brane but gravity could freely propagate into the bulk. This will worry a braneworld

observer as Newton’s inverse square law for gravity is a property of 4D gravity and is

experimentally verified to be as low as r ∼ 0.2mm. This issue is cleverly resolved if

the extra dimension is small and compact, owing to a large mass gap between the zero

graviton mode and the first Kaluza Klein mode. This ensures that gravity behaves four

dimensionally, except at very high energies. Braneworld models showcase the idea that

gravity can appear 5-dimensional even in low energies, thereby violating Newton’s law.

The RS2 is a subtle model that managed to produce Newton’s law on the brane despite

having an infinite extra dimension. This is due to the negative cosmological constant in

the bulk.

RS2 Setup

To arrive at RS2, one begins with RS1 and extends the brane separation to infinity, such

that we are left with a single brane of positive tension. The geometry is described by

the metric in Eqn.(3.23) with rc → ∞. In Fig.(3.3), we can see the behaviour of the

warp factor for the RS2 model. It has a peak at y = 0, indicating a positive tension for

the brane there. Note a Z2 symmetry about y = 0.

Figure 3.3: The behaviour of the warp factor in the RS2 model.
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The size of the extra dimension is infinite. The bulk is empty except for a negative

cosmological constant. Our stress tensor is therefore as we defined in Eqn.(2.55) :

Tac = Sacδ(l)− Λ5gac =
(
ηac − σqac

)
δ(l)− Λ5gac (3.41)

where, (just to remind ourselves), Λ5 is the cosmological constant in the bulk, l is the

proper length defined only in a neighbourhood of the brane. The brane is located at y

= 0. ηac is the stress-energy tensor on the brane, σ is the brane tension and qac is the

metric on the brane. Now, as a consequence of the Z2 symmetry, one gets K+
ac = −K−ac.

Israel’s second junction condition becomes

K+
ac = −K−ac = 4πG5

(
Sac − qac S3

)
= 4πG5

(
σ qac

3
+ ηac − qac η3

)
(3.42)

The above equation relates Kac with the distribution of matter on the brane, which

can eliminate the extrinsic curvature terms in Eqn.(2.35). The term Eαβ in Eqn.(2.35)

which is related to the Weyl tensor, is associated with the geometry of the bulk and we

cannot eliminate it so easily. But, this term only becomes relevant at higher energies

[32].

Evaluating Eqn.(2.35) on either side of the brane, performing the evaluation at l 6= 0

followed by taking the limit l → 0. This analysis yields Einstein’s equations at low

energies, as seen in Section(2.3) and Eqns.(2.70 - 2.73), with some minor changes.

Parameter Setting

In order for G4 to have the correct sign, Eqn.(2.72) requires σ > 0. According to

Eqn.(2.71), Λ4 the cosmological constant on the brane can be set to any value by just

tuning the value of σ. If we set Λ4 = 0, Eqn.(2.71) reduces to

σ = 6
l
√

8πG5
(3.43)

47



Chapter 3. The Randall-Sundrum Model 3.3. RS II

where l is the AdS radius in the bulk, where it relates to Λ5 as follows l =
√
− 6

Λ5
.

Combining Eqns.(2.72) and (3.43)

G4 =
√

8πG5

l
G5 (3.44)

In RS2 theory, l is a freely adjustable parameter, whose value we determine by experi-

ment.

Vacuum Solution

There are classes of vacuuum solutions when matter is absent [40; 41]

ds2 = e−2|y|/l(qµνdxµdxν + dy2
)

(3.45)

where y ∈ (−∞,∞) is the extra dimension and the brane is located at y = 0. qµν has no

y dependence, and can be any vaccuum solution from GR. Say, we define z ≡ ley/l when

y is positive and z ≡ le−y/l when y is negative. This, in coordinate space corresponds to a

two-to-one mapping ±y to z = le|y|/l ∈ [l,∞). This is however only a superficial feature

as y ≡ −y due to the Z2 symmetry. Using coordinates (xµ, z), Eqn.(3.45) becomes

ds2 = l2

z2

[
(qµνdx

µdxν) + dz2
]

(3.46)

where z ≥ l covers the entire physical spacetime, now positioning our brane at z = l.

The simplest case would be to let qµν be 4D Minkowski spacetime. Correspondingly,

the 5D space is then a part of the Poincaré patch of AdS space. Interestingly, qµν can

also take black hole solutions, leading to black string solutions in the brane, something

which we will introduce later on.
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Matter in RS2

Due to the nature of the RS2 braneworld setup, the‘conservation laws’ in Eqns.(2.33)

and (2.34) become

DµSν µ = 0

[̂σ]̂ = −1

2
Sµν {̂Kµν }̂ = 0

(3.47)

where D is the covariant derivative associated to qµν . Eqn.(3.47) gives a conservation

of matter on the brane. Since the brane tension part σqµν satisfies this conservation law,

we require the matter part on the brane ηµν to also obey it. This is consistent with the

equation of motion of matter on the brane, which takes its form from 4D GR. This is

due to the fact that matter is trapped on the brane and cannot ‘feel’ the extra dimension.

Non-critical braneworlds

While RS2 agrees with Newton’s law and other properties of 4D gravity, it contradicts

a particularly crucial experimental observation. Various studies of supernovae suggest

that the universe contains a small positive cosmological constant [42; 43]. RS2 has

Minkowski on the brane with a vanishing cosmological constant. Let us focus on ex-

tending RS2 to allow for dS or AdS braneworlds.

Recall that we have demanded a compatibility with 4D Poincaré invariance, giving

us Eqn.(3.46). We also saw that we could fine tune the brane tension σ against the

bulk cosmological constant, Λ. We had the relations between them from Eqn.(3.39).

This is referred to as the criticality condition, and as such, flat braneworlds satisfying

it as referred to as critical. Now, let us generalise Eqn.(3.46) to allow for dS or AdS

braneworlds

ds2 = a2(z)
[
(gµνdx

µdxν) + dz2
]

(3.48)

where gµν can be Minkowski, dS or AdS as per our choosing. The solutions to the
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bulk equations with the appropriate boundary conditions can be found in [44; 45; 46],

although we shall aim to briefly go through the solutions here. Given, the ansatz in

Eqn.(3.48), we need to solve the bulk equations with the cosmological constant Λ =

−6κ2, following which our solutions need to satisfy the boundary conditions imposed

at the brane with positive brane tension σ at z = 0.

The bulk equations of motion are just given by EFE with the appropriate cosmological

constant

Rab − 1
2
Rgab = −Λ5gab (3.49)

Defining Λ4 as the cosmological constant on the brane, gives us

µν :
Λ4

a2
− 3
(a′
a

)2 − a′′

a
= −4κ2

zz : −4
a′′

a
= −4κ2

(3.50)

where the prime denotes a differentiation with respect to z. It is obvious to note that

these equations will have three classes of solutions, depending on the signage of Λ4.

a(z) =



1
k

√
Λ4

3
sinh (±κz + c) for Λ4 > 0

1
k

√
−Λ4

3
cosh (±κz + c) for Λ4 < 0

e±κz+c for Λ4 = 0

(3.51)

(c is a constant of integration.)

The boundary conditions are given by the Israel junction conditions on the brane.

[̂Kab̂] = −8πG5

3
σqab (3.52)

where qab is the induced metric on the brane. Given the specific form of the metric and
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the fact that we have a Z2 symmetry across the brane, we see

a′

a
|z=0+ = −4πG5

3
σ = σ̃ (3.53)

Combining the above arguments with the fact that we have a positive brane tension

a(z) =



1
κ

√
Λ4

3
sinh (−κ|z|+ c) for Λ4 > 0

1
κ

√
−Λ4

3
cosh (±κ|z|+ c) for Λ4 < 0

e±κ|z|+c for Λ4 = 0

(3.54)

with the following conditions

σ̃ =


κ coth c > κ for Λ4 > 0

κ tanh c < κ for Λ4 < 0

κ for Λ4 = 0

(3.55)

We also have the freedom to set a(0) = 1, giving us
κ =

√
Λ4

3
sinh c for Λ4 > 0

κ =
√
−Λ4

3
cosh c for Λ4 < 0

c = 0 for Λ4 = 0

(3.56)

We can use Eqns.(3.54) and (3.55) to fix the cosmological constant to be

Λ4 = 3
(
σ̃2 − κ2

)
(3.57)
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Summarising the above results,

Minkowski: a(z) = e±κ|z|+c

dS: a(z) = 1
κ

√
Λ4

3
sinh (−κ|z|+ c); κ =

√
Λ4

3
sinh c

AdS: a(z) = 1
κ

√
−Λ4

3
cosh (−κ|z|+ c); κ =

√
−Λ4

3
cosh c

(3.58)

When σ takes its critical value, we have σ̃ = κ and Λ4 → 0. AdS branes have the

property where σ exceeds its critical value (σ̃ > κ), therefore referred to as subcritical

branes. dS on the other hand, the opposite is true, therefore it being referred to as a

supercritical brane.

We have seen previously how gravity localised on braneworlds, dampening as they

went further into the bulk as a result of the warp factor. Let us look at this behaviour

for subcritical and supercritical branes. Consider in Figs.(3.4) and (3.5), the behaviour

of the warp factor,

Figure 3.4: The behaviour of the warp factor for an AdS (subcritical) brane.
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Figure 3.5: The behaviour of the warp factor for a dS (supercritical) brane.

We see a turnaround in the warp factor in both cases. Now, for the dS case, this corre-

sponds to the dS horizon at the point where the warp factor vanishes altogether. It can

be argued that dS branes are even more likely to exhibit 4D gravity than flat branes, due

to a greater damping from the warp factor. (Refer to [47; 48; 49] for further details.)

Unlike plain old RS2, we see a mass gap between the zero mode and the heavier modes

in metric perturbations. Additionally, Newton’s constant on the brane is proportional

the brane tension σ, as opposed to κ.

The AdS situation is trickier. Near the brane, metric fluctuations act the same for flat,

dS and AdS branes. The warp factor does not vanish at the turnaround point, rather it

begins to grow past this point. Assuming that this point lies far away from the brane, we

could believe that at low energies, we see gravity localisation. At finite temperatures,

one could we even tuck this point behind a black hole horizon. [48] presents the case

for localisation, despite the absence of a normalisable zero mode, for those interested.
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Gravity and Braneworlds

A basic requirement for any alternative theory of gravity, is its ability to reproduce

Newton’s law of gravitation in the appropriate limit. Braneworld gravity fails at the

beginning of this endeavour, with 5D gravity producing a 1/r3 force law, as opposed to

4D familiar version. This is where the warp factor comes in to save the day, essentially

‘squeezing’ gravity around the brane so that gravity mostly spreads in the four directions

parallel to the brane and Newton’s law is recovered, despite the extra dimension.

Obviously, the empirical success of GR exceeds that of just reproducing Newton’s laws

in the weak field approximation for static sources and nonrelativistic masses. GR’s big

breakthrough came from predicting light bending around the Sun, confirmed by Ed-

dington in 1919. GR has also had immense success in other experimental tests, such as

perihelion precession of planetary orbits, radar time-delay experiments and so on. All

these effects can be explained within the neat framework of linearised GR, where the

assumption is that spacetime can be described as tiny perturbations about a background.

This chapter intends to focus on introducing the framework of linearised gravity but

in braneworlds. We will see that GR results are recovered on the brane, with small

corrections on account of the extra dimension. However, we also need to touch upon

the problems that cannot be solved using the weak field limit, hence requiring non-
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perturbative gravity.

4.1 Non-perturbative gravity

We’ll start here as this description is more straightforward and one that we have carried

out in Section (2.3.1). The summary of the story is in the effective EFE on the brane, as

seen in Eqns.(2.70 - 2.73). They are stated below for reference

(4)Gµν = −Λ4qµν + 8πG4ηµν + (8πG5)4πµν − ψµν (4.1)

where,

Λ4 = 4πG5

(
Λ5 + 4πG5σ2

3

)
(4.2)

G4 =
64π2G2

5σ

48π
=

4πσG2
5

3
(4.3)

πµν = 1
4

(
ηηµν

3
− η2qµν

6
+

ηαβη
αβqµν
2

− ηµ αηαν

)
(4.4)

One can develop a (1+3) - covariant analysis of Eqn.(2.70) using the viewpoint of a

brane-bound observer [50]. Consider a general decomposition of ψµν with respect to a

4-velocity field uµ:

ψµν = −
[
U
(
uµuν + 1

3
hµν

)
+ 2p(µuν) + Pµν

]
(4.5)

where hµν = gµν + uµuν projects orthogonally to uµ. This allows for a consideration

such that ψµν is an effective ‘Weyl fluid’, with a non-local energy density U, momentum
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density pµ and an anisotropic stress tensor Pµν . These are given by

U = −ψµνuµuν

pµ = hµ
αψαβu

β

Pµν =
[1

3
hµνh

αβ − h(µ
αhν)

β
] (4.6)

Note that ψµν is in Planck units as it is derived from the bulk. To compare U, pµ and Pµν

with the physical energy-momentum of 4D matter, we need to rescale by 1/8πG4. There

exist evolution equations for U and pµ, but not for Pµν [50]. This is due to the fact that

Pµν incorporates gravitational modes of the 5D graviton, which cannot be predicted

by braneworld observers. In special cases, such as the Friedmann-Lemâıtre-Robertson-

Walker (FLRW) brane, Pµν vanishes due to symmetry reasons, thus closing the EFE on

the brane. In general, however, the system of equations will not be closed.

4.2 Linearised Gravity

We will follow the work in linearised braneworld gravity by Garriga and Tanaka [51;

52]. Let us quickly look at perturbation theory in GR before we begin [10].

Perturbation theory in GR

In GR, classical perturbations involve metric perturbations

gµν → gµν + hµν (4.7)

around a given background solution. There are 3 (useful) points to remember when

doing this.

1. hµν is a perturbation and therefore needs to be small.
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2. Gauge freedom: GR has a large gauge group. Physics is invariant under general

coordinate transformations and hµν enjoys multiple gauge degrees of freedom.

3.We need the Lichnerowicz operator, the perturbation of the Ricci tensor.

δRµν = −1
2
∇2hµν −Rµνρσh

ρσ +Rρ
(µhν)ρ + ∇µ(∇ρhν)ρ = −1

2
∆Lhµν (4.8)

Consider perturbations hµν about the RS background, modifying Eqn.(3.45)

ds2 =
(
e−2|y|/lηµν + hµν

)
dxµdxν + dy2 (4.9)

Note that we are employing hypersurface orthogonal coordinates here, h4 = 0, reducing

the 15 functions hab to 10 functions hµν . These are not unique and we can still make

coordinate transformations that shift the brane while preserving this. We can somewhat

justify this by considering the following change of coordinates xµ → xµ + ηµ(xν)

to Eqn.(4.7). This leads to metric change of the form, gµν → gµν + ∇µην + ∇νηµ, from

which it is possible to show that we can choose the five functions ηµ so to make the

coordinate choice.

Linearising the bulk EFE in Eqn.(3.49) in the perturbations hµν

R44 + 4
l2

= −1
2
∂y
(
e2|y|/l∂yh

)
= 0 (4.10)

Rµ4 = 1
2
∂y

[
e2|y|/l(∂νhµ ν − ∂µh

)]
= 0 (4.11)
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Rµν +
4

l2
gµν =

1

2
e2|y|/l

(
2∂ρ∂(νhµ)

ρ −2(4)hµν − ∂µ∂νh
)

− 1

2
∂2
yhµν +

2

l2
hµν + ηµν

( h
l2

+
∂yh

2l

)
= 0

(4.12)

where h is the determinant of hµν and 2(4) ≡ ηµν∂µ∂ν is the 4-dimensional Laplacian.

Notice, Eqns.(4.10,4.11,4.12) are just simplifications of the Lichnerowicz operator ap-

plied to a perturbation, ∆Lhµν = 0.

Let us choose the transverse, traceless Randall Sundrum gauge (captures the 5 polarisa-

tions of the 5D graviton in 5 independent hµν components) [9] everywhere in the bulk,

defined by

ha4 = 0 ; ∂νhµ
ν = h = 0 (4.13)

This gauge trivially solves Eqns.(4.10) and (4.11). Eqn.(4.12) gets reduced to a decou-

pled field equation for perturbations

(
e2|y|/l 2(4) + ∂2

y − 4
l2

)
hµν = 0 (4.14)

The boundary conditions are given by Israel’s junction conditions at the brane. However,

in general, choosing this gauge in the bulk, matter in the brane causes it to bend,

displacing it from y = 0. We can see this in Fig.(4.1).

Figure 4.1: Gravitational field of a matter source in the RS gauge, showing brane bending.
As seen in [51].
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We get around this problem by using the Gaussian normal gauge (coordinates (x̄µ, z),

defined by h̄a4 = 0 fixed at z = 0.), and then transforming between the two. Working

on the positive side of the brane and assuming Z2 symmetry, this gives us

∆Kµν = −2
l
ηµν + ∂zh̄µν = −8πG5

(
Sµν − 1

3
q0
µνS
)

, (z = 0+) (4.15)

where q0
µν = qµν(z = 0) = (ηµν + h̄µν is the induced metric on the brane. Sµν is the stress-

energy tensor on the brane that can be split into brane tension and energy-momentum

on the brane (like before in Eqn.(2.55):

Sµν = Tµν − σq0
µν (4.16)

Plugging the above into Eqn.(4.15)

− 2

l
ηµν + ∂zh̄µν = −8πG5

((
Tµν − σq0

µν

)
− 1

3
q0
µνS
)

⇒
(2

l
+ ∂z

)
h̄µν = −8πG5

(
Tµν −

1

3
ηµνT

)
, (z = 0+)

(4.17)

We now have to transform this condition back into the RS gauge, to ensure compatibility

with Eqn.(4.14). Consider the following transformation:

z = y + ξ4(xa) (4.18)

x̄µ = xµ + ξµ(xa) (4.19)

By imposing the requirement that the metric from Eqn.(4.9) takes its specific form in
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both gauges requires h̄44 = 0 and h̄µ4 = 0, giving us the following

ξ4 = ξ4(xν)

ξµ = − l
2
e2|y|/lηµρ∂ρξ

4((xν) + Aµ(xν)
(4.20)

where the functions ξ4(xν) and Aµ(xν) are independent of y. It now follows that, we can

relate the two perturbations in the two coordinate systems as follows

hµν = h̄µν − l∂µ∂νξ4 − 2
l
e−2|y|/lηµνξ

4 + e−2|y|/l∂(µην)δA
δ (4.21)

Inserting the above relation into Eqn.(4.17), the junction condition becomes

(
2
l

+ ∂y

)
hµν = −Σµν (y = 0+) (4.22)

where

Σµν = 8πG5

(
Tµν − 1

3
ηµνT

)
+ 2∂µ∂νξ

4 (4.23)

is the effective source term in the RS gauge including the effect of brane bending (the

brane is displaced to y = −ξ4). h being 0 in the RS gauge implies Σµ
µ = 0, so we can

determine ξ4(xν) from Eqn.(4.23),

0 = Σµ
µ = Σµνη

νµ

= 8πG5

(
Tµνη

νµ − 1

3
ηµνTη

νµ
)

+ 2∂µ∂νξ
4ηνµ

= 8πG5

(
T − 4

3
T
)

+ 22(4)ξ4

⇒2(4)ξ4 =
4πG5

3
T

(4.24)

which explicitly shows the the brane is bent by matter residing on it.

We now focus on combining Eqns.(4.14) and (4.22) into a single equation. We do this
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by including delta functions at the discontinuity, leading to equations of motion for

perturbations in the RS gauge.

[
e2|y|/l 2(4) + ∂2

y − 4
l2

+ 4
l
δ(y)

]
hµν = −2Σµνδ(y) (4.25)

Eqn.(4.25) yields the vacuum solution for Eqn.(4.14) for y 6= 0, whereas integration

across y = 0 gives us the junction condition Eqn.(4.22). Now for solving this equation,

we define G(x, y;x′, y′) to be the retarded 5D Green’s function, which satisfies

[
e2|y|/l 2(4) + ∂2

y − 4
l2

+ 4
l
δ(y)

]
G(x, y;x′, y′) = δ(4)(x− x′)δ(4)(y − y′) (4.26)

with the solution to Eqn.(4.25) given by

hµν = −2

∫
d4x′dy′G(x, y;x′, y′)Σµν(x

′)δ(y′)

= −2

∫
d4x′dy′G(x, y;x′, 0)Σµν(x

′)

(4.27)

To solve Eqn.(4.26) for the Green’s function, we need a second boundary condition

alongside the junction condition on the brane. For this, we take that perturbations

remain bounded at the AdS horizon y = ∞. (Refer to [53; 54; 55] for more on this.)

Now, we can construct a full Green’s function using a complete set of eigenstates (Sturm-

Liouville tools) [9]:

G(x, y;x′, y′) =

∫
d4k

(2π)4
eikµ(xµ−x′µ)

[
e(|y|+|y′|)/ll−1

k2 − (ω + iε)2
+

∫ ∞
0

dm
um(y)um(y′)

m2 + k2 − (ω + iε)2

]
(4.28)

where kµ = (ω, k) and,

um(y) =

√
ml/2

[
J1(ml)Y2(mle|y|/l)− Y1(ml)J2(mle|y|/l)

]
√
J1(ml)2 + Y1(ml)2

(4.29)
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Jn, Yn are Bessel functions of order n. The first part of Eqn.(4.28) corresponds to a

graviton zero mode and the second term is a continuum of KK modes.

Let us look at how we can use Sturm Liouville theory to obtain the above two relations.

Let us begin by reintroducing a negative tension brane at y = yc, such that it acts as a

regulator and we can impose an additional boundary condition

(∂y + 2/l)|y=0+ hµν = 0 (4.30)

This will place a new constraint on Green’s function, so we modify Eqn.(4.26)

[
e2|y|/l 2(4) + ∂2

y − 4
l2

+ 4
l
δ(y)− 4

l
δ(y − yc)

]
G(x, y;x′, y′) = δ(4)(x− x′)δ(4)(y − y′)

(4.31)

Now, let us take a Fourier transform on the above relation with respect to xµ

[
− e2|y|/lk2 + ∂2

y − 4
l2

+ 4
l
δ(y)− 4

l
δ(y − yc)

]
G̃(k; y, y′) = δ(4)(y − y′) (4.32)

where we define

G̃(k; y, y′) =

∫
d4xe−ikµ(xµ−x′µ)G(x, y;x′, y′) (4.33)

For y 6= y′, the Green’s function will satisfy

(
∂2
z − 4

l2

)
G̃ = k2e2|y|/lG̃ (4.34)

with the following boundary conditions
(∂y + 2/l)G̃ = 0 for y = 0+

(∂y + 2/l)G̃ = 0 for y = yc

(4.35)
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We wish to find eigenstates um(y) for our problem, with eigenvalues: k2 = −m2.

The zero mode eigenstate is

u0(y) = N0e
−2|y|/l (4.36)

where N0 is a normalisation constant. To determine massive eigenstates, we will have

to change variables to z = mle|y|/l. This changes Eqn.(4.34) to Bessel’s equation with

n=2 [56] [
z2∂2

z + z∂z + (z2 − 4)
]
G̃ = 0 (4.37)

with the following boundary conditions
(z∂z + 2)G̃ = 0 for z = ml

(z∂z + 2)G̃ = 0 for z = zc = mleyc/l
(4.38)

If we look in [56], we see that Eqn.(4.37) has solutions J2(z) and Y2(z) which satisy the

following recurrence relations

(z∂z + 2)J2(z) = zJ1(z)

(z∂z + 2)Y2(z) = zY1(z)

(4.39)

which lets us deduce that the massive eigenstates are given by

um(y) = Nm

[
J1(ml)Y2(z)− Y1(ml)J2(y)

]
(4.40)

where Nm is the normalisation constant in this case. An important point to note is that

the boundary condition at y = yc is only satisfied for quantised values of m satisfying

[
J1(ml)Y1(mleyc/l)− Y1(ml)J1(mleyc/l)

]
= 0 (4.41)
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For large y, the asymptotic behaviour of Bessel’s functions is given by

Jn(mley/l) ∼
√

2e−y/l

lπm
cos
(
mle−y/l − nπ

2
− π

4

)
Yn(mley/l) ∼

√
2e−y/l

lπm
sin
(
mle−y/l − nπ

2
− π

4

) (4.42)

As our regulator approaches infinity, Eqns.(4.41) and (4.42) imply that m is quantised

in units of πe−yc/ll. The normalisation constants can be determined by∫ yc

−yc
dy e2|y|/lum(y)un(y) = δmn (4.43)

The zero mode normalisation constant is simply

N2
0 = 1

l
(1− e−2yc/l)−1 (4.44)

The case for heavy modes is slightly more subtle. However, we note that for large yc,

the dominant contribution to the integral in Eqn.(4.43) lies in the region where |y| = yc.

Using the asymptotic behaviour relations

N2
m =

πm

2
e−yc/l

[
J1(ml)2 + Y1(ml)2

]−1
+O(e−2yc/l (4.45)

The Fourier transformed Green’s function now satisfies

(
∂2
z − 4

l2
− k2e2|y|/l)G̃ = δ(y − y′) (4.46)

This can be expressed in terms of a complete set of eigenstates

G̃(k; y, y′) = −u0(y)u0(y′)

k2
−
∑
m

um(y)um(y′)

m2 + k2 (4.47)

where to ensure k2 6= −m2, we add a small imaginary part in the “time” direction(as in

QFT), i.e. kµ = (ω + iε,k). Now, one removes the regulator by letting yc →∞, wherein
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the quantisation in m vanishes, giving us a continuum limit

∑
m

um(y)um(y′)

m2 + k2
→
∫ ∞

0

dm lim
yc→∞

1

πe−yc/l/l

(
um(y)um(y′)

m2 + k2

)
(4.48)

Inverting the Fourier transform Eqn.(4.33) will give us the desired Eqns.(4.28) and

(4.29).

For reasons of simplicity, we will look at the stationary case, for which the Green’s

function is

G(x, y;x′, y) =

∫ ∞
−∞

dt′G(x, y;x′, y′) (4.49)

The long distance behaviour of gravity is determined by the Green’s function in the limit

|x− x′| � l. The opposite limit simply yields G(x, 0;x′, 0) ∝ 1/r2, showing the fact that

gravity becomes 5-dimensional at short distances. Considering both points on the brane

and taking suitable expansions of the Bessel functions

G(x, 0;x′, 0) ≈ − 1
4πlr

(
1 + l2

2r2
+ . . .

)
(4.50)

where we set r = |x− x′|. One can see that the zero mode gives the 4D1/r behaviour

whereas the KK modes induce a subleading correction term proportional to (l/r)2. For

a source on the wall (y’ = 0), the leading behaviour for large r and large y is given by

[51]

G(x, 0;x′, 0) ≈ −e
−3|y|/l

8πl

[
2e−2|y|/lr2 + 3l2(
e−2|y|/lr2 + 3l2

)3/2

]
(4.51)

showing a steep perturbation decay away from the brane, as seen in Fig.(4.1).

Seeing as we are interested in the perturbation on the brane, it is convenient to switch

back to GNC. Eqn.(4.21) becomes

hµν = h
(m)
µν + h

(ξ)
µν + l∂µ∂νξ

4 + 2
l
e−2|y|/lηµνξ

4 − e−2|y|/l∂(µην)δA
δ (4.52)
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where hµν has been split into matter and brane-bending parts, using Eqns.(4.23) and

(4.27)

h(m)
µν = −16πG5

∫
d4x′G(x, y;x′, 0)

(
Tµν −

1

3
ηµνT

)
h(ξ)
µν = −4

∫
d4x′G(x, y;x′, 0)∂µ∂νξ

4

(4.53)

If we choose Aµ(xν) correctly, we can avail the remaining gauge freedom and simplify

Eqn.(4.52) by setting all terms except the first and fourth term to zero. Finally, by

settiing y = 0, we arrive at a rather naive looking formula for the perturbation on the

brane:

h̄µν = −16πG5

∫
d4x′G(x, 0;x′, 0)

(
Tµν −

1

3
ηµνT

)
+

2

l
ηµνξ

4 (4.54)

where one can compute G(x, 0;x′, 0) from Eqn.(4.28) and ξ4 can be determined using

Eqn.(4.24).

4.2.1 The graviton propagator

It will soon become clear that Eqn.(4.54) reproduces the results of linearised GR for

a stationary source on the brane, with minor corrections arising due to the KK modes.

The KK modes in Eqn.(4.28) are only relevant at higher energies. So, at lower energies,

the Green’s function is dominated by the zero mode, and so we consider a zero mode

truncation

G(x, 0;x′, 0) =
1

l2(4)
(4.55)

where
1

2(4)
= −

∫
d4k

(2π)4

eikµ(xµ−x′µ

k2 − (ω + iε)2
(4.56)
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is the massless scalar Green’s function for 4D Minkowski space. The matter part of the

brane perturbation is

h(m)
µν = −16πG5

l

∫
d4x′

1

2(4)

(
Tµν −

1

3
ηµνT

)
(4.57)

Note, however, this is not the propagator for a massless 4D graviton, should be a 1/2

instead of 1/3. This is a manifestation of the van Dam-Veltman-Zakharov discontinuity

[57; 58], which states that the mass approaches 0 limit of a graviton propagator does

not coincide with the massless graviton propagator as the number of polarisation fields

do not match. An extra 4D scalar field, a polarisation state which is contained in the

5D graviton propagato, persists in the massless limit. This could be problematic as such

an incorrect tensor structure for the propagator results in a contradicting prediction of

light bending as opposed to the prediction by GR [57].

The good news is, we were careful as we included the effects of brane bending, descibed

by the scalar field ξ4(xµ), given by the solution to Eqn.(4.24):

ξ4 =
4πG5

3

∫
d4x′

1

24
T (4.58)

Plugging in Eqns.(4.57) and (4.58) into Eqn.(4.54), we find the full metric perturbation

on the brane:

h̄µν = −16πG5

l

∫
d4x′

1

2(4)

(
Tµν −

1

2
ηµνT

)
(4.59)

We see that the extra polarisation state has been compensated by the brane bending

effect, giving us the correct tensorial structure for the 4D massless graviton propagator.

Hence, linearised GR is recovered on the brane at lower energies.
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4.2.2 Newtonian potentials on the brane

To understand the effects of KK modes, we now compute the perturbation for a point

mass M at rest on the brane, with a stress-energy tensor

Tµν = Mδ(3)(x)δ0
µδ

0
ν (4.60)

Using Eqn.(4.24) to calculate the brane bending function

2(4)ξ4 = −4πG5

3
Mδ(3)(x) (4.61)

For a time-independent solution, 2(4) just reduces to the 3D Laplacian, giving us

ξ4 =
G5M

3|x| (4.62)

The matter part of the perturbation is computed using Eqn.(4.53) and Eqn.(4.50):

h(m)
µν = 16πG5

∫
d3x′

1

4πl|x− x′|

(
1 +

l2

2|x− x′|2

)(
δ0
µδ

0
ν +

1

3
ηµν

)
Mδ(3)(x)

=
4G5M

l|x|

(
1 +

l2

2r2

)(
δ0
µδ

0
ν +

1

3
ηµν

)
(4.63)

If we combined Eqns.(4.62) and (4.63) in Eqn.(4.54), we get a metric perturbation on

the brane

h̄µν =
2G5M

l|x|

[(
1 +

l2

3r2

)
ηµν +

(
2 +

l2

r2

)
δ0
µδ

0
ν

]
(4.64)

with components 
h̄00 = 2G4M

|x|

(
1 + 2l2

3r2

)
h̄ij = 2G4M

|x|

(
1 + l2

3r2

)
δij

(4.65)
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Hence, we recover the Schwarzschild metric to leading order, with minor corrections

due to KK modes. The Newtonian potential is given by

φ =
1

2
h̄00 =

G4M

|x|

(
1 +

2l2

3r2

)
(4.66)

which does NOT contradict experimental tests of Newton’s inverse square law, given

l0.1mm (the distance down to which Newton’s law has been tested.) This also gives a

lower bound for brane tension σ(1 TeV)4.
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Chapter 5

Braneworld Cosmology

We have looked at how the RS models provide a radical new way of thinking about

our universe and the possible existence of extra dimensions. If this extra dimension is

warped and AdS, then it can be infinitely large and still exhibit gravity localisation. We

have also looked at how to generalise the RS2 model to include subcritical and super-

critical braneworlds.

To better understand these ideas, we have to go a step further. The previous chapter

dealt with weak gravity, but we have to also think about strong gravity, like cosmology

and black holes. Previously, we looked at 5D bulks with a Z2 symmetry about a brane of

codimension one. Now, we will aim to cover n-dimensional bulk spacetimes, occasion-

ally relaxing Z2 symmetry. For work on generalising to branes of higher codimension,

refer to [59; 60; 61] as this work will not touch upon this subject.

Previously, we also made an assumption that perturbations about the background space-

time were small: the energy-momentum tensor due to additional matter on the brane

was much smaller than the assumed brane tension. Unfortunately, we cannot be so

heavily reliant on perturbative physics, as it will not always give us the full story. There

are two main approaches to physics on the brane by examining their cosmology: brane

based approach and bulk based approach. We will see that these are equivalent, with
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each approach having its advantages depending on our setup.

5.1 Brane based Approach

This approach employs a non-perturbative approach, which we looked at in Section(2.3.1).

For a cosmological brane, one has to ask whether there are surfaces of lower dimension-

ality which have the interpretation of an expanding universe.

5.1.1 A Friedmann-Lemâıtre-Robertson-Walker brane

Assuming the bulk spacetime has a negative cosmological constant with no additional

fields,

Λn = −1
2
(n− 1)(n− 2)k2

n ; Tab ≡ 0 (5.1)

where kn is the inverse AdS length in n-dimensions. The cosmological constant on the

brane is given as

Λn−1 = 1
2
(n− 2)(n− 3)[σ2 − k2

n] (5.2)

For a study of cosmology, it is important to examine the behaviour of an FLRW braneworld,

which shows homogeneity and isotropy

ds2
n−1 = hmndx

mdxn = −dt2 + ã2(t)dx2
k (5.3)

where dx2
k is the metric on a (n-2)-dimensional Euclidean space X, of constant curvature

k = 0,±1

X =


Sn−2 for k = 1

Hn−2 for k = −1

Rn−2 for k = 0

(5.4)
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ã(t) represents the scale factor of our braneworld. Let us assume that matter on the

brane is modelled by a perfect fluid of pressure p and energy density ρ

Tmn = (ρ+ p)umun + phmn (5.5)

where um is the 4-velocity of the fluid.1 The braneworld generalisation of the Friedmann

equation that follows from Eqn.(2.70) is the found to be [33; 34; 35]

H2 = φ− k

ã
+

16πGn−1

(n− 2)(n− 3)
ρ+

(4πGn

n− 2

)2

ρ2

Ḣ =
k

ã
− 8πGn−1

(n− 3)
(ρ+ p)− (n− 2)

(4πGn

n− 2

)2

ρ(ρ+ p)

(5.6)

where we define the Hubble parameter H = ˙̃a/ã (dot meaning differentiate with re-

spect to t), φ = [σ2 − k2
n]. We can see that these are not the standard FLRW equations

as they contain quadratic terms in p and ρ. Braneworld cosmology is therefore different

to standard cosmology. This unconventional behaviour was first noted in [33]. Notice,

that for large values of the scale factor, we can recover standard cosmology, as we can

ignore the non-linear density terms.

5.2 Bulk based Approach

We briefly saw the limitations of the brane based approach, choosing to impose a Z2

symmetry across the brane, ignoring the possibility of non-zero Weyl terms. This was

due to the fact that we were working on a static brane in a dynamic bulk. The bulk

based approach is the opposite - a dynamic brane in a static bulk. This allows us to

include non-Z2 symmetric branes and non-zero Weyl terms. The drawback is that we

will only be covering FLRW branes and cannot exploit the generalisation provided in

Eqn.(2.70).

1We avoid difficulties with ψmn by setting it to 0, which corresponds to a pure AdS space in the bulk.
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5.2.1 Generalised Birkhoff’s Theorem

The thought of a static bulk does lead one to think - Birkhoff’s theorem [62; 63]. To

bridge the gap between the two approaches to braneworld cosmology, we will prove

attempt to prove a generalised version of this theorem, first done in 5D [64].

The most general metric compatible with this symmetry is [65]

ds2 = A
2

n−2dx2
k + e2χA−

n−3
n−2 (−dt2 + dz2) (5.7)

where A and χ are functions of t and z that are yet to be determined. Here, we are

using the fact that the rest of the metric is 2D and therefore conformally flat. Without a

loss of generality, it is safe to say that the brane is located at z = 0.

We also assume that the bulk contains no additional matter. Recall the bulk Einstein

equations, (n)Gab = (n)Gab − 1
2

(n)Rgab = −Λngab + 8πGnTab, into which we insert our

metric ansatz. We arrive at the following equations,

∂2
ttA− ∂2

zzA =
[
2ΛnA

1
n−2 − (n− 2)(n− 3)kA−

1
n−2

]
e2χ

∂2
ttχ− ∂2

zzχ =
[ Λn

n− 2
A−

n−3
n−2 +

n− 3

2
kA−

n−1
n−2

]
e2χ

∂2
ttA+ ∂2

zzA = 2
(
∂zχ∂zA+ ∂tχ∂tA

)
∂2A

∂t∂z
= ∂zχ∂tA+ ∂tχ∂zA

(5.8)

Now is a good time to switch to a more convenient set of coordinates: lightcone coor-

dinates,

u = t−z
2

; v = t+z
2

(5.9)

73



Chapter 5. Braneworld Cosmology 5.2. BULK BASED APPROACH

leading to
∂2A

∂u∂v
=
[
2ΛnA

1
n−2 − (n− 2)(n− 3)kA−

1
n−2

]
e2χ

∂2χ

∂u∂v
=
[ Λn

n− 2
A−

n−3
n−2 +

n− 3

2
kA−

n−1
n−2

]
e2χ

2∂uχ∂uA = ∂u

(
(∂uA)

[
ln (∂uA)

])
2∂vχ∂vA = ∂v

(
(∂vA)

[
ln (∂vA)

])
(5.10)

The latter two equations in Eqn.(5.10) seem innocuous and we can easily integrate

them:

Case 1 : A is a constant

Case 2 : A = A(u) ; e2χ =
dA(u)

du

dV (v)

dv

Case 3 : A = A(v) ; e2χ =
dA(v)

dv

dU(u)

du

Case 4 : A = A(u, v) ; e2χ = ∂uA
dV (v)

dv
= ∂vA

dU(u)

du

(5.11)

where U(u) and V(v) are arbitrary non-zero functions of u and v respectively. We are

not interested in Cases 1-3 (imnply Λn = k = 0). We focus on Case 4, for which we can

see

A = A
(
U(u) + V (v)

)
; e2χ = A′U ′V ′ (5.12)

Plugging into the first equation in Eqn.(5.10), gives us an ODE

A′′ −
[
2ΛnA

1
n−2 − (n− 2)(n− 3)kA−

1
n−2

]
A′ = 0

⇒ A′ − 2
(n− 2

n− 1

)
ΛnA

n−1
n−2 + (n− 2)2kA

n−3
n−2 = (n− 2)2c

(5.13)

Notice, the second equation in Eqn.(5.10) just gives the derivative of the ODE, and is

satisfied automatically. Let us now impose jump conditions on the brane. To do this, we
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again assume homogeneity and isotropy

Smn = −σhmn + Tmn

Tmn = (ρ+ p)umun + phmn

(5.14)

When we have a Z2 symmetry across the brane at z = 0, Israel’s equations (2.63) give

4πGn

(
σ + ρ

)
= −e−χA−

1
2

(n−1
n−2

)∂zA =
1

2
e−χA−

1
2

(n−1
n−2

)[U ′ − V ′]A′ (5.15)

4πGn

[n− 3

n− 2
(σ + ρ)− σ + ρ

]
= −∂z

[
e−χA

1
2

(n−3
n−2

)
]

=
1

4
e−χA

1
2

(n−3
n−2

)

[(
V ′ − U ′

)(A′′
A
−
(n− 3

n− 2

)A′
A

)
+
V ′′

V
− U ′′

U

] (5.16)

We can use Eqn.(5.13) to eliminate A’ and A”. Let us make the following coordinate

transformation, which will leave the boundary conditions at the brane unchanged.

u→ f(u) v → f(v) (5.17)

This symmetry is related to the t-z plane conformal symmetry. To get rid of this unphys-

ical gauge freedom, we simply choose f = V, therefore setting V = v. Now, onto the

issue of the U(u) physical degree of freedom. Setting

ã = A
1

n−2 ; T = (n− 2)(v − U) (5.18)

we see that the bulk metric can be written as

ds2
n = −g(ã)dT 2 + dã2

f(ã)
+ ã2dx2

k (5.19)

where

f(ã) = − ã′

n− 2
= −A

′A−
n−3
n−2

(n− 2)2
(5.20)
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From Eqn.(5.13)

f(ã) = − 2Λn
(n−1)(n−2)

ã2 + k − c
ãn−3 (5.21)

For c¿0, the general metric in Eqn.(5.19) takes a form of the Schwarzschild black hole

in flat, dS or AdS space, depending on the value of Λn. Given that our starting point was

that our braneworld had a spatial geometry with constant curvature, we indeed have

‘proved’ a general version of Birkhoff’s theorem. We assumed that the bulk physics was

described by pure Einstein gravity with a cosmological constant, but proofs have been

carried out for more complicated setups, such as Einstein-Maxwell [66] and Gauss-

Bonnet [67]. We have shown that one can express the bulk geometry in a static form

given by Eqn.(5.19), although we can longer say we have a static brane at z = 0. It

is now a dynamic brane with a complicated trajectory. Ida [68] was the first to study

braneworld cosmology in this perspective, but moving branes in a static AdS bulk were

considered earlier by Klaus [69].

5.2.2 A dynamic brane in the bulk

Now that we have bridged the gap from the brane based approach to braneworld cos-

mology, let us now further generalise Ida’s bulk based approach. We will come to see

that we allow ourselves far more flexibility regarding the structure of the bulk space-

time, by transferring dynamics of our system from the bulk to the brane. We no longer

assume Z2 symmetry and also potentially consider the changing of the cosmological

constant on either side.

Let us begin by taking the general static solution Eqn.(5.19) to the EFE with cosmolog-

ical constant Λn. To construct the solution, we treat the brane as the boundary of the
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bulk.

Xa = (xµ, t(τ), a(τ)) (5.22)

Now, we patch this bulk spacetime (labelled with ‘-’) with another appropriate bulk

(labelled with ‘+’) with the same boundary valye a(τ). Here, we set τ to correspond to

the proper time with respect to an observer comoving with the brane, which imposes

the condition

−h±ṫ2± + Ż2

h±
= −1 (5.23)

so, whichever side of the brane you are on, the induced metric takes the FLRW form

ds2
n−1 = habdx

adxb = −dτ 2 + a2(τ)dx2
k (5.24)

where a(τ) is taken to be the scale factor. The bulk metric is continuous across the brane

and note that t can be discontinuous at the brane, because neither gab and hab explicitly

depend on it.

In order to produce the type of brane we need, the bulk spacetimes need to be patched

such that Israel’s equations are satisfied. When defining the extrinsic curvature, we

need some information about the outward normal.

n±a = ε±(0,− ˙a(τ), ṫ±(τ)) (5.25)

We define the extrinsic curvature Kab = hcah
d
b∇(cnd). We first find that

Kµν = ∇(µnν) = −Γaµνna = εhṫ
a(τ)

hµν (5.26)

The components of ∂/∂τ are given by

τa = (0, ˙a(τ), ṫ±(τ)) (5.27)
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, which is normal to na. The last non-zero component of extrsinc curvature is

Kττ = −τanb∇aτ
b = −nc(τ̇ c + Γcabτ

aτ b)

= εȧ
[
ẗ+

h′

h
ṫȧ
]
− εṫ

[
ä+

(h′
2

)
hṫ2 −

(h′
2

) ȧ2

h

]
=
ä+ 1

2
h′

εhṫ

(5.28)

Using the above relations, the Israel equations now yield

1

2a
{̂εhṫ}̂ =

4πGn

n− 2
(σ + ρ)

1

2

{̂ ä+ 1
2
h′

εhṫ

}̂
=

4πGn

n− 2

[
σ − (n− 3)ρ− (n− 2)p

] (5.29)

We refer to the Gauss-Codazzi equations, with the understanding that it is valid on both

sides of the brane, and G±ab = −Λ±n g
±
ab. Now, taking the difference between the ‘+’ and

‘-’ equations,

−∆Λn = 1
2

(
{̂K}̂∆K − {̂Kab}̂∆Kab

)
(5.30)

Plugging in the values for extrinsic curvature, Eqn.(5.28) into the above relation

−∆Λn = 4πGn(n− 2)(σ − ρ)∆[εhṫ]
a

+ 4πGn(σ + ρ)

[
ä+ 1

2
h′

εhṫ

]
(5.31)

Finally, after some tedious algebra (which is omitted here), simplifying Eqns.(5.29) and

(??), we arrive at these expressions for the scale factor.

ȧ2 = −1
2
{̂h}̂+

[
4πGn
n−2

(σ + ρ)a

]2

+

[
(n−2)∆h
16πGn

(σ + ρ)a

]2

(5.32)
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ä =− 1

4
{̂h′}̂ −

(4πGn

n− 2

)2

(σ + ρ)
[
− σ + (n− 3)ρ+ (n− 2)p

]
a

+

(
(n− 2)∆h

16πGn(σ + ρ)a

)2[−σ + (n− 3)ρ+ (n− 2)p

(σ + ρ)a

]
+

(
(n− 2)

16πGn(σ + ρ)a

)2

∆h∆h′

(5.33)

Note, for the above two equations to be consistent, we require the conservation of

energy to hold on the brane:

ρ̇ = −(n− 2)
ȧ

a
(ρ+ p) (5.34)

Here, we have seen the bulk based approach in action. We found the cosmological

evolution equations Eqn.(5.32) and (5.33) for the brane without assuming the Z2 sym-

metry. This is particularly useful when considering braneworlds with differing cosmo-

logical constants on either side of the brane. Also, by considering general values of h,

we allow the bulk Weyl tensor on either side to be zero.
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Chapter 6

Braneworld Black Holes

The linearised gravity result for an isolated mass and the brane cosmology metric sug-

gest a somewhat deeper importance to braneworlds and black holes [10]. The New-

tonian potential corrections coincide exactly with the 1-loop corrections to the gravi-

ton progagator [19]. The cosmological dark radiation term in the brane Friedmann

equation corresponds to the energy density of a conformal field theory at the Hawking

temperature of a black hole [16]. These clues, and analogies with lower dimensional

branes, have led to Emparan, Fabbri and Kaloper’s black hole holographic conjecture

[70], which states that if we can find a classical solution to the RS model, then the

braneworld can be interpreted as a 4D quantum corrected spacetime. If we consid-

ered black holes, then we end up with a quantum corrected black hole. It is crucial

in the braneworld context to find black hole solutions, both to shed further light on

braneworld gravity, and also, observations of black holes might provide an exciting

means of testing possible extra dimensions.

Ideally, it would be very useful if we had a full 5D solution describing a black hole

localised on the brane. A slicing of a 5D accelerating black hole metric, known as the C-

metric [71] would give a solution. This is simply due to the Poincaré coordinate system

used to chart the brane, is from the bulk perspective, an accelerating patch covering

a part of AdS space (think Rindler coordinates in Minkowski spacetime). Therefore, a
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black hole must also be accelerating in order to ‘keep up’ with the brane and remain

localised on it.

This chapter will begin by discussing the general system of equations for this problem,

followed by an analysis of Chamblin, Hawking and Reall’s paper on braneworld black

holes, it being the first attempt to find black holes on a RS brane. We will also look into

some stability analysis of this solution. Following which, several different solutions,

making various assumptions are also presented, and finally a brief look into the approx-

imate methods to solving braneworld black holes, using the brane and bulk approaches.

6.1 Basic Equations

The general static, spherically symmetric metric on the brane can be written as

ds2 = −A2(r)dt2 +B2(r)dr2 + C2(r)dΩ2
II (6.1)

where dΩ2
II = dθ2 +sin2θdφ2 is the metric of the unit 2-sphere. As we saw previously, we

cannot naively connect spherical symmetry with staticity and apply Birkhoff’s theorem.

Note, there appears to be no consensus on whether gravitational collapse on a brane

results in a brane results in the formation of a black hole that is time-dependent or static

[72; 73; 74; 75; 76]. By making the assumption that the metric is static, we adopt a

viewpoint that there exists a 5D solution analogous to the 4D C-metric, possessing a

timelike Killing vector, implying it can be sliced in a manner as to create a static 4D

braneworld black hole.

The metric in (6.1) has a feature that we may enjoy, which is that we can choose our

radial coordinate r, quite arbitrarily. Say we wanted to choose the area gauge, where

C = r as the area surrounding the black hole behaves in the usual way: A(r) = 4πr2.

This is a subtle argument which will not be dealt with here but essentially one should
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not make the restrictive choice of C = r as it runs into complications with energy con-

ditions and turning points in the area function.

The vacuum brane field equations from Eqn.(2.70), with Λ4 = 0 are

Gµν = −ψµν (6.2)

where ψµ
µ = ∇µψ

µν = ψ[µν] = 0. While ψµν is unknown from the brane point of

view, it can generally be decomposed with respect to a 4-velocity as in Eqn.(4.5). Static

symmetry implies pµ = 0 and Pµν = P (rµrν − 1
3
hµν where rµ is a radial vector, further

reducing to

−ψµν = U(r)
(
uµuν + 1

3
hµν

)
+ P (r)

(
rµrν − 1

3
hµν

)
(6.3)

In an inertial frame uµ = 1
A

(1, 0, 0, 0), then Eqn.(6.2) simplifies to:

Gt
t = − 1

C2
+

1

B2

[
2
C ′′

C
− 2

B′C ′

BC
+
C ′2

C2

]
= −U

Gt
t = − 1

C2
+

1

B2

[
2
A′C ′

AC
+
C ′2

C2

]
=

1

3
(U + 2P )

Gθ
θ = Gφ

φ =
1

B2

[C ′′
C

+
A′′

A
+
A′C ′

AC
− A′B′

AB
− B′C ′

BC

]
=

1

3
(U − P )

(6.4)

where A′ = ∂A
∂r

. A useful alternative in this situation is the conservation of Weyl ‘angular

momentum’:

(U + 2P )′ + 2A
′

A
(2U + P ) + 6P C′

C
= 0 (6.5)

The above system of equations contains 3 independent equations with 4 unknowns.

This implies that we have to make an assumption about ψµν or gµν to close the system

and obtain a black hole solution.
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6.2 CHR Black Hole

Chamblin, Hawking and Reall (CHR) [41] were the first to attempt to find a black hole

on a RS brane, by replacing the Minkowski metric in Eqn.(3.45) with the Schwarzschild

metric. Note, we can replace ηµν with any Ricci-flat metric. (Refer to [77] for further

details on Ricci flat branes). The CHR metric looks like:

ds2 = a2(z)

[(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dΩ2
II

]
− dz2 (6.6)

This is the only known exact solution that looks like a black hole from the brane point of

view. However, it does not correspond to our expectations of brane black holes. If mat-

ter is confined to a brane, one typically expects any gravitational effects to be localised

near the brane. Intuitively, even for a collapsed star, we expect that while the horizon

might extend into the bulk, it should ideally be localised near the brane the singularity

should ‘not’ extend out into the bulk. This solution has ψµν = 0, so the brane geometry

receives no corrections from bulk gravitational effects. Each 4D slice of y = constant,

has the induced geometry of the Schwarzschild metric and we see a line singularity at

r = 0, extending all along z. The CHR black string extends all the way out to the AdS

horizon, and here the black hole horizon becomes singular.

Consider the 5D Riemann tensor

RabcdR
abcd = 40

l2
+ 48M2

r6
e4|z|/l (6.7)

which also shows the unsatisfactory behaviour that as y → ∞, the curvature diverges!

There is however, another problem with the CHR black string - it suffers from a classical

instability [78].
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6.2.1 Gregory-Laflamme Instability

Black string instabilities were first discovered in vaccuum, [79; 80] for the KK black

string:

ds2 =
(

1− 2M
r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dΩ2
II − dz2 (6.8)

This scenario has a cylindrical event horizon with an entropy 4πGNM
2. Assuming a KK

compactification scale of LKK ,a 5D black hole with the same mass as the black string

has an entropy 8
√

2πLKKGNM
3/2/3

√
3. Therefore, for small enough masses (relative

to the compactification scale), a black string has lower entropy than a 5D black hole,

implying that the string should be perturbatively or nonperturbatively unstable.

The existence of the instability is confirmed via the Lichnerowicz equation

∇2hab + 2Rcd
abhcd = 0 (6.9)

To show an unstable solution, we can find any instability and a simple s-mode has the

form [10]

hab = eiµzeΩt



H tt(h) h(r) 0 0 0

h Hrr(h) 0 0 0

0 0 K(h) 0 0

0 0 0 K/ sin θ2 0

0 0 0 0 0


(6.10)

This is a physical mode, since any gauge degree of freedom will have to be 4D, thus

satisfying a massless 4D Lichnerowicz equation, whereas this mode satisfies a massive

4D Lichnerowicz equation. This causes the horizon to ripple as seen in Fig.(6.1)
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Figure 6.1: The event horizon of a perturbed AdS black string. As seen in [78].

For the CHR black string, the presence of the negative bulk cosmological constant could

change some features of this analysis, but ultimately, the crucial feature of the black

string instability is that is a purely 4D massive Transverse Trace Free mode a.k.a. the RS

gauge is satisfied. Working out the perturbations for the CHR black string background:

((
∇(4)

)2
hµν + 2R

(4)
µνλρh

λρ
)
−
(
e−4|z|/l(e2|z|/lhµν

)′)′
= 0 (6.11)

This simply means that we can take the standard KK instability and substitute the appro-

priate massive z-independent eigenfunction: hµν(z) = χµνum(z), such that χµν satisfies

(
∆

(4)
L +m2

)
χµν = 0 (6.12)
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where ∆
(4)
L is the 4D Schwarzschild-Lichnerowicz operator. Basically, we have the same

sort of 4D instability, but a different z-dependence appropriate to the RS background.

This instability causes ripples with ever-increasing frequency towards the AdS the hori-

zon, like in the black string case. We see this below in Fig.(6.2).

Figure 6.2: The event horizon of a perturbed RS black string. The brane is at the central
cusp. As seen in [78].

We could introduce a second brane to cut off the black string instability and mitigate the

issue of curvature divergence. It has been shown that the back-reaction of bulk gravity

waves onto the brane results in observational signatures that are distinctive from stan-

dard GR [81].
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6.3 Solutions: Standard Examples

6.3.1 The linearised weak field metric

The linearised weak field metric for a static source on the brane was derived in Sec-

tion(4.2). In the area gauge, the metric is as follows:

ds2 = −
(

1− 2M

r
− 4Ml2

3r3

)
dt2 +

(
1− 2M

r
− 2Ml2

r3

)−1

dr2 + r2dΩ2
II

(6.13)

Due to the trace free property of ψµν , we require a valid solution to have a vanishing

Ricci scalar. The Ricci scalar for the above metric is

R = 2l2M2

[
− 42l2r3 − 9r5 + 4M

(
8l4 + 18l2r2 + 3r4

)]
r5
(

4l2M + 6Mr2 − 3r3
)2 (6.14)

Since Eqn.(6.13) is derived in the linearised approximation (neglects terms of order

M2 or higher), we expect R = 0 upto O(M). However, Eqn.(6.14) shows us that R

does not vanish beyond linear order, implying that the metric in (6.13) can only be a

solution to the field equations in the linearised far-field limit. It is not a valid solution

for the entire horizon exterior of a braneworld black hole. The solution is obtained

by solving the 5D linearised equations, assuming only the bulk is asymptotically AdS

and the perturbations are bounded at the AdS horizon. Therefore, one would expect a

metric for a static, spherically symmetric black hole on the brane should be expected to

have this form.

The Weyl tensor components for this metric are:

ψt
t = −4Ml2

r5

ψr
r = −2Ml2

r5

ψφ
φ = ψθ

θ =
3Ml2

r5

(6.15)
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or, in terms of U and P in Eqn.(6.3)

U = −4
5
P = −4Ml2

r5
(6.16)

Here, terms are calculated to linear order in M, consistent with the linearised approx-

imation used in deriving Eqn.(6.13). We note that non-zero ψµν is responsible for the

Schwarzschild metric corrections in (6.13). Therefore, a correct black holes solution

should also have non-zero ψµν , if it is to agree with (6.13) in the weak field limit.

6.3.2 The tidal Reissner-Nordström black hole

The Weyl term ψµν being antisymmetric and trace-free, has the same algebraic sym-

metries as the stress-energy tensor of GR, allowing us to make a formal correspon-

dence −ψµν ↔ T emµν . Therefore, Einstein-Maxwell solutions in GR actually result in

vacuum braneworld solutions, which Dadhich et al.[82] used to write the tidal Reissner-

Nordström (tidal RN) solution:

ds2 = −
(

1− 2M

r
+
Q

r2

)
dt2 +

(
1− 2M

r
+
Q

r2

)−1

dr2 + r2dΩ2
II

(6.17)

This metric also solves the general solution to the brane field equations using an asump-

tion that A(r) = 1/B(r).

The solution Eqn.(6.17) has the form of the Reissner-Nordström solution of GR, but we

do not have an electric field on the brane. Q is a tidal charge parameter arising from

the gravitational field of the bulk. Unlike GR, Q can be both positive and negative.

For the positive case, the tidal RN metric has qualitatively the same properties as RN

geometry: two horizons, both of which lie inside the Schwarzschild horizon, and the
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singularity at r = 0 is timelike. In the case of Q < 0, we have one horizon lying outside

the Schwarzschild horizon and you have a spacelike singularity at the centre.

The negative Q is the more natural case as it makes a positive contribution to the grav-

itational potential, thereby strengthening the gravitational field. This is expected as the

tidal charge arises from the source mass M on the brane [82].

The Weyl tensor for this solution is

ψt
t = ψr

r = ψφ
φ = ψθ

θ =
Q

r4
(6.18)

or in terms of U and P in Eqn.(6.3)

U = −1
2
P = Q

r4
(6.19)

The tidal-RN metric does not satisfy the weak limit Eqn.(6.13), therefore cannot de-

scribe the entire spacetime around a braneworld black hole. Let us, however,briefly

look into this solutions when considering small black holes on the brane. For a black

hole that has a horizon size much smaller than the AdS length scale, the AdS curvature

has very little effect on the geometry. This leaves behind a spacetime with an induced

metric of 5D Schwarzschild-Tangherlini metric [83]:

ds2 = −
(
1− r2h

r2

)
dt2 +

(
1− r2h

r2

)−1
dr2 + r2dΩ2

II (6.20)

Therefore, the tidal-RN metric displays the correct 5D behaviour of gravity at short

distances, where the Q/r2 term dominates and the metric approximates the 5D in-

duced Schwarzschild-Tangherlini metric. If one looks carefully, the 5D Schwarzschild-

Tangherlini metric is a special case of the tidal-RN metric with M = 0 and Q = −r2
h.

Therefore, the tidal-RN metric could be a good approximation for the strong field regime

for small black holes.
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6.3.3 Black Strings

Another common example, but this was covered in Section(6.2) when discussing the

CHR Black Hole.

6.3.4 Solutions assuming a metric

The above approaches to finding various braneworld black hole solutions were all

guided by the form of the Schwarzschild metric in standard GR. So, the obvious next

attempt would be to find braneworld black hole solutions to fix A(r) or B(r) to take

a Schwarzschild form and then attempt to solve the field equations for the other. This

leads to solutions of the form [84]:

ds2 = −
[(

1 + ε
)√

1− 2M
r
− ε
]2

dt2 +
(

1− 2M
r

)−1

dr2 + r2dΩ2
II (6.21)

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 3M

2r

)(
(1− 2M

r

)(
(1− r0

r

)dr2 + r2dΩ2
II (6.22)

Refer to [84] for a detailed discussion on the properties of these equations. It is im-

portant to note that, they do not satisfy the far-field limit, hence cannot be considered

satisfactory black hole solutions.
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Chapter 7

Conclusion

We have been on a long and meandering journey through braneworlds, and can’t but

wonder whether these things exist in Nature or not. It would be nice to answer whether

we live on a brane or not? The paper by A.Lukas et al. [12] is a very interesting and

seminal paper on our universe as a domain wall and how it fits into brane models. It

is unlikely that the RS models can accurately describe the structure of our universe,

they are incredible ‘toy models’ to gain further insights. RS models do not account

for supersymmetry, which although yet to be discovered, is commonly thought to ex-

ist. Furthermore, M theory posits additional dimensions which we have to accept if we

choose to go ahead with M theory. Despite all this, the RS models while being simple,

have provided new avenues for research into areas like alternatives to compactification,

braneworld holography and so on.

Chapter 1, we set the stage for extra dimensions and models like the Randall-Sundrum

model by taking a trip down memory lane, seeing how the study of extra dimensions

has evolved. Chapter 2 dives into some mathematical tools needed to understand and

set up braneworlds, ideas such as Israel’s junction conditions and the Gauss-Codazzi

equations, which we derived. We finish with a detailed derivation of the effective EFE

on the brane, by using the Gauss-Codazzi equations. This did give us a Weyl term

which is non-local, causing the equations to not be closed. Chapter 3 introduced the
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Randall-Sundrum models and investigated their behaviour, including subcritical and su-

percritical branes.

Chapter 4 is where we dived deeper into braneworld gravity, presenting a detailed

setup of the framework of linearised GR. We also showed how we have covered the

non-perturbative approach to braneworld gravity and how that is used to solve various

problems. Chapter 5, we discussed cosmology on the brane. The most intriguing fea-

ture was the quadratic energy-momentum terms that appeared in the FLRW equations.

We can usually neglect the effect these terms play at low density, but they become im-

portant if the universe was very small at some time. It is also interesting to mention

that certain braneworld cosmology setups do not possess a Big Bang singularity. Finally,

Chapter 6 was where we discussed some static, spherically symmetric braneworld Black

Hole solutions solutions. Ideally, a full 5D solution describing a black hole localised on

the brane would be desirable. Such a solution would be given by a suitable slicing of

the 5D C-metric, however this has not yet been found and we are unsure of its very

existence. We also looked into CHR black holes and the associated instability scenarios.

The story with braneworlds goes on and on. Braneworld holography is an area that

can warrant its own dissertation; rather for that matter any of the topics I touched

upon. There is numerous work being done on holography, black holes, cosmology, lo-

calisation techniques, the list goes on. In contemporary physics, the most common link

made with extra dimensions are theories of quantum gravity and unification, especially

string theory. Braneworlds can and will provide useful insights to these more fundamen-

tal theories, and open up an exciting prospect of testing these ideas via astrophysical

means. The existence of extra dimensions is surely a tantalising possibility, and if ever

confirmed, would surely be one of the greatest triumps in physics.
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