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Abstract

This dissertation considers theories of spin-2 fields propagating in flat

spacetime with Diff and TDiff gauge symmetry [3]. Non-linear ac-

tion terms associated with self-interactions are explored. These are

obtained by coupling the fields with their own energy-momentum, i.e.

the free field equation of motion is sourced by the energy-momentum

tensor. It is shown that, depending on the starting point, this gives

rise to theories of gravity invariant under general coordinate trans-

formations, namely GR, and unimodular coord. transf.. The ques-

tion whether this principle comprises a non-geometric derivation of

Einstein’s theory, in particular whether this leads uniquely to GR, is

considered. It is also shown that including a mass term and a kinetic

term with Diff symmetry, dRGT massive gravity [4, 5] (with the set

of free parameters partially fixed) can be generated.
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1 Introduction

If one were to open a popular textbook on Einstein’s Theory of General Relativity (GR) [1]

one would be likely to find claims such as the following (from [6], p.436):

Just as one can “descend” from GR to linearized theory by linearizing about flat spacetime

(...), so one can “bootstrap” one’s way back up from linearized theory to general relativity by

imposing consistency between the linearized field equations and the equations of motion, or,

equivalently, by asking about: (1) the stress-energy carried by the linearized gravitational field

hµν; (2) the influence of this stress-energy acting as a source for corrections h
(1)
µν to the field;

(3) the stress-energy carried by the corrections h
(1)
µν ; (4) the influence of this stress-energy

acting as a source for corrections h
(2)
µν to the corrections h

(1)
µν ; (5) the stress-energy carried by

the corrections to the corrections; and so on.

The reference book by Misner, Thorne and Wheeler brings this up as an “alternative way

to derive general relativity (from spin-2 viewpoint)” aside from “Einstein derivation (from

geometric viewpoint)”. As is well-known the lowest-order term in a (functional1) Taylor

expansion of the Einstein-Hilbert action SEH[g] around the flat Minkowski metric (gµν =

ηµν + hµν), or equivalently the linear approximation to Einstein’s field equation, coincides

with Fierz-Pauli theory of massless spin-2 in flat spacetime [7]. Also in [6] (p. 424) there’s a

summary of Deser’s 1970 work [8], one of the most relevant papers concerning the derivation

of GR by a process like the one described in the previous paragraph.

These claims on textbooks are part of a general belief

(i) on the possibility of obtaining full (non-linear) GR by coupling a Fierz-Pauli (FP)

field/graviton (consistently, as in the quotation above) to the total energy-momentum

tensor, while only using “standard concepts in Lorentz invariant field theory” and with-

holding “any geometrical assumptions”;

(ii) and on this process leading uniquely to Einstein’s theory

as stated in [9], where it is argued that the first point is false (it is not possible to obtain

the Einstein-Hilbert action starting from the standard graviton action and iterating ...) and

hence the second too. In [10], this is referenced as “Padmanabhan’s 2008 thought-provoking

analysis” which “raised some concerns that are having resonance in the community”, including

a reply by Deser [11] where he stands up for his non-geometric derivation [8] of GR (...) as the

unique consistent self-interacting system, extending the initial free massless spin-2. The piece

1In the rest of the text we’ll refer to this simply by “Taylor expansion”.
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of conventional wisdom regarding this topic that is undoubtedly wrong is it being already well

understood.

This iterative self-coupling process has been called Gupta Program after the 1954 paper

[12]. Along with Gupta, behind some of the first attempts at deriving GR non-geometrically

was Robert Kraichnan who worked on the topic for his 1946-47 Bachelor’s thesis but only in

1955 published [13]. Presumably unaware of Gupta’s and Kraichnan’s work, Feynman also

contributed via his 1962-63 Lectures on Gravitation [14]. One of the few times Deser agrees

with Padmanabhan in [11] concerns the assumptions the early derivations feed on since until

[8] none performed the iterations all the way (they were replaced by such statements as “what

else could it sum to?” and “the sum must be general covariant, ergo GR”, quoting Deser).

Some authors decided to follow a distinct path towards GR starting with FP spin-2 theory;

like Wald [15] and Fang [16], who used the fact that diffeomorphism invariance is the only

nonlinear deformation of the gauge symmetry in the linear theory ([17]) and Weinberg [18],

who focused on graviton-graviton scattering amplitudes.

The present work is minimalist when it comes to analise, draw comparisons or criticise

non-geometric derivations of GR like the aforementioned ones. We choose to do it briefly

throughout the body of this dissertation but some remarks are left to be discussed in the

conclusion. Nevertheless we would like to make a comment on [9] that, to the best of our

knowledge, has not been made in published work. In p. 11, in order to obtain the “Γ2 action”

(that differs from the Einstein-Hilbert action by a surface term), Padmanabhan states: We

merely use the fact that the analysis leading to Eq. (41) was completely independent of the

form of A0 as well as the nature of the fields φA; however δA1, δA2, etc, was integrated in

p. 10 under the assumption that φA is not hab (or, equivalently, A0 doesn’t depend on hab).

Hence we disregard Padmanabhan’s remarks involving the object Sab.

The GR bootstrap stands as the motivation for this work and its backbone. Nonethe-

less, we incorporate massive theories and actions invariant under Unimodular Coordinate

Transformations (UCTs)2, in opposition to SEH which is invariant under General Coordinate

Transformations (GCTs) - hence the name “Unimodular Gravity”. Many authors une use

this to refer to theories like the one presented by Einstein [2] (three years after GR) where

the determinant of the metric either is non-dinamical from the start or it can be gauge-fixed.

• We start in section 2.1 by exploring two routes (that we call “covariantization” and “U-

covariantization”) towards field theories in non-inertial coordinates that are dinamically

equivalent to a certain special-relativistic field theory (SRFT);

2which correspond to scalar-tensor theories.
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• Section 2.2 is inspired by [3], where the most general Lorentz invariant Lagrangian for

a massless graviton is considered and it’s shown that, to avoid ghosts and classical

instabilities, TDiff3 gauge invariance is necessary (but not sufficient). We then start

with the entire TDiff invariant family of kinetic action terms for a field hab of the FP

type and derive the associated Gauge/Bianchi Identities. Even though there are two

possible enhancements of this gauge symmetry, we only focus on the one that we already

know from FP theory. In section 2.3, we make our hab field interact with other fields

and examine how they can couple;

• Chapter 3 is entirely dedicated to the object known as the Energy-Momentum Tensor

(EMT) and modifications of it, while exploring the connection between these and Gauge/Bianchi

Identities;

• In section 4.1 we start by completing section 2.3 and then in 4.2 we apply in concrete

terms the iterative procedure associated with self-coupling the FP hab field (the rest of

FP-type theories, i.e. the ones with TDiff gauge invariance, are left for later);

• We have been exalting the bootstrap side of deriving GR non-geometrically but note

that this implies an approach to GR much closer to a particle physicist view of Einstein’s

theory (see the nice introduction in [24] for some historical context). In section 4.3, we

introduce a formulation of GR that employs two connections (as presented in [25]) such

that we call it “Bi-connection GR”. This serves to convince the reader that what we

have obtained in the previous section is indeed the Einstein-Hilbert action;

• In section 4.4, we perform a reverse engineering from a metric theory of gravity to find

out how the gauge symmetry in the linear FP theory and its coupling to the EMT

arise. This is replicated in section 5.1 starting with a variation of the Einstein-Hilbert

action where the lagrangian is multiplied by a smooth function of the determinant of

the metric, entailing invariance under UCTs;

• The iterative procedure for TDiff theories of propagating spin-2 gravitons (and a scalar)

is carried out in section 5.2. Since we ended up discussing mass terms in theories with

TDiff invariant kinetic terms and self-coupling the massive spin-2 field accordingly, we

decided to address FP theory with arbitrary mass terms, in section 5.3;

• The approach we took in the previous section, failed to avoid ghosts. In order to over-

3The author views transverse Fierz-Pauli as a much better designation when compared with the term

behind TDiff: transverse diffeomorphism (which is more accurately employed in the context of page 8);

however the diminuitives TDiff and Diff are useful and are already spread in the literature.
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come this, we try out representing the background spacetime by a tetrad/vielbein (from

section 2.1 point of view, this corresponds to a “partial” covariantization). In this

framework we expect that self-coupling would lead to a theory of, what we call, “tetrad

gravity” equivalent to GR. Sections 6.1, 6.2 and 6.3 are analogous to 3.2, 4.4 and 5.3,

respectively.

We intend the body of the dissertation, that we’ve just summarised, to be as self-contained

as possible. Even though at the end of it the reader may be convinced of (ii) from p. 1, we

advise to wait for the conclusion.

There are some papers co-authored by Deser that expand his 1970 work and may be of in-

terest for the reader - [26–29] - and there is also [30], more recent, where like in the present work

TDiff is considered (though their approach to self-coupling differs from ours). Conventions

for the epsilon symbol ε̃ and covariant derivatives are those of textbook [31]. Symmetrization

and antisymmetrization are performed with unit weight.4

4Also, in what follows, we tend to use italic and quotation marks for terms coined by others and by us,

respectively.
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2 Theories with FP-type field

2.1 Special-relativistic field theories

The quantity of action (traditionally denoted by the letter “S”, following a paper by Hamilton

[19]) is one of the most important elements in modern theoretical Physics. This text makes no

exception (on the contrary) as we will be continuously dealing with field theories. By action we

mean a functional of classical fields obtained by integrating a local quantity depending on the

fields and its derivatives - the lagrangian (density) - over spacetime (manifold). The dynamics

of a classical field theory are given by a set of equations of motion (EOMs) determined by

requiring stationarity5 of the action under arbitrary variations of each so-called “dynamical”

field.

Consider a SRFT given by

A [η;h] =

∫
dDxL [ηab;hab, ∂ch

ab] (2.1)

(to distinguish the actions associated with SRFTs we’ll use not “S” but A ). Its dynamical

fields hab(x) live on a flat spacetime of dimension D with metric

ηab(x) = Diag(−1, 1, 1, 1, ...) (2.2)

but we will always use the inverse metric ηab as our fundamental variable. One should not

assume A to be invariant under General Coordinate Transformations (GCTs), that’s why

when we introduced hab we indicated a particular set of coordinates6. The informations that

x ≡ xa is special is conveyed in the fact that η is always assumed to be given by (2.2) such

that this set is called inertial coordinates.

When indicating functional dependence, we’ll not write the indices on the components of

the fields. On the other hand, lagrangians’ variables will always hold them explicit. In plain

text, we’ll often ommit indices.

We restrict ourselves to SRFTs where hab (= hba) is a tensorial representation of SO(1, D−
1), the group of (global) Lorentz Transformations. The action A is invariant under the

coordinate transformations belonging to the Poincaré group (Lorentz Group + translations).

5The boundary conditions for the “stationary action principle” set these variations to vanish on the bound-

ary (or at infinity).
6We’ll keep doing this throughout the text but for a different reason. Later we’ll be dealing with tensors

such that to write its components we must have chosen an atlas.
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These leave ηab invariant (they are the isometries of Minkowski space) such that our special-

relativistic metric is fixed. In this section, we focus on how we can generalize the action and

its variables from inertial to curvilinear coordinates.

Under Poincaré transformations, a Lorentz tensor with two upper indices transforms in the

following way:

hab(x)→ h′
ab

(x′) = Λa
cΛ

b
dh

cd(x) (2.3)

where

x′
a

= Λa
bx
b − ta with Λ ∈ SO(1, 3) (det(Λa

b) ≡ |Λ|= 1) (2.4)

and Λa
b and ta are constants over spacetime. Assuming the transformations are infinitesimal:

δ̃hab ≡ h′
ab

(x′)− hab(x) = 2hc(a(x)εb)c +O(ε2) (2.5)

since Λa
c = δac + εac with εac = −ε ac . Writing

Λa
cx
c = xa + εacx

c ≡ xa − ε′a(x) (2.6)

we see that εab = −∂bε′a(x). Also, writing

xa = x′
a

+ ε′
a
(x) + ta ≡x′a + εa(x)

=x′
a

+ εa(x′) +O(ε2) ,
(2.7)

we have

δhab(x′) = εc(x′)∂ch
ab(x′)− 2hc(a(x′)∂cε

b)(x′) +O(ε2) (2.8)

where δhab(x) ≡ h′ab(x) − hab(x). To account for the fact that the Lorentz and translation

parameters εab and ta, respectively, are infinitesimal is enough for εa to also be it. After

discarting quadratic and higher order terms, we have

δhab = εc∂ch
ab − 2hc(a∂cε

b) (2.9)

where the parameter ε is uniquely defined by

a) �εa = 0

b) ∂aε
a = 0

(2.10)

Writing ε as a polynomial in x, a) forces it to be of linear order at most and then b) leads,

according to (2.6), to the antisymmetry of the coefficient of the linear order term. Looking at

condition b) independently, it forces the transformation to be “unimodular”:∣∣∣∣∂x′a∂xb

∣∣∣∣ =

∣∣∣∣∂(xa − εa)
∂xb

∣∣∣∣ = |δab − ∂bεa| = 1− δba (∂bε
a) = 1 (2.11)
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From (2.9), one sees that the Poincaré group is a subgroup of the group of GCTs7 where

the parameter ε ≡ ξ is not constrained by (2.10). Now, we can fulfil our goal of having a

representation of a group of coordinate transformations that take us to non-inertial coordin-

ates. We have only to choose, for each object in the action, representations of the GCTs

group for which our previous representation of the Poincaré group is a subrepresentation.

This way, we’re converting “Lorentz tensors” into “spacetime tensors” (the usual tensors, i.e.

w.r.t GCTs).

The relaxing of condition a) makes the transformations local. Hence if the action in arbit-

rary coordinates is invariant under GCTs, choosing inertial coordinates will just ammount to

fix a gauge such that we retrieve our SRFT. However, since the Minkovski metric obeys the

flatness requirement Ra
bcd = 0 (valid for any coordinate system), choosing inertial coordin-

ates by performing a GCT will only be possible if ḡ (the spacetime tensor obtained from the

Lorentz tensor η according to the previous paragraph) is already flat.

For the action to be invariant under GCTs, all “spacetime indices” (that before were

“Lorentz’s”) must be contracted. However this is not enough as there’s an essential part

of our SRFT’s action - the volume element dDx - that while transforming as a scalar under

Lorentz Transformations, under GCTs it transforms in a different way from tensors:

dDx→ dDx′ = dDx

∣∣∣∣∂x′a∂xb

∣∣∣∣
= dDx (1− ∂aξa)⇒ δdDx = −dDx ∂aξa

(2.13)

The volume element transforms like what is called a scalar density of weight ω = −1. Let’s say

that it belongs to the weight-ω (n,m)-tensor density representation of GCTs8 where n = 0 = m

and ω = −1, such that our spacetime tensors are weight-0 tensor densities. For the action

to be invariant under this representation, the lagrangian must be a weight-1 scalar density.

By assigning a weight to each action variable, this can be achieved in numerous ways and

7This was actually obvious from the fact that Poincaré transformations are coordinate transformations:

h′
ab

(x′) = Λa
cΛ

b
dh

cd(x) can be written as

h′
ab

(x′) =
∂x′

a

∂xc
∂x′

b

∂xd
hcd(x) (2.12)

with x′ as given by (2.4).
8schematically (with TD standing for tensor density):

{weight-ω (n,m)-TD rep.} = {weight-0 (n,m)-TD rep.} ⊗ {weight-ω (0,0)-TD rep.}

≡ {(n,m)-“tensor rep.”} ⊗ {weight-ω “density rep.”}
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this time we don’t have any orientation since our SRFT is in principle only invariant under

density subrepresentations (c.f. footnote 4) which are trivial (and “all representations have

a trivial subrepresentation”). However, any weight-ω (n,m)-tensor density can be written as

the product of a (n,m)-tensor and the ω/2 power of the metric’s determinant (modulus). We

then choose to convert our volume element into a weight-0 scalar

dDx→ dDx
√
−|ḡ| (2.14)

such that dDx is recovered when ḡ = η and mantain every action variable as a weight-0

tensor. Such a action is invariant under GCTs. (Something similar to what we’ve done here

is employed when finding a representation of the GCTs group for action variables that involve

a derivative. For example, ∂ch
ab is not a spacetime tensor so we build a connection using

the metric and its derivatives - the Levi-Civita connection9 - and use it to obtain a covariant

derivative such that ∇̄ch
ab is a spacetime tensor. One recovers ∂ch

ab when ḡ = η). The theory

was “covariantized”! (In this text, we generally say something is covariant when it transforms

in a representation of the group of GCTs).

We now address the fact that the Poincaré group is also a subgroup of the group of UCTs,

also know as Transverse Diffeomorphisms, such that ε = ξ is constrained by b) in (2.10).

Representations of this group also take us to non-inertial coordinates:

η′
ab

= ηab + ξc∂cη
ab − 2ηc(a∂cξ

b)

⇒ δ|η|= −|η|ηabδηab = −|η|ξc∂cD + 2|η|∂cξc = 0
(2.15)

where ∂a ≡ ηac∂c. The fact that the any metric’s determinant is invariant under UCTs could

also be seen from the fact that this transforms under a GCT like a scalar density but the only

density representation that is also a representation of UCTs is the trivial one, according to

(2.11) (under UCTs, a (n,m)-tensor density transforms like a (n,m)-tensor and we call it an

U-tensor). Like the flatness requirement for our metric in non-inertial coordinates ḡ, that sill

holds here, we must impose that |ḡ|= |η|= −1 if we want to retrieve our SRFT by performing

a UCT that take us to inertial coordinates (we write ḡ instead of ḡ to indicate that we’re

using unimodular coordinates [32]).

Hence, employing representations of this group, we cannot have an action in completely

arbitrary coordinates but in unimodular (otherwise arbitrary) coordinates which is enough for

our purposes. This time, to have a generalization of our SRFT action that is invariant under

UCTs, is enough for all “spacetime indices” (that before were “Lorentz’s”) to be contracted.

9Ambiguities were faced by choosing to require it to be torsion free and metric compatible.
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In converting derivative indices, the covariant derivative ∇̄ must still be employed with a

Levi-Civita connection Γ[ḡ]. In this case, we say that the theory was “U-covariantized” (when

we use the term SRFT we’re implying inertial coordinates are employed, otherwise we’ll refer

to as a covariantized or U-covariantized SRFT). Finally, note that

Γb
ba =

∂a
√
−|ḡ|√
−|ḡ|

= 0 (2.16)

and this implies ∇̄aξ
a = ∂aξ

a + Γa
abξ

b = ∂aξ
a = 0.

2.2 TDiff and Diff gauge symmetries

Consider a specific expression for (2.1):

A =

∫
dDx

[
−1

4
∂ahbc∂

ahbc +
1

2
∂ahbc∂

bhac + a
−1

2
∂ah

ab∂bh+ b
1

4
∂ah∂

ah

]
(2.17)

where a and b are a couple of arbitrary real parameters. There is another possible way to

contract the derivatives of h: ∂bhbc∂ah
ac; but this would only differ from ∂ahbc∂

bhac by a total

derivative - keep in mind actions are defined up to terms that don’t contribute to the EOMs

such as surface terms (ST ). The action A is gauge invariant under transformation

hab → hab + δhab = hab − 2∂(aξ̂b) (2.18)

with the parameter constrained by

∂aξ̂
a = 0 10 (2.19)

This, often refered in the literature as TDiff symmetry, means that the variation of the action

under this gauge transformation,

δA =

∫
dDx

δA

δhab
δhab + ST , (2.20)

is null up to ST . Substituting δhab according to (2.18) and integrating by parts, one obtains

δA = 2

∫
dDx ξ̂b∂a

δA

δhab
+ ST (2.21)

The constrained gauge parameter can be replaced by an arbitrary parameter Fdb: ξ̂b = ∂dF [db].

Then, after integrating again by parts, one has

δA = −2

∫
dDxF [db]∂d∂

a δA

δhab
+ ST (2.22)

10⇒ ηabδh
ab = 0

9



Taking into account gauge invariance of the action, we then make all surface terms vanish by

using appropriate boundary conditions for Fdj. Taking into account its arbitrariness, we have

the Gauge/Bianchi (off-shell) Identity

∂[d∂
a δA

δhb]a
= 0⇒ ∂a

δA

δhab
= ∂bρ (2.23)

where ρ is undetermined and corresponds to the scalar degree of freedom (DOF) that was

mentioned in the introduction. The discussion we had in section 2.1 suggests that a SRFT is

dynamically equivalent to its covariantization or U-covariantization. Hence, to mantain the

number of propagating (/dynamical) DOFs, there must be a generalization of transformation

(2.18) such that the covariantization or U-covariantization of action (2.17) is gauge invariant

under it. Instead of assuming this right ahead, let us start by writing an action S obtained

from A by substituting η by a general metric g, converting Lorentz’s into spacetime indices

and including a volume element of weight (ω − 1) - dDx
(√
−|g|

)ω
. We then have

δhab = −2∇(aξ̌b) (2.24)

where ∇a ≡ gac∇c and the gauge parameter is constrained by ∇aξ̌
a = 0. Two particular

aspects of the coordinate derivative in (2.1) and (2.18) were used for δA to vanish (up to

ST ), namely commutativity and its role in converting volume into surface integrals through

Stokes’ Theorem: ∫
U

dDx ∂a(...)
a =

∫
∂U

dD−1x ... ≡ ST (2.25)

Therefore, for the action in a general background to be gauge invariant under (2.24), the

covariant derivative ∇ must, in principle, share these properties. Commutativity is obtained

by requiring the background to be flat (g → ḡ, ∇ → ∇̄). For the second one, we must have∫
dDx ∇̄a

[(√
−|ḡ|

)ω
...
]a

=

∫
dDx ∂a

[(√
−|ḡ|

)ω
...
]a

(2.26)

Since

∇̄a

[(√
−|ḡ|

)ω
...
]a

= ∂a

[(√
−|ḡ|

)ω
...
]a

+ Γaab

[(√
−|ḡ|

)ω
...
]b
− ωΓbba

[(√
−|ḡ|

)ω
...
]a

(2.27)

we must set either
i) ω = 1 or

ii) Γbba ≡ Γb
ba = 0

(2.28)

Note that in case ii), |ḡ|≡ |ḡ| is a constant and the constraint reduces to ∇aξ̌
a ≡ ∇̄aξ̌

a =

∂aξ̌
a = 0. In any case, following (2.20) to (2.23) with the appropriate changes, we end up with

10



the Gauge/Bianchi Identity

0 = ∇̄[d∇̄a δS

δhb]a
= ∂[d∇̄a δS

δhb]a
(2.29)

Hence, according to (2.28), we were led straight into covariantization/U-covariantization as

was expected. By setting the parameters a and b to 1, we have gauge invariance under (2.18)

without any constraint on the parameter (sometimes called Diff symmetry). Hence, to derive

the Gauge/Bianchi Identity, ξ̂ is already arbitrary and directly from (2.21) we obtain

∂a
δA

δhab
= 0 (2.30)

instead of (2.23) (implying that ∂bρ = 0). We also get

∇̄a δA

δhab
= 0 (2.31)

instead of (2.29). We’ll refer to this choice of parameters as the “Diff case”, while refering to

any choice where a 6= 1 or b 6= 1 as the “TDiff case”. A mass term is usually defined as an

action term free of derivatives, quadratic in the field that breaks gauge invariance and hence

increases the number of propagating DOFs. In the Diff case, this would be

m2

∫
dDx

(
h2 + k′habhab

)
(2.32)

and k′ = −1 corresponds to the FP mass term. Since the trace h is invariant under TDiff, in

this case the form of the mass term is

m2

∫
dDxhabhab (2.33)

2.3 Why self-coupling?

Consider a couple of action funtionals Ah and Aϕ for SRFTs of a free hab field and a free

matter field ϕ. For completeness, we add to Ah a mass term A m
h like the ones considered in

(2.32) and (2.33). The action for a theory where both fields interact should have the following

form:

Atot = Ah + A m
h + Aϕ + χAint (2.34)

where χ, in front of the interaction term Aint ≡ Aint[η;h, ϕ], is a coupling constant. The

EOMs are δAtot
δhab

= 0 and δAtot
δϕ

= 0. Note that

δAtot

δhab
=
δAh

δhab
+ χ

δA m
int

δhab
(2.35)
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where A m
int ≡ χ−1A m

h + Aint. Suppose that Ah is gauge invariant under (2.18). Taking into

account section 2.2, if the gauge transformation parameter is arbitrary (Diff symmetry) we

have the Gauge/Bianchi Identity

∂a
δAh

δhab
= 0 (2.36)

If on the other hand the parameter is contrained by (2.19) (TDiff symmetry), the Gauge/Bianchi

Identity is

∂[c∂
a δAh

δhb]a
= 0 (2.37)

Using (2.35) together with (2.36) and (2.37) one gets, respectively,

∂a
δAtot

δhab
= χ∂a

δA m
int

δhab
(2.38)

and

∂[c∂
a δAtot

δhb]a
= χ∂[c∂

a δA
m

int

δhb]a
(2.39)

The r.h.s. of these equations must vanish, when hab is on-shell. For now, we focus on the

Diff case. Bearing in mind the symmetry of
δAm

int
δhab

and that this together with (2.38) implies

on-shell divergencelessness on both indices, it must of the form:

δA m
int

δhab
= ∂c∂dΨ[c(a][b)d][η;h, ϕ] + B cd

(ab)[η;h, ϕ]
δAtot

δhcd
(2.40)

where ∂c∂dΨ[c(a][b)d] = 1
2
∂c∂d

(
Ψ[ca][bd] + Ψ[cb][ad]

)
is an identically divergenceless term11. The

second term12 vanishes on-shell. What about a term that doesn’t vanish on-shell but its diver-

gence does? We all know such a term: the EMT. However, conservation (divergencelessness)

of the EMT requires all dynamical fields to be on-shell - we’ve been using this word only w.r.t.

the hab field.

Let us focus on the second term. To avoid unnecessarily long expressions, we make Ψ = 0

(this doesn’t interfere with the point we’re trying to make). Using (2.35), one has

δA m
int

δhab
= B cd

(ab)[η;h, ϕ]

(
δAh

δhcd
+ χ

δA m
int

δhcd

)
⇔δAint

δhab
=

χ−1

χ−1B−1(ab)
cd [η;h, ϕ]− 1abcd

δAh

δhcd
− χ−1 δA

m
h

δhab

(2.41)

where 1abcd ≡ δac δ
b
d. Note that(

1− χ−1B−1
)−1

= 1 + χ−1B−1 +
(
χ−1B−1

)2
+ ... (2.42)

11A term proportional to
√
−|η|ηab can be included in this, which would require Ψ to depend explictely on

xa.
12B could a priori contain derivatives, but this would lead to higher derivative non-local theories.
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We’re not interested in the possibility of having negative powers of the coupling constant so

we make B = 0. Then, using (2.40) on (2.35),

∂a
δAtot

δhab
= 0 (2.43)

identically. Taking into consideration the process of deriving a Gauge/Bianchi Identity and

requiring that the dynamical fields mantain the number of propagating DOFs, this equation is

basically telling that the interacting theory must enjoy Diff symmetry (2.18). Chapters 3.2.5

and 3.2.7 of [33] (and references therein, including [15]) shed some light on this possibility. In

this work, we’re not interested in it so we would like to find a new non-identically divergence-

less term.

We turn again our attention to the EMT and we ask: what if the interacting theory we’re

trying to find turns out to have an EMT that is divergenceless when hab is on-shell (independ-

ently of the matter field)? Assuming this hypothesis, we could write

δA m
int

δhab
= Tab + ∂c∂dΨ[c(a][b)d][η;h, ϕ] (2.44)

where to ensure divergenceless on both indices of the EMT we call on Rosenfeld’s prescription.

Using (2.38), one has that ∂a δAtot
δhab

= χ∂aTab, showing that our hypothesis is self-consistent.

Now, it’s only a matter of finding the interaction term that solves (2.44). Lastly note that

this equation together with (2.35) entail a coupling of the kind

δAtot

δhab
=
δAh

δhab
+ χ

(
Tab + ∂c∂dΨ[c(a][b)d][η;h, ϕ]

)
(2.45)

which includes self-coupling (since Tab is the total EMT, i.e. it includes contributions from

the hab field itself).

In the case of TDiff, for which not (2.38) but (2.39) is of interest, the differences are minor.

In this case, we can additionally have terms in (2.44) whose divergence is identically a gradient:

ηabρ and ∂a∂bρ̃. Besides, like the EMT verifies ∂aTab, there may be an object Xab (= Xba)

such that ∂[c∂
aXb]a = 0, on-shell. This amounts to

δA m
int

δhab
= Xab + ∂c∂dΨ[c(a][b)d][η;h, ϕ] + ηabρ[η;h, ϕ] + ∂a∂bρ̃[η;h, ϕ] (2.46)

13



3 Energy-momentum tensors

The EMT emerged in section 2.3 as something “that doesn’t vanish on-shell but its divergence

does”. Here we will elaborate on this object, particularly in the context of covariant field

theories (much of this chapter is inspired in [34]; [35] and [36] are also pertinent). We then

naturally translate our analysis to “U-covariant field theories” (defined in section 3.3) and end

up finding the object Xab introduced in the previous paragraph.

3.1 Field theories

Consider an elementary one-dimensional mechanical system described by a lagrangian

L = L
(
y(t), ẏ(t), t

)
. (3.1)

The action is S =
∫ tf
ti
dt L and the EOM is13

δS

δy
= 0 (3.2)

where δS
δy
≡ ∂L

∂y
− d

dt
∂L
∂ẏ

. The lagrangian is defined up to terms which have no effect over

the EOM, such as total derivatives and constant terms. These contribute to the action,

respectively, with boundary terms and integrals that don’t depend on y, ẏ or t.

If L depends on the parameter t solely through the dynamical variable y and its derivative

ẏ, the EOM implies
d

dt

(
∂L

∂ẏ
ẏ − L

)
= 0 (3.3)

since
d

dt

(
∂L

∂ẏ
ẏ − L

)
= −δS

δy
ẏ (3.4)

Equation (3.3) enforces the conservation of quantity ∂L
∂ẏ
ẏ − L that we call energy. A total

derivative term in the lagrangian has a null contribution to ∂L
∂ẏ
ẏ − L. On the other side

a constant term enters this expression directly through the −L term. One could call the

quantity ∂L
∂ẏ
ẏ−L+ c energy, where c is a constant, and the equation of motion would still be

satisfied.

Having seen in a simple settting how the notion of energy comes up, let’s move on to the more

useful context of field theories, not necessarily SRFTs. Consider the action S =
∫
dDxL for a

13Considering vanishing δy at the limits of integration.
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generic collection of different types of fields. Assume the lagrangian has no explicit dependence

on xa: L = L [ϕα(x), ∂aϕ
α(x)]. The EOMs are

δS

δϕα
= 0 (3.5)

where δS
δϕα
≡ ∂L

∂ϕα
− ∂a

(
∂L

∂∂aϕα

)
. An on-shell conservation law like (3.3) is obtained:

∂b

(
δbaL −

∂L

∂∂bϕα
∂aϕ

α

)
=

δS

δϕα
∂aϕ

α (3.6)

(using commutativity of ∂). We call

tCan
b
a =

∂L

∂∂bϕα
∂aϕ

α − δbaL (3.7)

the canonical energy-momentum “tensor” (there’s no need to worry about coordinate trans-

formations for now). Analagously to the addition of a constant c to the energy above, tCan
b
a

is defined up to off-shell divergenceless terms Ωb
a, i.e. ∂bΩ

b
a = 0 identically14.

3.2 Canonical and Rosenfeld’s EMTs

Let us focus on covariant field theories with a (2,0) tensor field h with symmetric components15

hab and others of arbitrary tensor ranks, collectively denoted by ϕ, as dynamical fields. We

choose to place them in a flat spacetime (in this and the following sections, this is only used

for the conservation of the canonical EMT; all other results are independent of the covariant

derivatives commuting or not) with

• the metric ḡ whose components ḡab(x) are written in arbitrary curvilinear coordinates

xa,

• and the covariant derivative ∇̄ of the Levi-Civita connection Γ[ḡ] (recall that the Chris-

toffel symbols Γcab(x) are built from the metric and its derivatives).

Note that this is exactly the kind of theory that could be attained through the “covariant-

ization” described in section 2.1, starting with a SRFT where the dynamical fields are the

Lorentz (instead of spacetime) tensors hab and ϕ.

Covariance of the theory, i.e. of the EOMs, is obtained by having an action S =
∫
dDxL

that is invariant under GCTs, i.e. a scalar. The lagrangian is thus required to be a weight-1

14One can choose Ωb
a in order to make tCan

b
a symmetric under a↔ b.

15We always refer to components in the coordinate basis.
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scalar density, namely L =
√
−|ḡ|L where L is a scalar formed by summing products of

contractions between components of the dynamical tensor fields, its covariant derivatives and

ḡ. We’ll start with the following choice for L ’s independent variables:

L = L [ḡab, ∂cḡ
ab;hab, ∂ch

ab, ϕ, ∂cϕ] (3.8)

Since ḡab and ∂cḡ
ab are not dynamical variables, they make L depend on xa explicitly. From

this, one does not expect to obtain on-shell conservation laws, at least not in terms of vanishing

coordinate derivatives. The EOMs are0 = ∂L
∂hab
− ∂c

(
∂L

∂∂chab

)
≡ δS

δhab

0 = ∂L
∂ϕ
− ∂c

(
∂L
∂∂cϕ

)
≡ δS

δϕ

(3.9)

Writing hab and ϕ as φα with α = 1 and 2, respectively, such that L [ḡab, ∂cḡ
ab;hab, ∂ch

ab, ϕ, ∂cϕ] ≡
L [ḡab, ∂cḡ

ab;φα, ∂cφ
α], we have

∂cL =
∂L

∂φα
∂cφ

α +
∂L

∂∂dφα
∂c∂dφ

α +
∂L

∂ḡab
∂cḡ

ab +
∂L

∂∂dḡab
∂c∂dḡ

ab . (3.10)

Thus we see that

∂d

(
δdcL −

∂L

∂∂dφα
∂cφ

α

)
=

δS

δφα
∂cφ

α +
∂L

∂ḡab
∂cḡ

ab +
∂L

∂∂dḡab
∂c∂dḡ

ab

⇔∂d
(
δdcL −

∂L

∂∂dφα
∂cφ

α − ∂L

∂∂dḡab
∂cḡ

ab

)
=

δS

δφα
∂cφ

α +

[
∂L

∂ḡab
− ∂d

(
∂L

∂∂dḡab

)]
∂cḡ

ab

(3.11)

but the last term is not an equation of motion so it will not vanish on-shell, confirming our

expectation regarding conservation laws. However, due to metric compatibility, a generalisa-

tion of the conservation laws in terms of vanishing covariant derivatives is available. As [34]

points out, this is consistent with our ability to choose coordinates xa in such a way that ḡab

will become a constant matrix and Γcab will all vanish, thus removing the explicit dependence

of L on coordinates. Now, we choose alternatively the following L ’s independent variables:

L ≡ L̃ = L̃ [ḡab;hab, ∇̄ch
ab, ϕ, ∇̄cϕ] (3.12)

Taking into account commutativity between variation and covariant derivative, one arrives at

the EOMs in an explicitly covariant form:0 = ∂L̃
∂hab
− ∇̄c

(
∂L̃

∂∇̄chab

)
0 = ∂L̃

∂ϕ
− ∇̄c

(
∂L̃
∂∇̄cϕ

) (3.13)
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Note that

∂L̃

∂hab
− ∇̄c

(
∂L̃

∂∇̄chab

)
=
∂L̃

∂hab
− ∇̄c

(
∂L

∂∂chab

)
=
∂L̃

∂hab
− ∂c

(
∂L

∂∂chab

)
− Γccd

(
∂L

∂∂dhab

)
+ 2Γdca

(
∂L

∂∂chdb

)
=
∂L

∂hab
− ∂c

(
∂L

∂∂chab

)
=

δS

δhab
.

(3.14)

and similar for ϕ. Writing hab and ϕ as φα with β = 1 and 2, respectively, such that

L̃ [ḡab;hab, ∇̄ch
ab, ϕ, ∇̄cϕ] = L̃ [ḡ;φβ, ∇̄aφ

β],

∇̄cL̃ = ∂cL̃ =
∂L̃
∂φβ

∂cφ
β +

∂L̃
∂∇̄dφβ

∂c∇̄dφ
β +

∂L̃
∂ḡab

∂cḡab

=
∂L̃
∂φβ
∇̄cφ

β +
∂L̃

∂∇̄dφβ
∇̄c∇̄dφ

β +
∂L̃
∂ḡab
∇̄cḡab

(3.15)

The last equality16 may seem a big step but is actually quite natural once one takes into

consideration that L̃ is formed only by tensors φ, ∇̄φ and g and these are all contracted, so

if one expands ∇̄c in the last line of (3.15) half of the terms with Γ cancel out the other half.

Using metric compatibility,

∇̄cL̃ =
∂L̃
∂φβ
∇̄cφ

β +
∂L̃

∂∇̄dφβ
∇̄c∇̄dφ

β

⇒ ∇̄cL̃ =
∂L̃

∂φβ
∇̄cφ

β +
∂L̃

∂∇̄dφβ
∇̄c∇̄dφ

β

(3.16)

and we have (using ∇̄’s commutativity)

δS

δφβ
∇̄cφ

β = ∇̄d

(
δdc L̃ −

∂L̃

∂∇̄dφβ
∇̄cφ

β

)
. (3.17)

We finally arrived at the on-shell covariant conservation law17

δS

δhab
∇̄ch

ab +
δS

δϕ
∇̄cϕ = ∇̄d

(
δdc L̃ −

∂L̃

∂∇̄dhab
∇̄ch

ab − ∂L̃

∂∇̄dϕ
∇̄cϕ

)
(3.18)

16which takes the form of a chain rule with the covariant derivative.
17This is not a conservation law in the strict sense but we follow [35] in calling covariant conservation law

any covariant relation that reduces, in the flat limit, to a conservation law.
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such that the canonical EMT is

T cdCan =
1√
−|ḡ|

(
∂L̃

∂∇̄dhab
∇̄eh

ab +
∂L̃

∂∇̄dϕ
∇̄eϕ− δdeL̃

)
ḡce

=
1√
−|ḡ|

(
∂L

∂∂dhab
∇̄eh

ab +
∂L

∂∂dϕ
∇̄eϕ− δdeL

)
ḡce

(3.19)

One can derive other EM tensor - Rosenfeld’s [20] - by taking the active transformation per-

pective on infinitesimal GCTs and using gauge invariance associated with it. An infinitesimal

GCT

xa → x′
a

= xa − ξa(x) (3.20)

generates a transformation of the fields given by the Lie derivative Lξ with respect to the

vector field ξa. For a weight-ω (n,m)-tensor density (an ordinary tensor has ω = 0),

LξT a1...anb1...bm =ξc∂cT
a1...an

b1...bm − T c...anb1...bm∂cξa1 − ...
+ T a1...anc...bm∂b1ξ

c + ...+ ωT a1...anb1...bm∂cξ
c

=ξc∇̄cT
a1...an

b1...bm − T c...anb1...bm∇̄cξ
a1 − ...

+ T a1...anc...bm∇̄b1ξ
c + ...+ ωT a1...anb1...bm∇̄cξ

c .

(3.21)

where the second equality is allowed for any covariant derivative associated with a torsion-free

connection (not necessarily flat). Since L is a weight-1 scalar density,

δL = ∂a (ξaL ) (3.22)

and the action changes by a total derivative, leading to gauge invariance with respect to

infinitesimal GCT. We are going to compare (3.22) with δL caused by an arbitrary variation

of ḡab, hab and ϕ. Then we will enforce the EOMs and use δḡab for a infinitesimal GCT

explicitly:

δḡab = ξc∇̄cḡ
ab − 2ḡc(a∇̄cξ

b) = −2∇̄(aξb) (3.23)

(using the symmetry of ḡ’s components and ∇̄’s metric compatibility). We have

∂a (ξaL ) =
δS

δhab
δhab +

δS

δϕ
δϕ+

δS

δḡab
δḡab + ∂c

(
∂L

∂∂chab
δhab +

∂L

∂∂cϕ
δϕ+

∂L

∂∂cḡab
δḡab

)
(3.24)

where δS
δḡab
≡ ∂L

∂ḡab
−∂c

(
∂L

∂∂cḡab

)
. Using (3.9) and (3.23) first and then integrating this by parts,

one has

2

∫
dDx ξb∇̄a δS

δḡab
+ ST = 0 (3.25)
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The surface term can be converted into an integral over the boundary through Stokes’ Theorem

and using an appropriate choice of boundary conditions for the transformation parameter ξ it

can be made to vanish. Due to arbitrariness of ξ one arrives at the following on-shell covariant

conservation law:

∇̄a δS

δḡab
= 0 (3.26)

(Note that δS
δḡcd

= −ḡacḡbd δS
δḡab

). If we fix inertial coordinates we get the on-shell conservation

law that we were looking for Tab in (2.44): ∂a δS
δḡab

∣∣∣
ḡ=η

= 0 = ∂b δS
δḡab

∣∣∣
ḡ=η

. However, motivated

by the covariant nature of this object, we decide from now on to consider the covariantizations

Sh, S
m
h , Sϕ and Sint of actions Ah (invariant under Diff), A m

h , Aϕ and Aint of section 2.3,

respectively. Hence, we rewrite (2.44) as

δSm
int

δhab
=
δStot

δḡab
+ ∇̄c∇̄dΨ[c(a][b)d][ḡ;h, ϕ] (3.27)

⇔ ∇̄a δS
m
int

δhab
= ∇̄a δStot

δḡab
(3.28)

where Sm
int ≡ χ−1Sm

h + Sint and Stot ≡ Sh + Sϕ + χSm
int. All the r.h.s. of (3.27) is an EMT

(density) since this quantity is defined up to identically divergenceless terms. Therefore our

“consistent coupling” is equivalent to the one in most of the literature mentioned in the

introduction, where these terms weren’t often made explicit. For completeness, we write the

Rosenfeld’s EMT

T abRos ≡
2√
−|ḡ|

δS

δḡcd
ḡacḡbd =

−2√
−|ḡ|

δS

δḡab
. (3.29)

Note that the covariant conservation law (3.26) is valid independently of the metric being flat

or curved (its derivation didn’t required commutativity of covariant derivatives, contrasting

with the canonical EMT). One can now ask: what is the relation between the canonical

and Rosenfeld’s EMTs? The answer comes via the Gauge/Bianchi Identity associated with

infinitesimal GCT. To derive this, we’ll use the variations

δhab = ξc∇̄ch
ab − 2hc(a∇̄cξ

b) (3.30)

and

δϕ = ξc∇̄cϕ , (3.31)

under GCTs (for concreteness, we suppose that ϕ is a scalar). Integrating (3.24), one obtains∫
dDx

(
δS

δhab
δhab +

δS

δϕ
δϕ+

δS

δḡab
δḡab

)
+ ST = 0 (3.32)
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Using (3.23), (3.30) and (3.31) on the equation above:∫
dDx

(
−2

δS

δhab
hca∇̄cξ

b +
δS

δhab
ξc∇̄ch

ab +
δS

δϕ
ξc∇̄cϕ− 2

δS

δḡab
∇̄aξb

)
+ ST

=

∫
dDx

(
−2

δS

δhab
hca∇̄cξ

b −
√
−|ḡ|ξc∇̄dT

ed
Canḡec − 2

δS

δḡab
∇̄aξb

)
+ ST = 0

(3.33)

Integrating by parts,∫
dDx

[
2∇̄c

(
δS

δhab
hac
)
−
√
−|ḡ|∇̄cT

ec
Canḡeb + 2∇̄a δS

δḡab

]
ξb + ST = 0 (3.34)

The last term can be converted into an integral over the boundary and, choosing appropriate

boundary conditions for the transformation parameters, it can be made to vanish. Due to

arbitrariness of ξ one obtains the Gauge/Bianchi Identity, which don’t involve the transform-

ation parameters:

∇̄c

(
2
δS

δhab
hac −

√
−|ḡ|T ecCangeb + 2

δS

δḡab
ḡac
)

= 0 . (3.35)

Since this is an off-shell identity and using the definition of T abRos, one arrives at

∇̄c

(
2
δS

δhab
hac −

√
−|ḡ|T ecCangeb +

√
−|ḡ|T ecRosgeb

)
= 0

⇒ 2
δS

δhab
hac −

√
−|ḡ|T ecCangeb +

√
−|ḡ|T ecRosgeb =

√
−|ḡ|∇̄dψ

cd
b (3.36)

where the r.h.s. is identically divergenceless (ψb
cd = −ψbdc is a superpotential). In appendix

B, we present an alternative derivation of this relation between the EMTs (at the expense of

easiness, we manage to find the superpotential explicitly).

It will turn up useful to write (3.35) as

−2ḡac∇̄c
δS

δḡab
=

δS

δhac
∇̄bh

ac +
δS

δϕ
∇̄bϕ+ 2∇̄c

(
δS

δhab
hac
)

(3.37)

3.3 U-covariant Field Theories

In this section, (following what we did in p. 8) we will write “U-” as a prefix meaning that a

representation of UCTs, the one used in section 2.1 (which is a subrepresentation of the usual

one for GCTs), is implied. Since, except for scalar ones, all tensor densitites we’re going to

deal with have zero weight, we might omit the prefix in these cases.

Let us focus on U-covariant field theories with the same dynamical fields as the covariant

theories considered in 3.2, except that they’re U-tensors. They also live in a flat spacetime

but this time

20



• the metric’s components ḡab(x) are written in unimodular (otherwise arbitrary) curvi-

linear coordinates xa,

• and the covariant derivative ∇̄ is associated to the Levi-Civita connection Γ[ḡ].

Note that, since we’re using unimodular coordinates, Γb
ba = 0. This is the kind of theory that

we get when a SRFT is “U-covariantized”, as described in section 2.1.

U-covariance of the theory is attained by having a U-scalar action SU =
∫
dDxLU . Then,

the lagrangian is a U-scalar (since
∫
dDx also is), formed by summing products of contractions

between components of the dynamical tensor fields, its covariant derivatives and ḡ. Once again,

we must fix a set of LU ’s independent variables. By performing the choice equivalent to (3.8)

LU = LU [ḡab, ∂cḡ
ab;hab, ∂ch

ab, ϕ, ∂cϕ] (3.38)

we would reach the same conclusions. We then start with

LU ≡ L̃U = L̃U [ḡab;hab, ∇̄ch
ab, ϕ, ∇̄cϕ] (3.39)

Taking into account commutativity between variation and covariant derivative, one arrives at

the EOMs: 
0 = ∂L̃U

∂hab
− ∇̄c

(
∂L̃U

∂∇̄chab

)
= ∂LU

∂hab
− ∂c

(
∂LU

∂∂chab

)
≡ δSU

δhab

0 = ∂L̃U

∂ϕ
− ∇̄c

(
∂L̃U

∂∇̄cϕ

)
= ∂LU

∂ϕ
− ∂c

(
∂LU

∂∂cϕ

)
≡ δSU

δϕ

(3.40)

Writing hab and ϕ as φα with β = 1 and 2, respectively, such that L̃U [ḡab;hab, ∇̄ch
ab, ϕ, ∇̄cϕ] =

L̃U [ḡ;φβ, ∇̄aφ
β],

∇̄cL̃U = ∂cL̃U =
∂L̃U

∂φβ
∂cφ

β +
∂L̃U

∂∇̄dφβ
∂c∇̄dφ

β +
∂L̃U

∂ḡab
∂cḡab

=
∂L̃U

∂φβ
∇̄cφ

β +
∂L̃U

∂∇̄dφβ
∇̄c∇̄dφ

β +
∂L̃U

∂ḡab
∇̄cḡab

(3.41)

This is analogous to (3.15), with the difference that there Γbba didn’t vanish and so the first

equality above wouldn’t be valid with the lagrangian L̃ (we had to use the scalar L̃). Using

metric compatibility,

∇̄cL̃U =
∂L̃U

∂φβ
∇̄cφ

β +
∂L̃U

∂∇̄dφβ
∇̄c∇̄dφ

β (3.42)

21



and we have (using ∇̄’s commutativity)

δSU
δφβ

∇̄cφ
β = ∇̄d

(
δdc L̃U −

∂L̃U

∂∇̄dφβ
∇̄cφ

β

)
. (3.43)

We finally arrived at the on-shell covariant conservation law

δSU
δhab

∇̄ch
ab +

δSU
δϕ

∇̄cϕ = ∇̄d

(
δdc L̃U −

∂L̃U

∂∇̄dhab
∇̄ch

ab − ∂L̃U

∂∇̄dϕ
∇̄cϕ

)
(3.44)

such that the canonical EMT is

T cdCan =

(
∂L̃U

∂∇̄dhab
∇̄eh

ab +
∂L̃U

∂∇̄dϕ
∇̄eϕ− δdeL̃U

)
ḡce

=

(
∂LU

∂∂dhab
∇̄eh

ab +
∂LU

∂∂dϕ
∇̄eϕ− δdeLU

)
ḡce

(3.45)

Next, we look over the consequences of gauge invariance associated with taking the active

transformation perpective on UCTs: an infinitesimal UCT

xa → x′
a

= xa − ξa(x) with ∂aξ
a = ∇̄aξ

a = 0 (3.46)

generates a transformation of the fields given by

LξT a1...anb1...bm
∣∣∣
ξ=ξa

=ξc∂cT
a1...an

b1...bm − T c...anb1...bm∂cξa1 − ...

+ T a1...anc...bm∂b1ξ
c + ...

=ξc∇̄cT
a1...an

b1...bm − T c...anb1...bm∇̄cξ
a1 − ...

+ T a1...anc...bm∇̄b1ξ
c + ... .

(3.47)

Hence, we have gauge invariance with respect to infinitesimal UCT since

δLU = ξa∂aLU = ∂a (ξaLU) (3.48)

and the action changes by a total derivative. Now, we proceed as before: we compare (3.48)

with δLU caused by an arbitrary variation of ḡab, hab and ϕ; then we enforce the EOMs and

use δḡab for a infinitesimal UCT as given by (3.49).

δḡab = ξc∇̄cḡ
ab − 2ḡc(a∇̄cξ

b) = −2∇̄(a
ξb) 18 (3.49)

18⇒ ḡabδḡ
ab = 0

22



We have

∂a (ξaLU) =
δSU
δhab

δhab +
δSU
δϕ

δϕ+
δSU
δḡab

δḡab + ∂c

(
∂LU

∂∂chab
δhab +

∂LU

∂∂cϕ
δϕ+

∂LU

∂∂cḡab
δḡab

)
(3.50)

where δSU
δḡab
≡ ∂LU

∂ḡab
− ∂c

(
∂LU

∂∂cḡab

)
. Using (3.9), (3.23) and integrating this, by parts, one has

2

∫
dDx ξb∇̄a δSU

δḡab
+ ST = 0 (3.51)

The transformation parameter is constrained by ∂aξ
a = ∇̄aξ

a = 0 such that we can replace

it by the arbitrary parameter F cb: ξb = ∂cF [cb] = ∇̄cF [cb]. After doing this and integrating

by parts,

−2

∫
dDxF [cb]∇̄c∇̄

a δSU
δḡab

+ ST = 0 (3.52)

The surface term can be converted into an integral over the boundary through Stokes’ Theorem

and using an appropriate choice of boundary conditions for the transformation paramete F it

can be made to vanish. Due to arbitrariness of F one arrives at the following on-shell relation:

0 = ∇̄[c∇̄
a δSU
δḡb]a

= ∂[c∇̄
a δSU
δḡb]a

(3.53)

Like in section 3.2, this is valid independently of the metric being flat or curved. If we

fix inertial coordinates we get the on-shell relation that we were looking for Xab in (2.46):

∂[c∂
a δSU
δḡb]a

∣∣∣
ḡ=η

= 0. From now on, we consider the U-covariantizations SU,h, S
m
U,h, SU,ϕ and

SU,int of actions Ah (invariant under TDiff), A m
h , Aϕ and Aint of section 2.3, respectively.

Hence, instead of (2.46), we have

δSm
U,int

δhab
=
δSU,tot

δḡab
+ ∇̄c∇̄d

Ψ[c(a][b)d][ḡ;h, ϕ] + ḡabρ[ḡ;h, ϕ] + ∇̄a∇̄bρ̃[ḡ;h, ϕ] (3.54)

⇔ ∇̄[c∇̄
a δS

m
U,int

δhab
= ∇̄[c∇̄

a δSU,tot

δḡab
(3.55)

where Sm
U,int ≡ χ−1Sm

U,h + SU,int and SU,tot ≡ SU,h + SU,ϕ + χSm
U,int. In the remainder of this

section, we use the variations

δhab = ξc∇̄ch
ab − 2hc(a∇̄cξ

b) (3.56)

and

δϕ = ξc∇̄cϕ , (3.57)
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under UCTs (for concreteness, we suppose that ϕ is a U-scalar) to derive the Gauge/Bianchi

Identity associated with these. Integrating (3.50), one obtains∫
dDx

(
δSU
δhab

δhab +
δSU
δϕ

δϕ+
δSU
δḡab

δḡab
)

+ ST = 0 (3.58)

Using (3.49), (3.56) and (3.57), on the equation above:∫
dDx

(
−2

δSU
δhab

hac∇̄cξ
b +

δSU
δhab

ξc∇̄ch
ab +

δSU
δϕ
ξc∇̄cϕ− 2

δSU
δḡab

∇̄a
ξb
)

+ ST

=

∫
dDx

(
−2

δSU
δhab

hac∇̄cξ
b − ξj∇̄cT

ac
Canḡab − 2

δSU
δḡab

∇̄a
ξb
)

+ ST = 0

(3.59)

Substituting ξb = ∇̄dF [db] and integrating twice by parts, we get

−
∫
dDx∇̄d

[
2∇̄c

(
δSU
δhab

hac
)
− ∇̄cT

ac
Canḡab + 2∇̄a δSU

δḡab

]
F [db] + ST = 0 (3.60)

Due to arbitrariness of F cj, this leads to the following off-shell identity that doesn’t involve

the transformation parameters:

∇̄c∇̄[d

(
ḡb]aT

ac
Can − 2

δSU
δhb]a

hac
)

= 2∇̄a∇̄[d
δSU
δḡb]a

= 2∇̄i∇̄[d

(
δSU
δḡb]a

ḡai
)

⇒ ∇̄c

(
2
δSU
δḡba

ḡac − ḡbaT
ac
Can + 2

δSU
δhba

hac
)

= ∇̄b (ρ+ ρ̃) = ∂b (ρ+ ρ̃)

⇒ 2
δSU
δḡba

ḡac − ḡbaT
ac
Can + 2

δSU
δhba

hac = ∇̄b∇̄
c
ρ′ + δcb ρ̃+ ∇̄dψ

[cd]
b

(3.61)

where ∇̄b∇̄bρ
′ = ρ. It will turn up useful to write this as

−2∇̄c∇̄[d

(
δSU
δḡb]a

ḡac
)

= ∇̄[d

[(
∇̄b]h

ac
) δSU
δhac

+
(
∇̄b]ϕ

) δSU
δϕ

]
+ 2∇̄c∇̄[d

(
δSU
δhb]a

hac
)

(3.62)

24



4 Self-coupling in the Diff case

4.1 Iterative procedure I

Throughout chapter 3, we wrote the functional derivative w.r.t. variables that are constrained:

• ḡ is a flat metric (Ra
bcd[ḡ] = 0);

• ḡ, in addition to flatness, is written in unimodular coordinates (∂a|ḡ|= 0⇔ Γb
ba[ḡ] = 0).

Note that these derivatives must be understood as (γ is an arbitrary uncontrained metric)

δS[ḡ;h, ϕ]

δḡ
= lim
Rabcd[γ]→0

δS[γ;h, ϕ]

δγ
≡ lim

γ→ḡ

δS[γ;h, ϕ]

δγ
, (4.1)

and the equivalent relation for ḡ, so that we have an uniquely defined functional derivative.

Otherwise, under a constrained infinitesimal variation δḡ (such that Ra
bcd[ḡ + δḡ] = 0), we

would have

δS =

∫
dDx

δS

δḡab
δḡab + ST (4.2)

But if δS+ST = 0 for any δḡ this wouldn’t set δS
δḡab

to zero, instead there’s a myriad of terms

that solve this equation. The same happens with the ḡ case.

It’s worth it to delve deeper into this matter. For the next paragraphs we’ll use some plain

notation. Consider a couple of functional SNM[γ] and SNM
U [γ] that vanish when we impose

constraints on γ such that SNM[ḡ] = 0 = SNM
U [ḡ] (these are not surface terms). We can vary

SNM by varying the metric:

SNM[γ + λδγ]− SNM[γ] ≡ λδSNM (4.3)

where λ is a constant that can be set to 1. Note that

lim
γ→ḡ

λδSNM = SNM[ḡ + λδγ]− SNM[ḡ] = SNM[ḡ + λδγ]⇒ lim
γ→ḡ

λδSNM + ST 6= 0 (4.4)

By the definition of functional derivative,

λδSNM =

∫
dDx

δSNM

δγ
λδγ + ST +O(λ2) (4.5)

Taking into account (4.4),

lim
γ→ḡ

δSNM

δγ
6= 0 (4.6)
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However, considering a variation δγ = δḡ (infinitesimal, so that terms O(λ2) can be neglected)

such that Ra
bcd[ḡ + δḡ] = 0, we have∫

dDx lim
γ→ḡ

δSNM

δγ
λδḡ + ST = SNM[ḡ + λδḡ]− SNM[ḡ] = 0 (4.7)

Using SNM
U and ḡ, respectively, in place of SNM and ḡ, we would reach

lim
γ→ḡ

δSNM
U

δγ
6= 0 (4.8)

and ∫
dDx lim

γ→ḡ

δSNM
U

δγ
λδḡ + ST = 0 (4.9)

whereRa
bcd[ḡ+δḡ] = 0 = Γb

ba[ḡ+δḡ]. We can conclude that our success in avoiding ambiguities

in functional differentiation through (4.1), can be traced back to the use of what’s called

minimal coupling, i.e. we simply replaced the constrained metric by an arbitrary one in S.

Have we considered adding terms to S that would vanish in the limit where γ is equally

constrained, like SNM (non-minimal coupling, that’s where “NM” comes from), and we would

recover the same form of ambiguity (compare (4.2) and (4.7)/(4.9)) since even though SNM[ḡ]

vanishes its derivative (4.6)/(4.8) does not. This is completely harmeless anyway since, as

you can see in the previous chapter, functional derivatives always arise multiplied by the

variation of the respective variable. However, we can and will use non-minimal couplings as

a bookkeeping device for identically divergenceless terms and terms whose divergence is a

gradient in equations (2.44) and (2.46).

From previous sections, we already know what δḡ and δḡ look like:

δḡab = −2∇̄(aξb) (3.23)

δḡab = −2∇̄(a
ξb) (3.49)

where ξb is arbitrary but ∂bξ
b = ∇̄bξ

b = 0 such that we can replace ξb it by the arbitrary

parameter F cb: ξb = ∂cF [cb] = ∇̄cF [cb]. Substituting these into (4.7) and (4.9), we have

2

∫
dDx ξb∇̄a

(
lim
γ→ḡ

δSNM

δγab

)
+ ST = 0 (4.10)

and

−2

∫
dDxF [cb]∇̄c∇̄

a

(
lim
γ→ḡ

δSNM
U

δγab

)
+ ST = 0 (4.11)

26



leading, respectively, to the following of-shell identities:

∇̄a lim
γ→ḡ

δSNM

δγab
= 0 (4.12)

∇̄[c∇̄
a

lim
γ→ḡ

δSNM
U

δγb]a
= 0 (4.13)

Therefore we can write (3.27) and (3.54), respectively, as

δSm
int

δhab
=
δStot

δγab

∣∣∣∣
γ→ḡ
⇔ ∇̄a δS

m
int

δhab
= ∇̄a δStot

δḡab
(4.14)

δSm
U,int

δhab
=
δSU,tot

δγab

∣∣∣∣
γ→ḡ

⇔ ∇̄[c∇̄
a δS

m
U,int

δhb]a
= ∇̄[c∇̄

a δSU,tot

δḡb]a
(4.15)

(hence the bookkeeping device) where the vertical bar is our way to point out that minimal

coupling is not assumed. We now expand Sm
int/S

m
U,int and Stot/SU,tot on the equations above:

δSint

δhab
= −χ−1 δS

m
h

δhab
+
δSh
δγab

∣∣∣∣
γ→ḡ

+
δSϕ
δγab

∣∣∣∣
γ→ḡ

+
δSm

h

δγab

∣∣∣∣
γ→ḡ

+ χ
δSint

δγab

∣∣∣∣
γ→ḡ

(4.16)

δSU,int

δhab
= −χ−1

δSm
U,h

δhab
+
δSU,h
δγab

∣∣∣∣
γ→ḡ

+
δSU,ϕ
δγab

∣∣∣∣
γ→ḡ

+
δSm

U,h

δγab

∣∣∣∣
γ→ḡ

+ χ
δSU,int

δγab

∣∣∣∣
γ→ḡ

(4.17)

We can try to find Sint and SU,int by writing them as a perturbative series in χ. For example,

Sint = χ−1S
(−1)
int + S

(0)
int + χS

(1)
int + χ2S

(2)
int + ... (4.18)

This way we can solve equations (4.16) and (4.17) iteratively, as we do in (4.19) and (4.20),

respectively. Before, let us see that the interacting theory generated this way has no mass

terms. Note that, substituting (4.18) in (4.16), implies
δS

(−1)

int
δhab

= − δSm
h

δhab
⇒ S

(−1)
int = −Sm

h + ST

δS
(0)

int
δhab

= δSh
δγab

∣∣∣
γ→ḡ

+ δSϕ
δγab

∣∣∣
γ→ḡ

+
δSm
h

δγab

∣∣∣
γ→ḡ

+
δS

(−1)

int
δγab

∣∣∣
γ→ḡ

⇒ δS
(0)
int

δhab
=
δSh
δγab

∣∣∣∣
γ→ḡ

+
δSϕ
δγab

∣∣∣∣
γ→ḡ

The same happens with (4.17). Hence, one could have ignored the mass term from the

beggining and written (4.18) without S
(−1)
int , being then led to:

δS
(0)
int

δhab
=
δSh
δγab

∣∣∣∣
γ→ḡ

+
δSϕ
δγab

∣∣∣∣
γ→ḡ

and
δS

(n+1)
int

δhab
=
δS

(n)
int

δγab

∣∣∣∣
γ→ḡ

(4.19)

δS
(0)
U,int

δhab
=
δSU,h
δγab

∣∣∣∣
γ→ḡ

+
δSU,ϕ
δγab

∣∣∣∣
γ→ḡ

and
δS

(n+1)
U,int

δhab
=
δS

(n)
U,int

δγab

∣∣∣∣
γ→ḡ

(4.20)
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where n ≥ 0. The iterations last indefinitely (hopefully converging) or until
δS

(n)

int
δγab

∣∣∣
γ→ḡ

/
δS

(n)

U,int
δγab

∣∣∣
γ→ḡ

vanish.

Let us briefly make mention of the widely used interpretation/motivation for this kind of

iterative procedure. Consider the non-interacting theory given by the action Sh+Sϕ such that

the EOM for the field h is δSh
hab

= 0. If we couple h to its own EMT and to the EMT of ϕ then

the EOM should be δSh
hab

= χ′ δSh
δγab
|γ→ḡ + χ′ δSϕ

δγab
|γ→ḡ. This EOM can be derived from the action

Sh+Sϕ−χ′S(0)
int if

δS
(0)

int
δhab

= δSh
δγab
|γ→ḡ+ δSϕ

δγab
|γ→ḡ. However, since this new term will also contribute

to the EMT, we should add a further term S
(1)
int to the action such that

δS
(1)

int
δhab

=
δS

(0)

int
δγab
|γ→ḡ. This

goes on and on, replicating iterations (4.19).

Taking into account the linearity of (functional) differentiation, one can write S
(n)
int = S

(n)
int,h+

S
(n)
int,h and divide the iterations of (4.19) into two separate sets by:

δS
(0)
int,h

δhab
=
δSh
δγab

∣∣∣∣
γ→ḡ

and
δS

(n+1)
int,h

δhab
=
δS

(n)
int,h

δγab

∣∣∣∣
γ→ḡ

(4.21)

δS
(0)
int,ϕ

δhab
=
δSϕ
δγab

∣∣∣∣
γ→ḡ

and
δS

(n+1)
int,ϕ

δhab
=
δS

(n)
int,ϕ

δγab

∣∣∣∣
γ→ḡ

(4.22)

One can do the same for (4.20). While S
(n)
int,ϕ always depends on ϕ, every S

(n)
int,h is independent

of ϕ. Therefore, it’s impossible for any cancelation to occur between terms coming from these

and we’re not loosing any solution with this division. We’ll call equations like (4.21) “self-

coupling condition”. These will be the centre of our work from now on (while coupling to

matter will be neglected).

4.2 Iterative procedure II

It’s time to apply the procedure just derived. For the moment let us tackle the Diff case, due

to the simplicity of its iterations when compared with TDiff’s, such that we’ll focus on (4.21).

We then start with

Ah =
−1

2

∫
dDxK c d

ab ef [η] ∂ch
ab∂dh

ef (4.23)

where

2K c d
ab ef [η] = ηcdηa(eηf)b − bηcdηabηef − 2δc(eηf)(aδ

d
b) + aδc(eδ

d
f)ηab + aδc(aδ

d
b)ηef (4.24)
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with a = 1 = b even though, for completeness, we’ll keep these parameters undefined until

later in this section. Covariantization of (4.23) gives

Sh =
−1

2

∫
dDx

√
−|ḡ| ∇̄ch

ab∇̄dh
efK c d

ab ef [ḡ] (4.25)

Looking back at (4.23), one sees that only the part ofK that is symmetric under (cab)↔ (def),

a ↔ b and e ↔ f contributes to the action19. Let us rewrite (4.21) denoting S
(N)
int,h by SN+1

(N ≥ 0):
δS1

δhab
=
δSh
δγab

∣∣∣∣
γ→ḡ

and
δSn+1

δhab
=
δSn
δγab

∣∣∣∣
γ→ḡ

(4.26)

where n ≥ 1. Note that
δSh/n
δγab

∣∣∣
γ→ḡ

, where Sh/n = Sh/n[ḡ;h], stands for

lim
γ→ḡ

δSh/n[γ;h]

δγ
+ lim

γ→ḡ

δSNM
0/n [γ;h]

δγ
≡ lim

γ→ḡ

δS̃0/n

δγ
(4.27)

(recall the beggining of section 4.1). We’ll start by assuming minimal coupling such that the

second term (a priori undefined) is ignored. In this case, we find convenient not to bring γ to

ḡ after functional differentiating w.r.t. γ in each step of the iterative procedure and we’ll only

do it at the end (we’ll deal with the consequences of this when concluding the dissertation).

We then write

S̃0 =
−1

2

∫
dDx

√
−|γ|∇ch

ab∇dh
efK c d

ab ef (4.28)

Throughout this section, if nothing is said, a capital latin letter is to be understood as a

sum of products of γab and γab such that its indices indicate the position (up/down) of non

contracted indices in the terms of the sum. If dependence on other metric is made explicit,

the same applies with the components of that metric and its inverse. Also in this section we’re

going to use greek letters for some dummy indices.

Recall that K obeys K c d
ab ef = K d c

ef ab .

δS̃0

δγpq
=
−1

2

√
−|γ|A c d

ab ef pq∇ch
ab∇dh

ef −
√
−|γ|B c d

pq ef ab∇c(h
ab∇dh

ef ) (4.29)

A and B are given by the following expressions.

A c d
ab ef pq =

∂K c d
ab ef

∂γpq
− 1

2
γpqK

c d
ab ef =

1√
−|γ|

∂
√
−|γ|K c d

ab ef

∂γpq
(4.30)

B c d
pq ef ab = γpνγqργ

υτ∆cνρ
µτ(aK

µ d
b)υ ef ≡ ∆̃c υ

pqµ (aK
µ d

b)υ ef (4.31)

19Note also that exchanging c and d would only contribute with a surface term.
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where ∆cνρ
µτa ≡

[
δcµδ

(ν
a δ

ρ)
τ + δcaδ

(ν
µ δ

ρ)
τ − δcτδ

(ρ
µ δ

ν)
a

]
. Thus we must have

S̃1 =

∫
dDx

√
−|γ|X c d

ab ef pqh
pq∇ch

ab∇dh
ef (4.32)

since the self-coupling condition implies that S̃1 contains three h and two ∇ and any action

term involving these will equal (4.32) up to ST .

δS̃1

δhpq
=
√
−|γ|X c d

ab ef pq∇ch
ab∇dh

ef − 2
√
−|γ|X c d

pq ef ab∇c(h
ab∇dh

ef ) (4.33)

Comparing (4.29) and (4.33) leads to

δS̃1

δhpq
=

δS̃0

δγpq
⇒

X c d
ab ef pq = −1

2
A c d
ab ef pq

2X c d
pq ef ab = B c d

pq ef ab

⇔

X c d
ab ef pq = −1

2
A c d
ab ef pq

B c d
pq ef ab + A c d

pq ef ab = 0
(4.34)

Equations like B + A = 0 above will appear in each step of the iterations. We call them

“consistency requirements”. For the moment, we assure the consistency requirement in the

first step is verified by assuming that K obeys

√
−|γ|∆̃c υ

pqµ (aK
µ d

b)υ ef +
∂
√
−|γ|K c d

pq ef

∂γab
= 0 (4.35)

(This comes from substituting the expressions for A and B in the consistency requirement).

Taking (4.34) together with (4.32) into account, we start the second step of the iterative

procedure with

S̃1 =
−1

2

∫
dDx

√
−|γ|A c d

ab ef ijh
ij∇ch

ab∇dh
ef (4.36)

and we find that

δS̃1

δγpq
=
−1

2

√
−|γ|C c d

ab ef ijpqh
ij∇ch

ab∇dh
ef −

√
−|γ|D c d

pq ef ijab∇c(h
ijhab∇dh

ef ) (4.37)

where C and D are given by the following expressions.

C c d
ab ef ijpq =

1√
−|γ|

∂
√
−|γ|A c d

ab ef ij

∂γpq
=

1√
−|γ|

∂2
√
−|γ|K c d

ab ef

∂γpq∂γij
(4.38)

D c d
pq ef ijab =

1

2
∆̃c υ

pqµ (aA
µ d

b)υ ef ij + (ab)↔ (ij)

=
1

2
√
−|γ|

∆̃c υ
pqµ (a

∂
√
−|γ|K µ d

b)υ ef

∂γij
+ (ab)↔ (ij)

(4.39)
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(Hence, C...ijpq = C...pqij). Any action term involving four h and two ∇ will equal, up to ST ,

S̃2 =

∫
dDx

√
−|γ|Y c d

ab ef ijpqh
pqhij∇ch

ab∇dh
ef (4.40)

and we obtain an expression similar to δS̃1

hpq
with the difference that the “∇h∇h” term is

multiplied by 2 (corresponding to the two h’s outside ∇):

δS̃2

δhpq
= 2
√
−|γ|Y c d

ab ef ijpqh
ij∇ch

ab∇dh
ef − 2

√
−|γ|Y c d

pq ef ijab∇c(h
ijhab∇dh

ef ) (4.41)

δS̃2

δhpq
=

δS̃1

δγpq
⇒

2Y c d
ab ef ijpq = −1

2
C c d
ab ef ijpq

2Y c d
pq ef ijab = D c d

pq ef ijab

(4.42)

Like before, substituting the top equation into the bottom one entails the consistency require-

ment: 2D c d
pq ef ijab + C c d

pq ef ijab = 0; which is equivalent to

∆̃c υ
pqµ (a

∂
√
−|γ|K µ d

b)υ ef

∂γij
+ (ab)↔ (ij) +

∂2
√
−|γ|K c d

pq ef

∂γab∂γij
= 0 (4.43)

If we follow

Procedure A: 1) differentiate both sides of assumption (4.35) with respect

to γij; 2) take into account the algebraic relation
∂∆̃c υ

pqµ a

∂γij
=

−∆̃c γ
pqθ (i∆̃

θ υ
γj)µ a; 3) substitute (4.35) to get rid of the term with

two ∆̃’s.

we conclude that satisfying (4.43) is actually assured by our previous assumption. We now

easily see that starting with (n ≥ 0)

S̃n =
−1

2n!

∫
dDx

∂n
√
−|γ|K c d

ab ef

∂γkl... ∂γij

n times︷ ︸︸ ︷
hij... hkl∇ch

ab∇dh
ef (4.44)

such that S̃0, S̃1 and S̃2 match the previously obtained expressions, we obtain

δS̃n
δγpq

=
−1

2n!

∂n+1
√
−|γ|K c d

ab ef

∂γpq∂γkl... ∂γij
hij... hkl∇ch

ab∇dh
ef

− 1

n! (n+ 1)

[
∆̃c υ

pqµ (a

∂n
√
−|γ|K µ d

b)υ ef

∂γkl... ∂γij
+ (ab)↔ (ij) + ...+ (ab)↔ (kl)

]
∇c(h

ij... hklhab∇dh
ef )

(4.45)

Our ansatz to the self-coupling condition is

S̃∗n+1 =

∫
dDx

√
−|γ|Z c d

ab ef ij...klpqh
pqhij... hkl∇ch

ab∇dh
ef (4.46)
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such that

δS̃∗n+1

δhpq
=
√
−|γ|

[
(n+ 1)Z c d

ab ef ij...klpqh
ij... hkl∇ch

ab∇dh
ef − 2Z c d

pq ef ij...klab∇c(h
ij... hklhab∇dh

ef )
]

(4.47)

Comparing this with (4.45), we obtain

(n+ 1)
√
−|γ|Z c d

ab ef ij...klpq =
−1

2n!

∂n+1
√
−|γ|K c d

ab ef

∂γpq∂γkl... ∂γij
and (4.48)

2
√
−|γ|Z c d

pq ef ij...klab =
1

(n+ 1)!

[
∆̃c υ

pqµ (a

∂n
√
−|γ|K µ d

b)υ ef

∂γkl... ∂γij
+ (ab)↔ (ij) + ...+ (ab)↔ (kl)

]
(4.49)

Equation (4.48) leads to S̃∗n+1 = S̃n+1 as given by (4.44) and once more we get a consistency

requirement:

∆̃c υ
pqµ (a

∂n
√
−|γ|K µ d

b)υ ef

∂γkl... ∂γij
+ (ab)↔ (ij) + ...+ (ab)↔ (kl) +

∂n+1
√
−|γ|K c d

pq ef

∂γab∂γkl... ∂γij
= 0 (4.50)

Just like we used Procedure A to show that, written with K explicit, the consistency require-

ment in step 1 of the iterations is enough to assure the consistency requirement in step 2,

we can do it from step 2 to step 3, from step 3 to step 4, etc. Therefore satisfying all the

requirements depends uniquely on assumption (4.35). This is due to the form of equation

(4.50) and relies heavily on the algebraic relation “∂∆̃
∂γ

= −∆̃2”, as pointed out in [10] where

this relation is rigorously shown. Note that, since

∂n
√
−|γ|K c d

ab ef

∂γkl... ∂γij
(x) =

∫
dDx1... d

Dxn
δn
√
−|γ|K c d

ab ef (x)

δγkl(x1)... δγij(xn)
, (4.51)

we have

S̃n =
−1

2n!

∫
dDx dDx1... d

Dxn
δn
√
|ǧ|K c d

ab ef [ǧ](x)

δǧkl(x1)... δǧij(xn)

∣∣∣∣
ǧ→γ

hij(x1)... hkl(xn)∇ch
ab(x)∇dh

ef (x)

(4.52)

such that

∞∑
n=0

χnS̃n =
−1

2

∫
dDx

(√
|ǧ|K c d

ab ef [ǧ]
)

[γab + χhab]∇ch
ab∇dh

ef

=
−1

2χ2

∫
dDx

√
−|g|K c d

ab ef [g]∇cg
ab∇dg

ef

(4.53)
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where gab = γab + χhab. To conclude the iterative procedure note that

lim
γ→ḡ

∞∑
n=0

χnS̃n =
∞∑
n=0

χnSn = Sh +
∞∑
n=0

χn+1S
(n)
int,h ≡ Sh + χSint,h (4.54)

The following claim is crucial.

Claim A: (4.54), with a = 1 = b, equals the Einstein-Hilbert action (and

this determines the value of the coupling constant χ).

Before demonstrating this, we’ll end this section by addressing the fact that assumption (4.35)

is not true for parameters a = 1 = b. This problem is solved through non-minimal coupling.

Recall that γ → ḡ is an abbreviation for Ra
bcd[γ] → 0. Since Ra

bcd is quadratic in ∇, we

must use non-minimal coupling terms of the form

SNM
0 =

1

2

∫
dDx

√
−|γ|Q bcj

i afedR
i
bcjh

afhed (4.55)

(where Q bcj
i afed = Q bcj

i edaf ). We use the fact that

Ri
bcj[γ] = Ri

bcj[γ + δγ]− 2∇[cδCij]b − 2δCid[cδCdj]b (4.56)

where δCijb = 1
2
(γiυ + δγiυ)∇µ(γνρ + δγνρ)∆

µνρ
jυb to see how the Riemann changes with vari-

ations of γ:

δRi
bcj = 2∇[cδCij]b = −∆̃µ i

θφb [j∇c]∇µδγ
θφ (4.57)

where we have neglected terms of quadratic order in δγ. Hence, we have

δSNM
0

δγpq
=

1

2

∂
√
−|γ|Q bcj

i afed

∂γpq
Ri

bcjh
afhed −

√
−|γ|
2

Q τdj
i abef∆̃

c i
pqτ [j∇c∇d]h

abhef

=
1

2

∂
√
−|γ|Q bcj

i afed

∂γpq
Ri

bcjh
afhed −

√
−|γ|Q τ [dj]

i abef∆̃
c i
pqτ j∇c(h

ab∇dh
ef )

(4.58)

According to (4.27), after differentiating we should bring γ to ḡ, such that the first term

above vanishes. To stay closer to the way we ran the iterations when the minimal coupling

was assumed, we’ll keep using γ and simply ignore terms proportional to the Riemann. Let

us go over some of the previous formulas to see how they change with non-minimal coupling:

S̃0 =
−1

2

∫
dDx

√
−|γ|∇ch

ab∇dh
efK c d

ab ef + SNM
0 ⇒

δS̃0

δγpq
=
−1

2

√
−|γ|A c d

ab ef pq∇ch
ab∇dh

ef −
√
−|γ|

[
B c d
pq ef ab +Q

τ [dj]
i abef∆̃

c i
pqτ j

]
∇c(h

ab∇dh
ef )
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Then, the B + A = 0 equation in (4.34) becomes

B c d
pq ef ab + A c d

pq ef ab = −Q τ [dj]
i abef∆̃

c i
pqτ j ⇔ (4.59)√

−|γ|∆̃c υ
pqµ (aK

µ d
b)υ ef +

∂
√
−|γ|K c d

pq ef

∂γab
= −

√
−|γ|∆̃c i

pqτ jQ
τ [dj]
i abef (4.60)

Using Procedure A on (4.60), we obtain

∆̃c υ
pqµ (a

∂
√
−|γ|K µ d

b)υ ef

∂γθφ
+ (ab)↔ (θφ) +

∂2
√
−|γ|K c d

pq ef

∂γab∂γθφ
= −∆̃c i

pqτ j

∂
√
−|γ|Q τ [dj]

i abef

∂γθφ

(4.61)

This will turn up useful in a moment. Dividing (4.60) by
√
−|γ| we get an equation that is

solved by

Q τdj
i abef =

1

2

(
δdi γ

τj

[
γe(aγb)f +

1

2
γabγef

]
− δτ(aδ

j
b)δ

d
i γef − δτ(eδ

j
f)δ

d
i γab

)
(4.62)

(see Appendix C) such that SNM
0 is completely determined:

SNM
0 =

1

2

∫
dDx

√
−|γ|

[
R
2

(
γaeγdf +

1

2
γafγed

)
−Rafγed

]
hafhed (4.63)

If we start the second step of the iterative procedure with (4.36), the self-coupling condition

will require equation (4.43). However (4.61) tells us that to satisfy this ∆̃c i
pqτ j

∂
√
−|γ|Q τ [dj]

i abef

∂γθφ

should vanish. Since this doesn’t happen, S̃1 must also contain a non-minimal coupling term:

SNM
1 =

∫
dDx

√
−|γ|Ri

τdjQ
τdj
i abefsth

sthabhef (4.64)

where Q τdj
i abefst = Q τdj

i efabst = Q τdj
i stefab and thus we have

δSNM
1

δγpq
= −

√
−|γ|Q τdj

i abefst∆̃
c i
pqτ [j∇c∇d]h

sthabhef

= −3
√
−|γ|Q τ [dj]

i abefst∆̃
c i
pqτ j∇c(h

sthab∇dh
ef )

(4.65)

(already ignoring terms proportional to the Riemann). Hence instead of (4.37) we now have

δS̃1

δγpq
=
−1

2

∂2
√
−|γ|K c d

ab ef

∂γpq∂γst
hst∇ch

ab∇dh
ef

− 1

2

[
∆̃c υ

pqµ (a

∂
√
−|γ|K µ d

b)υ ef

∂γst
+ (ab)↔ (st) + 6

√
−|γ|Q τ [dj]

i abefst∆̃
c i
pqτ j

]
∇c(h

sthab∇dh
ef )

(4.66)
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This time the self-coupling condition requires Q
τ [dj]
i abefst to solve

∆̃c υ
pqµ (a

∂
√
−|γ|K µ d

b)υ ef

∂γst
+ (ab)↔ (st) +

∂2
√
−|γ|K c d

pq ef

∂γab∂γst
= −6

√
−|γ|Q τ [dj]

i abefst∆̃
c i
pqτ j

(4.67)

Taking into account equation (4.61), this reduces to

∂
√
−|γ|Q τ [dj]

i abef

∂γst
∆̃c i

pqτ j = 6
√
−|γ|Q τ [dj]

i abefst∆̃
c i
pqτ j (4.68)

which can be shown to be equivalent to

Q
τ [dj]
i abefst =

1

6
√
−|γ|

∂
√
−|γ|Q τ [dj]

i abef

∂γst
(4.69)

Let us generalise the procedure above so that every S̃n contains a non-minimal coupling term:

SNM
n =

∫
dDx

√
−|γ|Ri

τdjQ
τdj
i abefst...kl

n times︷ ︸︸ ︷
hkl... hst habhef (4.70)

⇒ δSNM
n

δγpq
= −(n+ 2)

√
−|γ|Q τ [dj]

i abefst...kl∆̃
c i
pqτ j∇c(h

kl... hsthab∇dh
ef ) (4.71)

(already ignoring terms proportional to the Riemann). Hence instead of (4.45) we now have

δS̃n
δγpq

=
−1

2n!

∂n+1
√
−|γ|K c d

ab ef

∂γpq∂γkl... ∂γst
hkl... hst∇ch

ab∇dh
ef − 1

(n+ 1)!

[
∆̃c υ

pqµ (a

∂n
√
−|γ|K µ d

b)υ ef

∂γkl... ∂γst

+ (ab)↔ (st) + ...+ (ab)↔ (kl) + (n+ 2)!
√
−|γ|Q τ [dj]

i abefst...kl∆̃
c i
pqτ j

]
∇c(h

kl... hsthab∇dh
ef )

(4.72)

This time the self-coupling condition requires Q
τ [dj]
i abefst...kl to solve

∆̃c υ
pqµ (a

∂n
√
−|γ|K µ d

b)υ ef

∂γkl... ∂γst
+ (ab)↔ (st) + ...+ (ab)↔ (kl) +

∂n+1
√
−|γ|K c d

pq ef

∂γab∂γkl... ∂γst

= −(n+ 2)!
√
−|γ|Q τ [dj]

i abefst...kl∆̃
c i
pqτ j

(4.73)

By repeatedly applying Procedure A n times starting with (4.60), we get

Q
τ [dj]
i abefst...kl(x) =

(n+ 2)!−1√
−|γ|

∂n
√
−|γ|Q τ [dj]

i abef

∂γkl... ∂γst
(x)

=
(n+ 2)!−1√
−|γ|

∫
dDx1... d

Dxn
δn
√
−|γ|Q τ [dj]

i abef (x)

δγkl(x1)... δγst(xn)

(4.74)
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such that

SNM
n =

1

(n+ 2)!

∫
dDxRi

τdjh
abhef

∫
dDx1... d

Dxn
δn
√
−|γ|Q τ [dj]

i abef (x)

δγkl(x1)... δγst(xn)
hkl(x1)... hst(xn)

(4.75)

which agrees with the previous expressions for SNM
0 and SNM

1 .

4.3 Bi-connection GR

In this section we back up Claim A. This is only needed because (4.53) and (4.54) happen

to differ from the embodiment of Einstein-Hilbert action we’re used to. We then resort to

Tomboulis’ formulation of GR with two connections (this is very much related to Rosen’s

bimetric formulation [37]).

Consider the covariant derivative ∇̂ of the Levi-Civita connection Γ̂[g] in terms of the deriv-

ative ∇̌ of a torsion-free connection Γ̌. For an arbitrary weight-ω tensor density V b1...bn
a1...an ,

∇̂cV
b0...bn

a0...an = ∇̌cV
b0...bn

a0...an +
n∑
i=0

CbicdV
b0...d...bn

a0...an −
n∑
i=0

CdcaiV
b0...bn

a0...d...an

−ωCddcV b0...bn
a0...an

(4.76)

where

Cabc =
1

2
gad
(
∇̌bgcd + ∇̌cgbd − ∇̌dgbc

)
=

1

2
gad∇̌µgνρ∆

µνρ
bdc (4.77)

The fact that ∇̌a(g
bdgdc) = ∇̌aδ

b
c = 0 implies the useful equality: gbd∇̌agdc = −gdc∇̌ag

bd. This

allows us to rewrite C as

Cabc =
−1

2

(
gbd∇̌cg

da + gcd∇̌bg
da − gbegcfgad∇̌dg

ef
)

=
−1

2
gνρ∆

µνρ
bdc∇̌µg

ad . (4.78)

(4.77) is obtained from the condition of metric compatibility, ∇̂gab = 0. We could have arrived

to (4.78) first from the equivalent condition ∇̂gab = 0. If one expands ∇̂ and ∇̌ in terms of

their connections, in (4.76), it becomes clear that Γ̂[g] = Γ̌ + C. Hence, C is the difference

between two connections, therefore a tensor. One can see this explicitly through (4.77) and

(4.78). We now move on to consider the Riemann tensor20:

Rd
cab[Γ̂]vd = −

[
∇̂a , ∇̂b

]
vc , (4.79)

20Since Γ̌ is not a priori associated with any metric, we write R[Γ̂] intead R[g] in this section.
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where v is an arbitrary covector. Using (4.76) in (4.79) one can write the Riemann in terms

of Γ̌:

Rd
cab[Γ̂] = Rd

cab[Γ̌] + ∇̌aCdcb − ∇̌bCdca + CecbCdea − CecaCdeb (4.80)

A metric theory of gravity has an action depending solely on a metric in a spacetime man-

ifold, S ≡ S[g]. For completeness, instead of simply writing the Einstein-Hilbert action SEH

we will consider

S =
1

16πG

∫
dDx f(|g|)R[Γ̂] , (4.81)

invariant under UCTs, that reduces to SEH if f(|g|) =
√
−|g| (only in this case we have

invariance under GCTs). Now, we substitute R ≡ gcbRcb ≡ gcbRa
cab as given by (4.80):

S =
1

16πG

∫
dDx

[
f(|g|)gcbRa

cab[Γ̌] + f(|g|)gcb
(
∇̌aCacb − ∇̌bCaca

)
+ L1

]
(4.82)

where L1 = f(|g|)gcb
(
CdcbCada − CdcaCadb

)
. Note that∫

dDxf(|g|)gcb
(
∇̌aCacb − ∇̌bCaca

)
=

∫
dDx∇̌dB

d −
∫
dDx

[
Cacb∇̌a

(
f(|g|)gcb

)
− Caca∇̌b

(
f(|g|)gcb

) ] (4.83)

where Bd = f(|g|)
(
gcbCdcb − gdcCaca

)
. Note also that

∇̂a

(√
−|g|

)ω
= ∂a

(√
−|g|

)ω
− ωΓ̂bba

(√
−|g|

)ω
= ω

(√
−|g|

)ω−1

∂a
√
−|g| − ω

(√
−|g|

)ω−1

Γ̂bba
√
−|g| = 0

(4.84)

since Γ̂bba
√
−|g| = ∂a

√
−|g|. Hence, writing f(|g|) as a polynomial, one sees that ∇̂a

(
f(|g|)gcb

)
=

0. Using this together with (4.76), one can write the last integral in (4.83) as

Cacb∇̌a

[
f(|g|)gcb

]
− Caca∇̌b

[
f(|g|)gcb

]
= (ω + 1)gcbCdcbCaadf(|g|)− 2gcbCdcaCadbf(|g|)

−(ω − 1)gcbCddcCaabf(|g|)
(4.85)

where we have assumed that f(|g|) ≡ fω(|g|) ∝
(√
−|g|

)ω
, such that ω = 1 corresponds to

SEH (in this case, (4.85) equals 2L1).

Chosing Γ̌ such that Γ̌bba = 0 (which is unnecessary if ω = 1) and we have ∇̌dB
d = ∂dB

d,

S =
1

16πG

∫
dDx

(
∂dB

d + fω(|g|)gcbRa
cab[Γ̌]− Lω

)
(4.86)
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where
Lω =

[
ωgcbCdcbCaad − gcbCdcaCadb − (ω − 1)gcbCddcCaab

]
fω(|g|)

= L1 + (ω − 1)gcbCdcbCaadfω(|g|)− (ω − 1)gcbCddcCaabfω(|g|)
(4.87)

Let us drop the total divergence in (4.86):

S ≡ 1

16πG

∫
dDx

(
fω(|g|)gcbRa

cab[Γ̌]− Lω

)
. (4.88)

Most commonly, the Riemann in SEH is written in terms of the metric connection Γ̂[g] (and

coordinate derivatives ∂). Have we done this instead of (4.80), we would end up with

SEH =
1

16πG

∫
dDx

(
∂dB

′d − L′1

)
(4.89)

in place of (4.86) (with ω = 1). L′ and B′ only differ from L and B in having Γ̂ instead of C
but they aren’t scalar and vector densities. Only SEH is invariant under GCTs. Fortunately

in this “bi-connection” formulation this is not the case and we can drop the total divergence

in (4.86) while mantaining the action a scalar.

Using (4.78), one sees that

gdbCcdaCabc =
1

4

[
2δc(egf)(aδ

d
b) − gcdga(egf)b

]
∇̌cg

ab∇̌dg
ef (4.90)

gcbCdcbCaad =
1

4

[
δc(eδ

d
f)gab + δc(aδ

d
b)gef − gcdgabgef

]
∇̌cg

ab∇̌dg
ef (4.91)

gcbCddcCaab =
1

4
gcdgabgef∇̌cg

ab∇̌dg
ef (4.92)

and then

Lω =
fω(|g|)

4

[
gcdga(egf)b − (2ω − 1)gcdgabgef − 2δc(egf)(aδ

d
b) + ωδc(eδ

d
f)gab + ωδc(aδ

d
b)gef

]
∇̌cg

ab∇̌dg
ef

= L1 +
ω − 1

4
fω(|g|)

[
δc(eδ

d
f)gab + δc(aδ

d
b)gef − 2gcdgabgef

]
∇̌cg

ab∇̌dg
ef

≡ fω(|g|)
2

Kω c d
ab ef [g]∇̌cg

ab∇̌dg
ef

(4.93)

where

L1 =
fω(|g|)

4

[
gcdga(egf)b − gcdgabgef − 2δc(egf)(aδ

d
b) + δc(eδ

d
f)gab + δc(aδ

d
b)gef

]
∇̌cg

ab∇̌dg
ef (4.94)

From now on until the end of the section, we’ll focus solely on the Einstein-Hilbert case,

where ω = 1 and there’s no need for Γ̌bba = 0. One sees that 2K1 c d
ab ef [g] (the expression inside
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the brackets above) equals 2K c d
ab ef [g] from (4.24). By choosing the connection Γ̌ to be flat

(Γ̌ ≡ Γ⇒ ∇̌ ≡ ∇̄), such that Ra
cab[Γ] = 0, one obtains from (4.88)

SEH =
−1

32πG

∫
dDx

√
−|g|K c d

ab ef [g]∇̄cg
ab∇̄dg

ef (4.95)

and claim A is therefore proven. The action Sh given by (4.25) is the first non-vanishing term

in the taylor expansion SEH|gab=ḡab+√16πGhab , i.e. around a flat metric (such that Γ̌ can be the

Levi-Civita connection associated with ḡ).

Let us for a moment consider the term with the Riemman in SEH given by (4.88) and explore

it by not assuming a flat connection Γ̌:

1

16πG

∫
dDx

√
−|g|gcbRa

cab[Γ̌] ≡ SR[g] 6= 0 (4.96)

Choosing Γ̌ to be the Levi-Civita connection associated with an arbitrary metric γ (Γ̌ = Γ̌[γ]),

a (functional) Taylor expansion about γ gives

SR|gab=γab+√16πGhab

=
∞∑
n=0

(16πG)
n−2
2

n!

∫
dDx dDx1... d

Dxn
δn(
√
−|γ|γcb)

δγab(x1)... δγij(xn)
hab(x1)... hij(xn)Ra

cab[γ]

≡
∞∑
n=0

(16πG)
n−2
2 S

(n)
R

(4.97)

Computing S
(2)
R , one sees that it equals SNM

0 (4.63). Hence, using (4.70) and (4.74), we get

that S
(n)
R = SNM

n−2 (up to an overall constant) for n ≥ 2. For completeness, let us do the same

for the non Einstein-Hilbert case (ω 6= 1). Then, instead of (4.96) we have

1

16πG

∫
dDx fω(|g|)gcbRa

cab[Γ̌] ≡ SU,R[g] (4.98)

and, expanding this around γ,

SU,R|gab=γab+√16πGhab

=
∞∑
n=0

(16πG)
n−2
2

n!

∫
dDx dDx1... d

Dxn
δn(fω(|γ|)γcb)

δγab(x1)... δγij(xn)
hab(x1)... hij(xn)Ra

cab[γ]

≡
∞∑
n=0

(16πG)
n−2
2 S

(n)
U,R

(4.99)

which will be useful in section 5.2.
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4.4 Reverse engineering Einstein’s gravity

We define background independence of a theory as the absence of absolute objects (see [21]) in

its formulation. However, it’s quite common to see this, in the literature, being included in the

concept of general covariance which we find unnecessarily misleading, specially in the context

of this work. In this section, we’re going to see how background independence of SEH
21 leads

to:

• the gauge invariance of Sh and consequently Ah in the Diff case;

• and the self-coupling condition (4.21).

Given a metric theory S[g], one can “divide” the (components of the inverse) metric gab into

a non-dynamical background metric ǧab and a dynamical hab field:

S[g]
∣∣∣
gab=φ(χhab,ǧab)

≡ S[ǧ;h] =
∞∑
n=0

χnS(n)[ǧ;h] (4.100)

We assume the background is flat, ǧab = ḡab, and

S[g] ≡ (16πG)SEH =
−1

2

∫
dDx

√
−|g|K c d

ab ef [g]∇̄cg
ab∇̄dg

ef (4.101)

such that, considering φ = ḡab + χhab:

S[ḡ;h] =
∞∑
n=2

χn

n!

∫
dDx1... d

Dxn
δnS[γ]

δγab(x1)... δγij(xn)

∣∣∣∣
γ=ḡ

hab(x1)... hij(xn)

≡
∞∑
n=0

χnSn[h; ḡ] .

(4.102)

(Metric compatibility of ∇̄ leads to S(0) = 0 = S(1).) Note that, since S[g = φ] = S[ḡ;h] is a

scalar, Sn are too. However for the moment we focus on the background independent action

S[g]. Since this is a scalar, under GCTs in the active perspective we have (up to ST )

δξS[g] ≡ S[gab + δξg
ab]− S[gab] = 0 with δξg

ab = ξc∇̄cg
ab − 2gc(a∇̄cξ

b) .

where (3.21) was used. Note that

δξg
ab
∣∣∣
gab=φ

= −2∇̄(aξb) + χξc∇̄ch
ab − 2χhc(a∇̄cξ

b)

21The footnotes in p. 5 of [38] and references therein suggest that if this label is used thoroughly it doesn’t

apply to GR.
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such that, using metric compatibility,

δξS[h; ḡ] = 0 with δξḡ
ab + χδξh

ab = −2∇̄(aξb) + χξc∇̄ch
ab − 2χhc(a∇̄cξ

b) .

Since the hab field is the dynamical one, we choose δξḡ
ab = 0 and δξh

ab = χ−1δ
(−1)
ξ hab + δ

(0)
ξ hab

where
δ

(−1)
ξ hab = −2∇̄(aξb)

δ
(0)
ξ hab = ξc∇̄ch

ab − 2hc(a∇̄cξ
b)

(4.103)

Note that all functional integrals should be automatically understood to have ḡ and h as

variables.

δξSn =

∫
dDx

δSn
δhab

δξh
ab + ST =

∫
dDx

(
χ−1 δSn

δhab
δ

(−1)
ξ hab +

δSn
δhab

δ
(0)
ξ hab

)
+ ST

≡ χ−1δ
(−1)
ξ Sn + δ

(0)
ξ Sn

(4.104)

Hence, since S is invariant (up to ST ) under GCTs:

δ
(−1)
ξ S0 + ST = 0 (4.105)

δ
(0)
ξ Sn−1 + δ

(−1)
ξ Sn + ST = 0 , n ≥ 1 (4.106)

Using (4.105),

δ
(−1)
ξ S0 = −2

∫
dDx

δS0

δhab
∇̄aξb + ST ⇒ 2

∫
dDx ξb∇̄a δS0

δhab
+ ST = 0 (4.107)

We can convert the surface terms into an integral over the boundary and, using an appropriate

choice of boundary conditions for the gauge parameter ξ, it can be made to vanish. Due to

arbitrariness of the parameter one arrives at the identity

∇̄a δS0

δhab
= 0 (4.108)

Moving on to n ≥ 1, one has that

δ
(−1)
ξ Sn =

∫
dDx

δSn
δhab

δ
(−1)
ξ hab + ST = −2

∫
dDx

δSn
δhab
∇̄aξb + ST

δ
(0)
ξ Sn−1 =

∫
dDx

δSn−1

δhab
δ

(0)
ξ hab + ST

=

∫
dDx

(
−2

δSn−1

δhab
hca∇̄cξ

b +
δSn−1

δhab
ξc∇̄ch

ab

)
+ ST .

(4.109)

Using (4.106) and integrating by parts to get rid of ∇̄ξ, one obtains∫
dDx

[
2∇̄c δSn

δhcd
+ 2∇̄c

(
δSn−1

δhad
hca
)

+
δSn−1

δhab
∇̄dh

ab

]
ξd + ST = 0 (4.110)
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It’s time to use the invariance of Sn under GCTs. This is where, as promised, (3.37) (without

ϕ fields) enters and we rewrite the equation above as∫
dDx

[
2∇̄c δSn

δhcd
− 2∇̄c δSn−1

δḡcd

]
ξd + ST = 0 (4.111)

Following the same reasoning used to derive (4.108), we obtain the identity

∇̄a δSn
δhab

= ∇̄a δSn−1

δḡab
(4.112)

If one recalls section 4.1, namely equation (4.16), one sees that this is equivalent to the self-

coupling condition (4.21). One could ask: what if ǧ wasn’t flat and S[g] wasn’t of the type

(4.101) such that S(0) and S(1) didn’t vanish? Then, instead of (4.105) and (4.106), we would

have

δ
(−1)
ξ S(0) + ST = 0 (4.113)

δ
(0)
ξ S(n−1) + δ

(−1)
ξ S(n) + ST = 0 , n ≥ 1 (4.114)

where, instead of (4.103),

δ
(−1)
ξ hab = −2∇̌(aξb)

δ
(0)
ξ hab = ξc∇̌ch

ab − 2hc(a∇̌cξ
b) .

(4.115)

(∇̌ is compatible with ǧ). Since S(0) = S(0)[ǧ], δ
(−1)
ξ S(0) = 0 and δ

(0)
ξ S(0) = 0 are trivial. Note

that

S(1) = χ

∫
dDx

δS[γ]

δγab

∣∣∣∣
γ=ǧ

hab ⇒ δS(1)

δhab
= χ

δS[γ]

δγab

∣∣∣∣
γ=ǧ

(4.116)

Then, if the background is a solution of the EOMs associated with S[g], δ
(−1)
ξ S(1) = 0 = δ

(0)
ξ S(1)

and (4.114) reduce to

δ
(−1)
ξ S(2) + ST = 0 (4.117)

δ
(0)
ξ S(n−1) + δ

(−1)
ξ S(n) + ST = 0 , n ≥ 3 (4.118)

similar to (4.105) and (4.106). On the other hand, if the background is not a solution, the

action (of quadratic order in the dynamical field) S(2) doesn’t have any invariance besides the

one under GCTs.
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To end this section, let us consider a metric theory of gravity with matter, given by the

action Smat.

Smat[g, ϕ]
∣∣∣
g=φ

=
∞∑
n=0

χn

n!

∫
dDx1... d

Dxn
δnSmat[γ, ϕ]

δγab(x1)... δγij(xn)

∣∣∣∣
γ=ḡ

hab(x1)... hij(xn)

≡ Smat[ḡ;h, ϕ] =
∞∑
n=0

χnS
(n)
mat[ḡ;h, ϕ]

(4.119)

Under GCTs in the active perspective we have (up to ST )

δξSmat[g, ϕ] = 0 with δξg
ab = ξc∇̄cg

ab − 2gc(a∇̄cξ
b)

and δξϕ = ξc∇̄cϕ

Note that

δξg
ab
∣∣∣
gab=φ

= −2∇̄(aξb) + χξc∇̄ch
ab − 2χhc(a∇̄cξ

b)

such that

δξSmat[ḡ;h, ϕ] = 0 with δξḡ
ab + χδξh

ab = −2∇̄(aξb) + χξc∇̄ch
ab − 2χhc(a∇̄cξ

b)

and δξϕ = ξc∇̄cϕ ≡ δ
(0)
ξ ϕ

Like we did above, we choose δξḡ
ab = 0 and δξh

ab = χ−1δ
(−1)
ξ hab + δ

(0)
ξ hab. Note that all

functional integrals should be automatically understood to have ḡ, h and ϕ as variables.

δξS
(n)
mat =

∫
dDx

(
δS

(n)
mat

δhab
δξh

ab +
δS

(n)
mat

δϕ
δξϕ

)
+ ST

=

∫
dDx

(
χ−1 δS

(n)
mat

δhab
δ

(−1)
ξ hab +

δS
(n)
mat

δhab
δ

(0)
ξ hab +

δS
(n)
mat

δϕ
δ

(0)
ξ ϕ

)
+ ST

≡ χ−1δ
(−1)
ξ S

(n)
mat + δ

(0)
ξ S

(n)
mat

(4.120)

Hence, since Smat is invariant (up to ST ) under GCTs:

δ
(−1)
ξ S

(0)
mat + ST = 0 (4.121)

δ
(0)
ξ S

(n−1)
mat + δ

(−1)
ξ S

(n)
mat + ST = 0 , n ≥ 1 (4.122)

The first equation is trivially satisfied since S
(0)
mat has no dependence on h. Furthermore, one
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has

δ
(−1)
ξ S

(n)
mat =

∫
dDx

δS
(n)
mat

δhab
δ

(−1)
ξ hab + ST = −2

∫
dDx

δS
(n)
mat

δhab
∇̄aξb + ST

δ
(0)
ξ S

(n−1)
mat =

∫
dDx

(
δS

(n−1)
mat

δhab
δ

(0)
ξ hab +

δS
(n−1)
mat

δϕ
δ

(0)
ξ ϕ

)
+ ST

=

∫
dDx

(
−2

δS
(n−1)
mat

δhab
hca∇̄cξ

b +
δS

(n−1)
mat

δhab
ξc∇̄ch

ab +
δS

(n−1)
mat

δϕ
ξc∇̄cϕ

)
+ ST .

(4.123)

Using (4.122) and integrating by parts, one obtains∫
dDx

[
2∇̄c δS

(n)
mat

δhcd
+ 2∇̄c

(
δS

(n−1)
mat

δhad
hca

)
+
δS

(n−1)
mat

δhab
∇̄dh

ab +
δS

(n−1)
mat

δϕ
∇̄dϕ

]
ξd + ST = 0

(4.124)

Using (3.37) again (this time with ϕ fields), we write this as∫
dDx

[
2∇̄c δS

(n)
mat

δhcd
− 2∇̄c δS

(n−1)
mat

δḡcd

]
ξd + ST = 0 (4.125)

Following the same reasoning used to derive (4.108), we obtain the identity

∇̄a δS
(n)
mat

δhab
= ∇̄a δS

(n−1)
mat

δḡab
(4.126)

This is equivalent to (4.19). It also implies

∇̄a

∞∑
n=1

χn
δS

(n)
mat

δhab
= ∇̄a

∞∑
n=1

χn
δS

(n−1)
mat

δḡab
⇔ ∇̄a δSmat

δhab
− ∇̄a δS

(0)
mat

δhab
= χ∇̄a δSmat

δḡab

⇔ ∇̄a δSmat

δhab
= ∇̄a δS

(0)
mat

δhab
+
χ

2
∇̄cT

cd
Rosḡdb

√
−|ḡ|

(4.127)

which coincides with (2.45) in a covariantized form.
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5 Self-coupling in the TDiff case

5.1 Reverse engineering Unimodular gravity

In section 4.3, besides GR, we considered other metric theories (given by S[g]) that, whilst

not covariant, enjoyed U-covariance (cf. [22, 23]). Close to what was done in the previous

section, we “divide” gab into a non-dynamical (flat and “unimodular”) background metric ḡab

and a dynamical hab field:

S[g]
∣∣∣
gab=φ(χhab,ḡab)

≡ SU [ḡ;h] =
∞∑
n=0

χnS
(n)
U [ḡ;h] (5.1)

Taking (4.88) and (4.93) into consideration, we choose the connection Γ̌ such that Ra
bcd[Γ̌] = 0

and Γ̌aab = 0 (Γ̌ ≡ Γ⇒ ∇̌ ≡ ∇̄). Hence,

S[g] ≡ −1

2

∫
dDx f(|g|)K c d

ab ef [g]∇̄cg
ab∇̄dg

ef (5.2)

Assuming φ = ḡab + χhab,

SU [ḡ;h] =
∞∑
n=2

χn

n!

∫
dDx1... d

Dxn
δnS[γ]

δγab(x1)... δγij(xn)

∣∣∣∣
γ=ḡ

hab(x1)... hij(xn)

≡
∞∑
n=0

χnSU,n[ḡ;h] .

(5.3)

(Metric compatibility of ∇̄ leads to S
(0)
U = 0 = S

(1)
U .) This time we only assume S[g = φ] =

S[ḡ;h] to be a U-scalar, such that Sn are too U-scalars. However let us focus for now on the

background independent S[g]. Under UCTs in the active perspective we have (up to ST )

δξS[g] = 0 with δξg
ab = ξc∂cg

ab − 2gc(a∂cξ
b) = ξc∇̄cg

ab − 2gc(a∇̄cξ
b) .

Note that

δξg
ab
∣∣∣
gab=φ

= −2∇̄(a
ξb) + χξc∇̄ch

ab − 2χhc(a∇̄cξ
b)

such that (again up to ST )

δξSU [ḡ;h] = 0 with δξḡ
ab + χδξh

ab = −2∇̄(a
ξb) + χξc∇̄ch

ab − 2χhc(a∇̄cξ
b) .

Since the hab field is the dynamical one, we choose δξḡ
ab = 0 and δξh

ab ≡ χ−1δ
(−1)
ξ hab + δ

(0)
ξ hab

where
δ

(−1)
ξ hab = −2∇̄(a

ξb) ⇒ ḡabδ
(−1)
ξ hab = −2∇̄aξ

a = 0

δ
(0)
ξ hab = ξc∇̄ch

ab − 2hc(a∇̄cξ
b)

(5.4)
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Note that all functional integrals should be automatically understood to have ḡ and h as

variables. Like in previous section we write δξSU,n = χ−1δ
(−1)
ξ SU,n + δ

(0)
ξ SU,n where

δ
(−1)
ξ SU,n ≡

∫
dDx

δSU,n
δhab

δ
(−1)
ξ hab

δ
(0)
ξ SU,n ≡

∫
dDx

δSU,n
δhab

δ
(0)
ξ hab

(5.5)

Hence, since S is invariant (up to ST ) under UCTs:

δ
(−1)
ξ S0 + ST = 0 (5.6)

δ
(0)
ξ SU,n−1 + δ

(0)
ξ SU,n + ST = 0 , n ≥ 1 (5.7)

One has that

δ
(−1)
ξ S0 =

∫
dDx

δS0

δhab
δ

(−1)
ξ hab + ST = −2

∫
dDx

δS0

δhab
∇̄a
ξb + ST (5.8)

Integrating the first term by parts and using (5.6), one obtains

2

∫
dDx ξb∇̄a δS0

δhab
+ ST = 0 (5.9)

The transformation parameter is constrained by ∂aξ
a = ∇̄aξ

a = 0 such that we can replace

it by the more arbitrary parameter F cj = F [cj]: ξj = ∂cF cj = ∇̄cF cj. After doing this and

integrating by parts,

−2

∫
dDxF cb∇̄c∇̄

a δS0

δhab
+ ST = 0 (5.10)

We can convert the surface term above into an integral over the boundary and, using an

appropriate choice of boundary conditions for the gauge parameter ξa, it can be made to

vanish. Due to arbitrariness of the parameter F cb one arrives at the identity

0 = ∇̄[c∇̄
a δS0

δhb]a
= ∂[c∇̄

a δS0

δhb]a
(5.11)

Moving on to n ≥ 1, one has that

δ
(−1)
ξ SU,n =

∫
dDx

δSU,n
δhab

δ
(−1)
ξ hab + ST = −2

∫
dDx

δSU,n
δhab

∇̄a
ξb + ST (5.12)

and

δ
(0)
ξ SU,n−1 =

∫
dDx

δSU,n−1

δhab
δ

(0)
ξ hab + ST

=

∫
dDx

(
−2

δSU,n−1

δhab
hca∇̄cξ

b +
δSU,n−1

δhab
ξc∇̄ch

ab

)
+ ST .

(5.13)
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Using (4.106) and integrating by parts to get rid of ∇̄ξ, one obtains∫
dDx

[
2∇̄c δSU,n

δhcd
+ 2∇̄c

(
δSU,n−1

δhad
hca
)

+
δSU,n−1

δhab
∇̄dh

ab

]
ξd + ST = 0 (5.14)

Inserting the more arbitrary parameter F id = F [id] via ξd = ∂iF id = ∇̄iF id and integrating

by parts:

−
∫
dDx

[
2∇̄c∇̄[i

δSU,n
δhd]c

+ 2∇̄c∇̄[i

(
δSU,n−1

δhd]a
hac
)

+ ∇̄[i

((
∇̄d]h

ab
) δSU,n−1

δhab

)]
F id + ST = 0

(5.15)

It’s time to use the invariance of SU,n under UCTs. This is where (3.62) (without ϕ fields)

enters and we rewrite the equation above as

−2

∫
dDx

[
∇̄[i∇̄

c δSU,n
δhd]c

− ∇̄[i∇̄
c δSU,n−1

δḡd]c

]
F id + ST = 0 (5.16)

Following the same reasoning used to derive (5.11), we obtain the identity

∇̄[i∇̄
c δSU,n
δhd]c

= ∇̄[i∇̄
c δSU,n−1

δḡd]c
(5.17)

If one recalls section 4.1, namely equation (4.17), one sees that this is equivalent to the self-

coupling condition (5.18).

5.2 Iterative procedure III

In this chapter we intend to replicate section 4.2 for the TDiff case - see (4.20). Let us consider

the equations corresponding to (4.21) and (4.22) (which belonged to the Diff case):

δU
(0)
int,h

δhab
=
δSU,h
δγab

∣∣∣∣
γ→ḡ

and
δU

(n+1)
int,h

δhab
=
δU

(n)
int,h

δγab

∣∣∣∣
γ→ḡ

(5.18)

δU
(0)
int,ϕ

δhab
=
δSU,ϕ
δγab

∣∣∣∣
γ→ḡ

and
δU

(n+1)
int,ϕ

δhab
=
δU

(n)
int,ϕ

δγab

∣∣∣∣
γ→ḡ

(5.19)

such that S
(n)
U,int = U

(n)
int,h + U

(n)
int,ϕ (n ≥ 0). We then start with

Ah =
−1

2

∫
dDxK c d

ab ef [η] ∂ch
ab∂dh

ef (5.20)

where

2K c d
ab ef [η] = ηcdηa(eηf)b − bηcdηabηef − 2δc(eηf)(aδ

d
b) + aδc(eδ

d
f)ηab + aδc(aδ

d
b)ηef (5.21)
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with a 6= 1 or b 6= 1. U-covariantization of (5.20) gives

SU,h =
−1

2

∫
dDx ∇̄ch

ab∇̄dh
efK c d

ab ef [ḡ] (5.22)

Let us write the self-coupling condition (5.18) denoting U
(N)
int,h by SU,N+1 (N ≥ 0):

δSU,1
δhab

=
δSU,h
δγab

∣∣∣∣
γ→ḡ

and
δSU,n+1

δhab
=
δSU,n
δγab

∣∣∣∣
γ→ḡ

(5.23)

where n ≥ 1. Note that
δSU,h/n
δγab

∣∣∣
γ→ḡ

, where SU,h/n = SU,h/n[ḡ;h], stands for

lim
γ→ḡ

δSU,h/n[γ;h]

δγ
+ lim

γ→ḡ

δSNM
U,0/n[γ;h]

δγ
≡ lim

γ→ḡ

δS̃U,0/n
δγ

(5.24)

As we did in section 4.2, we start by assuming minimal coupling, such that

S̃U,0 =
−1

2

∫
dDx∇ch

ab∇dh
efK c d

ab ef , (5.25)

In this section, if nothing is said, a capital latin letter stands for a sum of products of γab and

γab multiplied by a function of |γ| (if dependence on other metric is made explicit, the same

applies with the components of that metric, its inverse and its determinant).

Recall that K obeys K c d
ab ef = K d c

ef ab such that

δS̃U,0
δγpq

=
−1

2
A c d
ab ef pq∇ch

ab∇dh
ef −B c d

pq ef ab∇c(h
ab∇dh

ef ) (5.26)

where

A c d
ab ef pq =

∂K c d
ab ef

∂γpq
and

B c d
pq ef ab = ∆̃c υ

pqµ (aK
µ d

b)υ ef

(5.27)

Thus we must have

S̃U,1 =

∫
dDxX c d

ab ef pqh
pq∇ch

ab∇dh
ef (5.28)

since the self-coupling condition implies that S̃U,1 contains three h and two ∇ and any action

term involving these will equal (5.28) up to ST .

δS̃U,1
δhpq

= X c d
ab ef pq∇ch

ab∇dh
ef − 2X c d

pq ef ab∇c(h
ab∇dh

ef ) (5.29)

such that [
δS̃U,1
δhpq

=
δS̃U,0
δγpq

]
γ→ḡ

⇒

X c d
ab ef pq[ḡ] = −1

2
A c d
ab ef pq[ḡ]

B c d
pq ef ab[ḡ] + A c d

pq ef ab[ḡ] = 0
(5.30)
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Like in section 4.2, B +A = 0 is the consistency requirement in the first step of the iteration.

Using (5.27), this is equivalent to[
∆̃c υ

pqµ (aK
µ d

b)υ ef +
∂K c d

pq ef

∂γab

]
γ=ḡ

= 0 (5.31)

Nonetheless, a general choice of parameters a and b in K doesn’t solve the equation above.

In section 4.2, the contribution of non-minimal couplings to the self-coupling conditions only

affected the consistency requirements. Hence, the derivation of (4.53) and consequently (4.54)

assuming minimal coupling was not in vain. The situation is different now, as we’ll shortly

see, such that it’s worth introducing non-minimal couplings straightaway.

Recall that γ → ḡ is an abbreviation for Ra
bcd[γ]→ 0 and ∂a|γ|→ 0 which is equivalent to

|γ|→ |ḡ|= % where % is an undetermined constant. Since Ra
bcd is quadratic in ∇, we must use

non-minimal coupling terms of the form

SNM
U,0 =

1

2

∫
dDx

(
Q bcj
i afedR

i
bcjh

afhed + [f(|γ|)− f(%)]W c d
ab ef ∇ch

ab∇dh
ef
)

(5.32)

(Q and W may include a function of |γ| but this should not vanish when γ → ḡ or Q/W

won’t participate in the self-coupling condition).

δSNM
U,0

δγpq
=

1

2

∂Q bcj
i afed

∂γpq
Ri

bcjh
afhed −Q τ [dj]

i abef∆̃
c i
pqτ j∇c(h

ab∇dh
ef )

+ [f(|γ|)− f(%)] ∆̃c υ
pqµ (aW

µ d
b)υ ef ∇c(h

ab∇dh
ef ) +

1

2

∂
(
[f(|γ|)− f(%)]W c d

ab ef

)
∂γpq

∇ch
ab∇dh

ef

⇒
δSNM

U,0

δγpq

∣∣∣∣
γ→ḡ

= −Q τ [dj]
i abef [ḡ]∆̃c i

pqτ j[ḡ]∇̄c(h
ab∇̄dh

ef ) +
1

2

∂f(|γ|)
∂γpq

[ḡ]W c d
ab ef [ḡ]∇̄ch

ab∇̄dh
ef

(5.33)

Now, in place of (5.25), S̃U,0 is given by

S̃U,0 =SNM
U,0 −

1

2

∫
dDx∇ch

ab∇dh
efK c d

ab ef =
1

2

∫
dDxQ bcj

i afedR
i
bcjh

afhed

− 1

2

∫
dDx

[
K c d
ab ef − [f(|γ|)− f(%)]W c d

ab ef

]
∇ch

ab∇dh
ef

(5.34)

⇒ δS̃U,0
δγpq

∣∣∣∣
γ→ḡ

=
−1

2

(
A c d
ab ef pq −

∂f(|γ|)
∂γpq

W c d
ab ef

)
[ḡ]∇̄ch

ab∇̄dh
ef

−
(
B c d
pq ef ab +Q

τ [dj]
i abef∆̃

c i
pqτ j

)
[ḡ]∇̄c(h

ab∇̄dh
ef )

(5.35)
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While in section 4.2 the introduction of non-minimal coupling ammounted to substitute B →
B+Q∆̃ in the self-coupling condition (5.30), which only entered the consistency requirement,

this time we also have

A c d
ab ef pq → A c d

ab ef pq −
∂f(|γ|)
∂γpq

W c d
ab ef

⇔A c d
ab ef pq → A c d

ab ef pq +

√
−|γ|
2

∂f(|γ|)
∂
√
−|γ|

γpqW
c d

ab ef

(5.36)

which beyond affecting the consistency requirement also enters S̃U,1.

Before proceding we’re going to draw some inspiration from section 4.3, in particular the

way its results related with the iterative procedure of section 4.2. Let’s then bring back the

assumption that f(|γ|) ≡ fω(|γ|) ∝
(√
−|γ|

)ω
. Comparing Kω c d

ab ef [γ] from (4.93) with

K c d
ab ef [γ] from (5.21), one sees that they are equal if ω = a and b = 2a − 1. What about

choices of parameters where b 6= 2a − 1, like the case of WTDiff symmetry from [3]? Is

there no solution to the iterative procedure? This seems to be false since Alvarez brings up

a non-linear completion of the WTDiff lagrangian, namely action (56) that differs from the

theories considered in section 4.3 by a term proportional to ∂a ln|g| ∂a ln|g|. As is known

([39]), it’s possible to gauge fix the linear WTDiff theory and obtain the theory used in [10]

of a transverse spin-2 field (see lagrangian (10)). Hence, we focus on parameters a = ω and

b = 2ω − 1 and replace K for Kω.

Based on the aforementioned inspiration, we choose (5.32) with

W c d
ab ef = −

Kω c d
ab ef

fω(%)
(5.37)

and Q such that (recalling (4.99))

1

2

∫
dDxQ bcj

i afedR
i
bcjh

afhed = S
(2)
U,R (5.38)

Hence, using (5.34), we have

S̃U,0 =
−1

2fω(%)

∫
dDx fω(|γ|)Kω c d

ab ef ∇ch
ab∇dh

ef +
1

2

∫
dDxQ bcj

i afedR
i
bcjh

afhed (5.39)

and the self-coupling condition is[
δS̃U,1
δhpq

=
δS̃U,0
δγpq

]
γ→ḡ

⇒

X
c d

ab ef pq[ḡ] = −1
2

(
∂Kω c d

ab ef

∂γpq
[ḡ]− ω

2
fω(|ḡ|)
fω(%)

ḡpqK
ω c d
ab ef [ḡ]

)
[
∆̃c υ

pqµ (aK
ω µ d
b)υ ef +Q

τ [dj]
i abef∆̃

c i
pqτ j +

∂Kω c d
ab ef

∂γpq

]
γ=ḡ

= 0

(5.40)
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such that

SU,1 =
−1

2

∫
dDx

(
∂Kω c d

ab ef

∂γpq
[ḡ]− ω

2
ḡpqK

ω c d
ab ef [ḡ]

)
hpq∇̄ch

ab∇̄dh
ef (5.41)

Had we assumed minimal coupling, the next step of the iterative procedure would start with

SU,1[γ;h] =
−1

2

∫
dDx

(
∂Kω c d

ab ef

∂γpq
− ω

2
γpqK

ω c d
ab ef

)
hpq∇ch

ab∇dh
ef

=
−1

2

∫
dDx

1

fω(|γ|)
∂fω(|γ|)Kω c d

ab ef

∂γpq
hpq∇ch

ab∇dh
ef

≡ −1

2

∫
dDx

A′ c d
ab ef pq

fω(|γ|)
hpq∇ch

ab∇dh
ef

(5.42)

However this is not the case and, following (5.37) and (5.38), we choose a non-minimal coupling

for the second step such that

S̃U,1 =
−1

2

∫
dDx

[
A′ c d

ab ef pq

fω(|γ|)
− [fω(|γ|)− fω(%)]W c d

ab ef pq

]
hpq∇ch

ab∇dh
ef + S

(3)
U,R

=
−1

2fω(%)

∫
dDxA′

c d
ab ef pqh

pq∇ch
ab∇dh

ef +

∫
dDxRi

τdjQ
τdj
i abefsth

sthabhef
(5.43)

Hence
δS̃U,1
δγpq

=
−1

2
C c d
ab ef ijpqh

ij∇ch
ab∇dh

ef −D c d
pq ef ijab∇c(h

sthab∇dh
ef ) (5.44)

(ignoring terms proportional to the Riemann like in section 4.2) where

C c d
ab ef ijpq =

1

fω(%)

∂A′ c d
ab ef ij

∂γpq
=

1

fω(%)

∂2fω(|γ|)K c d
ab ef

∂γpq∂γij

D c d
pq ef stab =

1

2fω(%)
∆̃c υ

pqµ (aA
′ µ d
b)υ ef st − 3Q

τ [dj]
i abefst∆̃

c i
pqτ j + (ab)↔ (st)

(5.45)

Up to ST , any action term involving four h and two ∇ will equal (5.46).

S̃U,2 =

∫
dDxY c d

ab ef ijpqh
pqhij∇ch

ab∇dh
ef (5.46)

⇒ δS̃U,2
δhpq

= 2Y c d
ab ef ijpqh

ij∇ch
ab∇dh

ef − 2Y c d
pq ef ijab∇c(h

ijhab∇dh
ef ) (5.47)

The self-coupling condition is[
δS̃U,2
δhpq

=
δS̃U,1
δγpq

]
γ→ḡ

⇒

2Y c d
ab ef ijpq[ḡ] = −1

2
C c d
ab ef ijpq[ḡ]

2D c d
pq ef ijab[ḡ] + C c d

pq ef ijab[ḡ] = 0
(5.48)
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Based on the first and second step of the procedure, we postulate:

SU,n =
−1

2fω(%)

∫
dDx

n!

∂nfω(|γ|)K c d
ab ef

∂γkl... ∂γij

∣∣∣∣
γ→ḡ

n times︷ ︸︸ ︷
hij... hkl ∇̄ch

ab∇̄dh
ef (5.49)

(SU,0, SU,1 and SU,2 match the previously obtained expressions). Note that, since

∂nfω(|γ|)Kω c d
ab ef

∂γkl... ∂γij
(x) =

∫
dDx1... d

Dxn
δnfω(|γ|)Kω c d

ab ef (x)

δγkl(x1)... δγij(xn)
, (5.50)

we have

SU,n =
−1

2fω(%)

∫
dDx

n!
dDx1... d

Dxn
δnfω(|γ|)Kω c d

ab ef (x)

δγkl(x1)... δγij(xn)

∣∣∣∣
γ→ḡ

hij(x1)... hkl(xn)∇̄ch
ab(x)∇̄dh

ef (x)

(5.51)

such that

∞∑
n=0

χnSU,n =
−1

2fω(%)

∫
dDx

(
fω(|γ|)Kω c d

ab ef

)
[ḡab + χhab]∇̄ch

ab∇̄dh
ef

=
−χ−2

2fω(%)

∫
dDx fω(|g|)Kω c d

ab ef [g]∇̄cg
ab∇̄dg

ef

= SU,h +
∞∑
n=0

χn+1U
(n)
int,h ≡ SU,h + χUint,h

(5.52)

where gab = ḡab + χhab. You may be thinking that, like in section 4.2, starting with an

action Ah we were led to an unique interacting theory but this is not the case here. The

uniqueness of the result (5.52) of the iterative procedure is actually due to our assumption

that f(|γ|) = fω(|γ|). To understand how can this be let us revisit section 4.3 to consider

the non Einstein-Hilbert case, where ω 6= 1 and we assume Γ̌bba = 0⇔ ∂a
√
−|ǧ| = 0 implying

that |ǧ| is a constant. Expanding Lω around a metric ǧ compatible with ∇̌,

Lω|gab=ǧab+χhab =
χ2fω(|ǧ|)

2
Kω c d

ab ef [ǧ]∇̌ch
ab∇̌dh

ef +O(χ3) (5.53)

What if instead of fω(|g|) we had a general f(|g|) =
∑

ω f
ω(|g|)? Then, instead of Lω in (4.86)

we would have
∑

ω Lω. Let us write
∑

ω Lω ≡
∑

ω f
ω(|g|)L′ω. This would equal f(|g|)L′ω̄ if

one was allowed to replace ω̄ by ∑
ω ωf

ω(|g|)
f(|g|)

≡ ω̄(|g|) (5.54)
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This is not in general a density weight but ω̄(|ǧ|) is, since |ǧ| is a constant. Hence one can

write,∑
ωf

ω(|ǧ|)L′ω|gab=ǧab+χhab = f(|ǧ|)L′ω̄(|ǧ|)

∣∣∣
gab=ǧab+χhab

+O(χ3)⇔

∑
ωf

ω(|ǧ|)χ
2

2
Kω c d

ab ef [ǧ]∇̌ch
ab∇̌dh

ef = f(|ǧ|)χ
2

2
K ω̄(|ǧ|) c d

ab ef [ǧ]∇̌ch
ab∇̌dh

ef +O(χ3)

(5.55)

where the l.h.s. is the lowest order term in (
∑

ω Lω)’s expansion. Note that the r.h.s. is equally

obtained starting with any f(|g|) =
∑

ω f
ω(|g|) that leads to the same f(|ǧ|) and ω̄(|ǧ|) value.

Hence, the iterative procedure requires choosing f(|g|) in the first step, which is equivalent

to choosing an infinite number of constants for each ω (a decision that is only constrained by

two real numbers, f(|ǧ|) and ω̄(|ǧ|)) and each choice leads to an a priori different theory.

Recall from the end of section 2.2, that a term

α

∫
dDxh2 ≡ A ∗

h (5.56)

(where α is a constant) can be added to (5.20) without breaking TDiff gauge invariance.

U-covariantization of A ∗
h gives

S∗U,h = α

∫
dDx

(
habḡab

)2
(5.57)

Instead of inserting A ∗
h into Ah and carrying out the iterations again, one can add

δS∗U,1
δhab

=
δS∗U,h
δγab

∣∣∣∣
γ→ḡ

and
δS∗U,n+1

δhab
=
δS∗U,n
δγab

∣∣∣∣
γ→ḡ

(5.58)

(where n ≥ 1) to (5.18) and (5.19) such that now S
(N)
U,int = U

(N)
int,h + U

(N)
int,ϕ + S∗U,N+1 (N ≥ 0).

This comes from a reasoning similar to the one behind dividing (4.20) into the aforementioned

equations (see the end of section 4.1): while U
(N)
int,h is quadratic in ∇̄, S∗U,N is quadratic in the

field h (hence, we’re not loosing any solution of the iterative procedure because “it’s impossible

for any cancelation to occur between terms coming from” (5.18) and (5.58)). Also from this,

one deduces that non-minimal coupling terms proportional to the Riemann (like the first in

(5.32)) will not play a part in the following.

S∗U,h is of the form
∫
dDxhabhcdEabcd[ḡ] with Eabcd[ḡ] = α ḡabḡcd and the self-coupling condi-

tion is
δS∗U,1
δhij

=
δS∗U,h
δγij

∣∣∣∣
γ→ḡ

= habhcd
∂Eabcd[γ]

∂γij

∣∣∣∣
γ→ḡ

+
δS∗NM

U,h

δγij

∣∣∣∣
γ→ḡ

(5.59)

What if this is only satisfied with E as general as possible, i.e. Eabcd[ḡ] = α ḡabḡcd + β ḡa(cḡd)b

(mantaining Eabcd = Ebacd and Eabcd = Ecdab symmetries)? Then the gauge invariance of
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Ah + A ∗
h is broken since the parameter β turns on mass term (2.33). Let us hope that (5.59)

can be satisfied with β = 0 because we don’t want to introduce extra DOFs by making our

theory interacting as already mentioned in section 2.3.

S∗NM
U,h =

∫
dDx

(
k
[
fω
′
(|γ|)− fω′(ρ)

] (
habγab

)2
+m2

U

[
fω(|γ|)− fω(ρ)

]
habγbch

cdγda

)
(5.60)

where k and m2
U are constants, such that

S̃∗U,0 =

∫
dDx

[
kfω

′
(|γ|) + k1

] (
habγab

)2
+

∫
dDx

[
m2
Uf

ω(|γ|) + k2

]
habγbch

cdγda (5.61)

where k1 = α− kfω′(ρ) and k2 = β −m2
Uf

ω(ρ). Therefore, we have

δS̃∗U,0
δγab

=− ω′

2
kfω

′
(|γ|)h2γab − 2

[
kfω

′
(|γ|) + k1

]
habh

− ω

2
m2
Uf

ω(|γ|)hsthstγab − 2
[
m2
Uf

ω(|γ|) + k2

]
hasγ

sthtb

(5.62)

⇒
δS̃∗U,0
δγab

∣∣∣∣
γ→ḡ

=− ω′

2
kfω

′
(|ḡ|)h2ḡab − 2αhabh

− ω

2
m2
Uf

ω(|ḡ|)hsthstḡab − 2βhasḡ
sthtb

(5.63)

There’s a solution for the self-coupling condition only if

ω

2
m2
Uf

ω(|ḡ|) = α (5.64)

and that is

S∗U,1 =

∫
dDx

(
−ω

′

6
kfω

′
(|ḡ|)h3 − 2β

3
hath

t
bh
b
a −

ω

2
m2
Uf

ω(|ḡ|)hsthsth
)

=

∫
dDx

(
−ω

′

6
kfω

′
(|ḡ|)h3 − 2β

3
hath

t
bh
b
a − αhsthsth

) (5.65)

As you can see, the solution depends on three independent parameters - ω′kfω
′
(|ḡ|), β and α

- and there’s no issue in β being zero. Doing this, we’ve ended up with a 2-parameter family

of solutions, so this time even assuming f(|γ|) = fω(|γ|) we would get an infinite number of

interacting theories (that would get larger and larger as further parameters are introduced in

each step of the procedure).

Let us end this section by pointing out that (5.64) comes from the fact that

∂ (hsth
sth)

∂hab
= 2habh+ hsth

stγab (5.66)

and, due to the way it emerges in the iterative procedure, we’ll also call this type of equations

“consistency requirements”.
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5.3 Mass in the Diff case

Prompted by last section’s final part where the possibility of massive theories was considered,

we shift our focus again to the Diff case and consider A m
h given by (2.32). Recall from section

3.2 that its covariantization is denoted by Sm
h . The reader might be asking about section 4.1

in which we suggested that solving (4.16) automatically led to an interacting theory where the

field h is massless. Actually, this reasoning depends on the fact that we solved it iteratively and

started (4.18) with χ−1S
(−1)
int : we could have started with χ−nS

(−n)
int such that

δS
(−n)
int
δhab

= 0; indeed,

this corresponds to having Cosmological Constant term -
∫
dDxΛ

√
−|ḡ| - in Sh but this also

wouldn’t give us a massive theory since gauge invariance wouldn’t be broken (assuming non-

minimal coupling). Hence, to self-couple the mass terms like we’re doing in the remainder of

this work, we ignore the first term in (4.16).

In the same way (5.58) joined (5.18) and (5.19), we add (n ≥ 1)

δSm
1

δhab
=
δSm

h

δγab

∣∣∣∣
γ→ḡ

and
δSm

n+1

δhab
=
δSm

n

δγab

∣∣∣∣
γ→ḡ

(5.67)

to (4.21) and (4.22) such that now S
(N)
int = S

(N)
int,h +S

(N)
int,ϕ +Sm

N+1 (N ≥ 0). Note that
δSm
h/n

δγab

∣∣∣
γ→ḡ

,

where Sm
h/n = Sm

h/n[ḡ;h], stands for

lim
γ→ḡ

δSm
h/n[γ;h]

δγ
+ lim

γ→ḡ

δSNM
0/n [γ;h]

δγ
≡ lim

γ→ḡ

δS̃m
0/n

δγ
(5.68)

However, since the Riemman R[γ] is quadratic in ∇, non-minimal couplings won’t be needed

here to satisfy the self-coupling condition (5.67). S̃m
0 can be obtained from (5.61) by writing

k ≡ m2 and m2
U ≡ m2k′ and setting k1 = 0 = k2 and ω = 1 = ω′:

S̃m
0 = m2

∫
dDx

√
−|γ|

[(
habγab

)2
+ k′habγbch

cdγda

]
; (5.69)

such that using (5.62) one sees that

S̃m
1 = −m

2

6

∫
dDx

√
−|γ|

(
h3 + 4k′hath

t
bh
b
a + 3k′hsth

sth
)

(5.70)

and (5.64) corresponds to

k′ = 2 (5.71)

Moving on to the second step of the iterative procedure, we have

δS̃m
1

δγab
=
m2

12

√
−|γ|

[
h3γab + 6habh

2 + 12k′hasγ
sthtbh

+ 3k′hsth
stγabh+ 24k′haeh

edhdb + 4k′heih
c
eh

i
cγab + 6k′hsth

sthab

] (5.72)
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Now we get two consistency requirements that are identically satisfied (one of them is equi-

valent to (5.71)) such that a solution of the self-coupling condition exists:

S̃m
2 =

m2

48

∫
dDx

√
−|γ|

[
h4 + 16k′heih

c
eh

i
ch

+ 12hsth
sth2 + 24k′hsthseh

edhdt + 6k′hsth
sthefh

ef

] (5.73)

(In Appendix D, we go over one more functional differentiation). But will these iterations

converge? It’s easy to see that the answer is yes since S̃m
0 , S̃m

1 and S̃m
2 correspond to the terms

of order O(h2), O(h3) and O(h4), respectively, of 8m2
√
|γ + h| when Taylor expanded about

γ. In fact one could already expect this from the fact that a Cosmological Constant term is

of zero order in derivatives and can be added to the Einstein-Hilbert action while mantaining

background independence and invariance under GCTs.
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6 Tetrad gravity

The action Ah + A m
h in last section, with k′ = 2, propagates a scalar with negative kinetic

energy - the celebrated Ostrogradsky ghost/instability (see reviews [40] and [41] for more on

this). Only k′ = −1 avoids this. The approach we’re taking in the rest of the text is inspired

by the formulation of dRGT massive gravity , whose quadratic expansion about the reference

metric gives the FP mass term, in terms of tetrads [42].

6.1 EMTs of tetrad theories

Instead of choosing a coordinated basis {∂a} (dual to {dxa}) for the tangent bundle of our

spacetime manifold, we can choose a less restrictive local basis22 given by ēA = ēaA∂a (dual to

ēA = ē A
a dxa, where ē A

a is ēaA’s inverse23). We further require the local basis to be orthonormal,

which is equivalent to ask the metric to obey ḡ = ηAB ē
A ⊗ ēB. We now deal with spacetime

and Lorentz indices at the same time. To avoid mixing them, Lorentz indices will be denoted

by upper case latin letters. We lower and raise these with ηAB and its inverse ηAB, respectively

(this is consistent with the notation for the inverse tetrad, as can be seen through (6.1)).

In place of the metric ḡ of section 3.2, we choose to represent our background flat spacetime

by a tetrad with components ēaA(x). We keep using the covariant derivative ∇̄ of the Levi-

Civita connection Γ built from ḡab = ηAB ē
A
a ē B

b . We can say we have a flat tetrad, meaning

that Ra
bcd[Γ] = 0 (like before, this is only used for the conservation of the canonical EMT; all

other results are independent of the covariant derivatives commuting or not). Bear in mind

that we’re working with arbitrary non-inertial coordinates xa (here, non-inertial means that

ē A
a (x) 6= δAa implying ḡab(x) 6= ηab). Lastly, let us write the law of transformation of the tetrad

under Local Lorentz Transformations (LLTs) for future reference:

ēaA(x)→ Λ B
A (x)ēaB(x) (6.2)

We now focus on field theories with a (1,0) tensor field and Lorentz covector with components

faA(x) (besides an generic collection of dynamical fields ϕ like before) and ask these theories

22By “less restrictive”, we’re allowing non-coordinated basis such that we may have dēa 6= 0⇒ ∂[aē
A

b] 6= 0.

In this basis,

ḡ = ḡabdx
a ⊗ dxb = ḡAB ē

A ⊗ ēB ⇒ ḡab = ḡAB ē
A

a ē B
b ⇔ ḡab = ḡAB ēaAē

b
B (6.1)

23e A
a ebA = δba and e A

a eaB = δAB .
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to be Lorentz covariant in addition to the usual (general) covariance. The action must then

be a scalar

S =

∫
dDxL [ēaA, ∂bē

a
A; faA, ∂bf

a
A, ϕ, ∂bϕ] (6.3)

with all Lorentz indices contracted. (Note that this is not sufficient. Since ∇̄aΛ
B
A 6= 0 we

need a “gauge covariant derivative” Da in place of ∇̄a such that

DaT
ABC...

DEF... → ΛA
A′Λ

B
B′Λ

C
C′ ...Λ

D′

D Λ E′

E Λ F ′

F ...DaT
A′B′C′...

D′E′F ′... (6.4)

where T is some object transforming under LLT. We assume that the connection associated

with the Lorentz group, “Da−∇̄a”, is made of ē and ∇̄ alone such that we’ll forget about D.

The information that the lagrangian can be written in terms of D and no other derivative is

concealed in Lorentz invariance).

Like in section 3.3, we take into consideration the conclusion drawn in 3.2 and jump ahead

to a choice of independent variables like (3.12):

L ≡ L̃ = L̃ [ēaA, ∇̄bē
a
A; faA, ∇̄bf

a
A, ϕ, ∇̄bϕ] (6.5)

∇̄bē
a
A was included as a variable since, even though metric compatibility fully determines

∇̄ḡ, the same doesn’t happen with ∇̄ē (see (6.8)). We write L̃ ≡ |ē|L̃ (note that |ḡ|= −|ē|2

where |ē|≡ det
(
ē A
a

)
) and, taking into account commutativity between variation and covariant

derivative, one arrives at the EOMs:0 = ∂L̃
∂faA
− ∇̄b

(
∂L̃

∂∇̄bfaA

)
= ∂L

∂faA
− ∂b

(
∂L

∂∂bf
a
A

)
≡ δS

δfaA

0 = ∂L̃
∂ϕ
− ∇̄b

(
∂L̃
∂∇̄bϕ

)
= ∂L

∂ϕ
− ∂b

(
∂L
∂∂bϕ

)
≡ δS

δϕ

(6.6)

Let us introduce further notation that will be useful:

δS̃
δēaA

≡

[
∂L̃
∂ēaA

− ∇̄b

(
∂L̃

∂∇̄bēaA

)]
(6.7)

and the same with faA or ϕ in place of ēaA such that δS
δfaA
≡ |ē| δS̃

δfaA
and δS

δϕ
≡ |ē| δS̃

δϕ
. Before

proceding, note that

∇̄b(ē
a
AēaB) = ∇̄bηAB = ∂bηAB = 0⇒ ēaA∇̄bēaB = ēaA∇̄bē

a
B = −ēaB∇̄bē

a
A (6.8)

such that ēaB∇̄bē
a
A ≡ ω̄bAB = −ω̄bBA. Writing faA and ϕ as φσ with σ = 1 and 2, respectively,

we have L̃ [ēaA, ∇̄bē
a
A; faA, ∇̄bf

a
A, ϕ, ∇̄bϕ] ≡ L̃ [ēaA, ∇̄bē

a
A;φσ, ∇̄aφ

σ].

∇̄bL̃ = ∂bL̃ =
∂L̃
∂φσ

∂bφ
σ +

∂L̃
∂∇̄cφσ

∂b∇̄cφ
σ +

∂L̃
∂ēaA

∂bē
a
A +

∂L̃
∂∇̄cēaA

∂b∇̄cē
a
A

=
∂L̃
∂φσ
∇̄bφ

σ +
∂L̃

∂∇̄cφσ
∇̄b∇̄cφ

σ +
∂L̃
∂ēaA

∇̄bē
a
A +

∂L̃
∂∇̄cēaA

∇̄b∇̄cē
a
A

(6.9)
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Using (6.8) and ∇̄’s commutativity, the equation above is equivalent to

∇̄bL̃ =
∂L̃

∂φσ
∇̄bφ

σ +
∂L̃

∂∇̄cφσ
∇̄b∇̄cφ

σ + |ē| ∂L̃
∂ēaA

ēaBω̄bAB + |ē| ∂L̃
∂∇̄cēaA

∇̄cē
aBω̄bAB (6.10)

and leads (using ∇̄ commutativity again) to

∇̄d

(
δdb L̃ −

∂L̃

∂∇̄dφσ
∇̄bφ

σ − |ē| ∂L̃
∂∇̄dēaA

ēaBω̄bAB

)
=

δS

δφσ
∇̄bφ

σ + |ē| ∂S̃
∂ēaA

ēaBω̄bAB

∇̄d

(
δdb L̃ −

∂L̃

∂∇̄dφσ
∇̄bφ

σ − |ē| ∂L̃
∂∇̄dēa[A

ēaB]ω̄bAB

)
=

δS

δφσ
∇̄bφ

σ + |ē| ∂S̃
∂ēa[A

ēaB]ω̄bAB

(6.11)

where we used ω̄aAB antisymmetry. Since Λ B
A = δBA + ε BA +O(ε2), under infinitesimal LLT,

δ̂ēaA(x) = ēaB(x)εBA(x)

δ̂faA(x) = faB(x)εBA(x)
(6.12)

where εAB = −εBA. Since L̃ and Γ are Lorentz scalars, the variation of L̃ under a LLT of all

Lorentz indices but the ones inside Γ is null:

0 = δ̂L̃ =
∂L̃
∂ēaA

δ̂ēaA +
∂L̃
∂faA

δ̂faA +
∂L̃

∂∇̄bēaA
∇̄bδ̂ē

a
A +

∂L̃
∂∇̄bfaA

∇̄bδ̂f
a
A

=
∂S̃
∂ēaA

δ̂ēaA +
δS̃
δfaA

δ̂faA + ∂b

(
∂L̃

∂∇̄bēaA
δ̂ēaA +

∂L̃
∂∇̄bfaA

δ̂faA

)

=

(
∂S̃
∂ēa[A

ēaB] +
δS̃
δfa[A

faB]

)
εBA + ∂b

[(
∂L̃

∂∇̄bēa[A
ēaB] +

∂L̃
∂∇̄bfa[A

faB]

)
εBA

] (6.13)

Using arbitrariness of the transformation parameter εAB (since we are not transforming Γ, δ̂

and ∇̄ commute), one sees that both expressions inside rounded brackets above must vanish.

This is equivalent to:

|ē| ∂S̃
∂ēa[A

ēaB] = − δS

δfa[A
faB] (6.14)

|ē| ∂L̃
∂∇̄bēa[A

ēaB] = − ∂L̃

∂∇̄bfa[A
faB] (6.15)

Using this on (6.11), we arrive at the on-shell covariant conservation law

∇̄d

(
δdb L̃ −

∂L̃

∂∇̄dfaA

(
∇̄bf

a
A − faBω̄bAB

)
− ∂L̃

∂∇̄dϕ
∇̄bϕ

)
=

δS

δfaA

(
∇̄bf

a
A − faBω̄bAB

)
+
δS

δϕ
∇̄bϕ

(6.16)
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(we can drop antisymmetrization on A and B indices when they are contracted with ω̄bAB)

such that

T cdCan ≡
1

|ē|

(
∂L̃

∂∇̄dfaA

(
∇̄bf

a
A − faBω̄bAB

)
+

∂L̃

∂∇̄dϕ
∇̄bϕ− δdb L̃

)
ēbB ē

cB

=
1

|ē|

(
∂L

∂∂dfaA

(
∇̄bf

a
A − faBω̄bAB

)
+

∂L

∂∂dϕ
∇̄bϕ− δdbL

)
ēbB ē

cB

(6.17)

We also derive Rosenfeld’s EMT from L by taking the active transformation perpective

on infinitesimal GCT and using gauge invariance associated with it. Like before, we compare

δL caused by an arbitrary variation of ēaA, faA and ϕ with

δL = ∂a (ξaL ) (3.22)

Then we enforce the EOMs and use δēaA for a infinitesimal GCT explicitly:

δēaA = ξb∇̄bē
a
A − ēbA∇̄bξ

a = ξbω̄bAB ē
aB − ēbA∇̄bξ

a (6.18)

We have

∂a (ξaL ) =
δS

δfaA
δfaA +

δS

δϕ
δϕ+

δS

δēaA
δēaA + ∂a(...)

a (6.19)

where δS
δēaA
≡ ∂L

∂ēaA
− ∂c

(
∂L

∂∂cēaA

)
. Using the EOMs (6.6), substituting (6.18), and integrating

by parts, we arrive at∫
dDx

[
ω̄aAB

δS

δēbA
ēbB + ∇̄b

(
δS

δēaA
ebA

)]
ξa + ST = 0 (6.20)

Since ∂ and δ̂ commute, under infinitesimal LLT

δ̂S =

∫
dDx

(
δS

δēaA
δ̂ēaA +

δS

δfaA
δ̂faA

)
+ ST = 0 (6.21)

We can convert the surface term into an integral over the boundary and, using an appropriate

choice of boundary conditions for the transformation parameter εAB, it can be made to vanish.

Substituting (6.12), one has∫
dDx

(
δS

δēa[A
ēaB] +

δS

δfa[A
faB]

)
εBA = 0 (6.22)

since εAB = −εBA. One then obtains, using arbitrariness of εAB, the off-shell identity

δS

δēa[A
ēaB] = − δS

δfa[A
faB] (6.23)
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Hence, since ω̄aAB is antisymmetric on A and B, the first term in (6.20) is proportional to f ’s

EOM, vanishing on-shell. Again the surface term is made to vanish, throuh an appropriate

choice of boundary conditions for ξa. Due to its arbitrariness, we have the following on-shell

covariant conservation law:

∇̄b

(
δS

δēaA
ēbA

)
= 0⇔ ∇̄b

(
δS

δē A
b

ēaA
)

= 0 (6.24)

(Note that δS
δēaA

= −ē A
b ē

B
a

δS
δē B
b

). The Rosenfeld’s EMT (which like the canonical one could

be defined with an extra off-shell divergenceless term) is

T abRos ≡
−1

|ē|
δS

δē A
b

ēaA =
1

|ē|
δS

δēcA
ēbAḡ

ca . (6.25)

This is not new, but we still call attention to the fact that conservation law (6.24) is valid

independently of the metric being flat or curved. Since it has become customary, we now derive

the relation between the canonical and Rosenfeld’s EMTs of “tetrad theories”. Integrating

(6.19), one obtains ∫
dDx

(
δS

δfaA
δfaA +

δS

δϕ
δϕ+

δS

δēaA
δēaA

)
+ ST = 0 (6.26)

In addition to (6.18) and (3.31) (we stick with ϕ being, for convenience, a scalar), we substitute

δfaA = ξb∇̄bf
a
A − f bA∇̄bξ

a (6.27)

in (6.26):∫
dDx

(
− δS

δfaA
f bA∇̄bξ

a + ξb
δS

δfaA
∇̄bf

a
A + ξb

δS

δϕ
∇̄bϕ+ ξb

δS

δēaA
ω̄bAB ē

aB − δS

δēaA
ēbA∇̄bξ

a + ST
)

=

∫
dDx

(
− δS

δfaA
f bA∇̄bξ

a − |ē|ξb∇̄dT
cd
CanēcB ē

B
b −

δS

δēaA
ēbA∇̄bξ

a + ST
)

= 0

(6.28)

where we had to use (6.23) before inserting the canonical EMT. Integrating by parts,∫
dDx

[
∇̄b

(
δS

δfaA
f bA

)
− |ē|∇̄dT

cd
CanēcB ē

B
a + ∇̄b

(
δS

δēaA
ēbA

)]
ξa + ST = 0 (6.29)

Due to arbitrariness of the transformation parameter ξa(x) one obtains the following off-shell

identity that doesn’t involve the transformation parameters:

−∇̄b

(
δS

δēaA
ēbA

)
=
δS

δϕ
∇̄aϕ+

δS

δf bA

(
∇̄af

b
A − f bBω̄aAB

)
+ ∇̄b

(
δS

δfaA
f bA

)
(6.30)

where we have expanded T cdCan according to (6.16), as will turn useful.
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6.2 Reverse engineering GR in terms of tetrads

Now, instead of a metric theory of gravity, we consider a “tetrad theory” such that S ≡ S[e].

One can “divide” the components of the tetrad eaA into a non-dynamical (flat) “background

tetrad” ēaA and a dynamical field faA:

S[e]
∣∣∣
eaA=φ(χfaA,ē

a
A)
≡ S[ē; f ] =

∞∑
n=0

χnS(n)[ē; f ] (6.31)

We consider

S[e] ≡
∫
dDxKb Ac D

a d [e]∇̄be
a
A∇̄ce

d
D (6.32)

such that, assuming φ = ēaA + χfaA:

S[ē; f ] =
∞∑
n=2

χn

n!

∫
dDx1... d

Dxn
δnS[e]

δebB(x1)... δecC(xn)

∣∣∣∣
e=ē

f bB(x1)... f cC(xn)

≡
∞∑
n=0

χnSn[ē; f ] .

(6.33)

The proof that S(0) = 0 = S(1) is in appendix E. We assume that S[e = φ] = S[ē; f ] is a Lorentz

and spacetime scalar, such that Sn are too. However, in first place, we are going to analyse

the impact of the background independent action S[e] being invariant under (infinitesimal)

LLT. We have δ̂εS[e] = 0 with δ̂εe
a
A = eaBε

B
A, where εAB = −εBA. Note that

δ̂εe
a
A

∣∣∣
e=φ

= ēaBε
B
A + χfaBε

B
A

such that

δ̂εS[ē; f ] = 0 with δ̂εē
a
A + χδ̂εf

a
A = ēaBε

B
A + χfaBε

B
A .

We choose δ̂εē
a
A = 0 and δ̂εf

a
A = χ−1δ̂

(−1)
ε faA + δ̂

(0)
ε faA where

δ̂(−1)
ε faA = ēaBε

B
A

δ̂(0)
ε faA = faBε

B
A

(6.34)

Note that all functional integrals (except for the background independent S[e]) should be

automatically understood to have ē and f as variables.

δ̂εSn =

∫
dDx

δSn
δfaA

δ̂εf
a
A + ST =

∫
dDx

(
χ−1 δSn

δfaA
δ̂(−1)
ε faA +

δSn
δfaA

δ̂(0)
ε faA

)
+ ST

≡ χ−1δ̂(−1)
ε Sn + δ̂(0)

ε Sn

(6.35)
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Hence, since S is invariant under LLTs:

δ̂(−1)
ε S0 + ST = 0 (6.36)

δ̂(0)
ε Sn−1 + δ̂(0)

ε Sn + ST = 0 , n ≥ 1 (6.37)

Using (6.36), one has that

δ̂(−1)
ε S0 =

∫
dDx

δS0

δfaA
ēaBε

B
A + ST =

∫
dDx

δS0

δfa[A
ēaB]εBA + ST = 0 (6.38)

We convert the surface term into an integral over the boundary such that it vanishes using an

suitable choice of boundary conditions for the parameter εAB. One then arrives at the identity

δS0

δfa[A
ēaB] = 0⇔ δS0

δf
[a
A

ēb]A = 0 (6.39)

Moving on to n ≥ 1, one has

δ̂(−1)
ε Sn =

∫
dDx

δSn
δfaA

ēaBε
B
A + ST (6.40)

δ̂(0)
ε Sn−1 =

∫
dDx

δSn−1

δfaA
faBε

B
A + ST (6.41)

Substituting these in (6.37), one obtains∫
dDx

(
δSn
δfaA

ēaB +
δSn−1

δfaA
faB
)
εBA + ST = 0 (6.42)

Following the same reasoning used to derive (6.39), we obtain

δSn
δfa[A

ēaB] = −δSn−1

δfa[A
faB] =

δSn−1

δēa[A
ēaB] (6.43)

⇔ δSn

δf
[a
A

ēb]A =
δSn−1

δē
[a
A

ēb]A (6.44)

where took into account Sn invariance under LLTs by using (6.23) for the second equality.

Now we focus on the consequences of S[e] being a (spacetime) scalar. Under (infinitesimal)

GCTs in the active perspective, we have (up to ST )

δξS[e] = 0 with δξe
a
A = ξb∂be

a
A − ebA∂bξa = ξb∇̄be

a
A − ebA∇̄bξ

a .

Note that
δξe

a
A

∣∣∣
e=φ

= ξb∇̄bē
a
A − ēbA∇̄bξ

a + χξb∇̄bf
a
A − χf bA∇̄bξ

a

= ξbω̄bAB ē
aB − ēbA∇̄bξ

a + χξb∇̄bf
a
A − χf bA∇̄bξ

a
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such that (again up to ST )

δξS[ē; f ] = 0 with δξē
a
A + χδξf

a
A = ξbω̄bAB ē

aB − ēbA∇̄bξ
a + χξb∇̄bf

a
A − χf bA∇̄bξ

a .

Since only faA is dynamical we choose δξē
a
A = 0 and δξf

a
A = χ−1δ

(−1)
ξ faA + δ

(0)
ξ faA where

δ
(−1)
ξ faA = ξbω̄bAB ē

aB − ēbA∇̄bξ
a

δ
(0)
ξ faA = ξb∇̄bf

a
A − f bA∇̄bξ

a
(6.45)

Similar to (6.35), we write δξSn ≡ χ−1δ
(−1)
ξ Sn + δ

(0)
ξ Sn where δ

(−1)
ξ Sn = δSn

δfaA
δ

(−1)
ξ faA and

δ
(0)
ξ Sn = δSn

δfaA
δ

(0)
ξ faA. Hence, since S is invariant (up to ST ) under GCT’s:

δ
(−1)
ξ S0 + ST = 0 (6.46)

δ
(0)
ξ Sn−1 + δ

(0)
ξ Sn + ST = 0 , n ≥ 1 (6.47)

One has that

δ
(−1)
ξ S0 =

∫
dDx

δS0

δfaA
δ

(−1)
ξ faA+ST =

∫
dDx

(
ξbω̄bAB ē

aB δS0

δfaA
− δS0

δfaA
ēbA∇̄bξ

a

)
+ST (6.48)

Integrating the second term by parts and using (6.46), one obtains∫
dDx

[
ξaω̄aAB ē

bB δS0

δf bA
+ ξa∇̄b

(
δS0

δfaA
ēbA

)]
+ ST = 0 (6.49)

Again, we convert the surface term into an integral over the boundary and, using an appro-

priate choice of boundary conditions for the gauge parameter ξa, it can be made to vanish.

Due to arbitrariness of the parameter and (6.39), one arrives at the identity

∇̄b

(
δS0

δfaA
ēbA

)
= 0 (6.50)

Moving on to (6.47), one has that

δ
(−1)
ξ Sn =

∫
dDx

δSn
δfaA

δ
(−1)
ξ faA + ST =

∫
dDx

(
ξbω̄bAB ē

aB δSn
δfaA

− δSn
δfaA

ēbA∇̄bξ
a

)
+ ST ,

(6.51)

where

ω̄bAB
δSn
δfaA

ēaB = ω̄bAB
δSn
δfa[A

ēaB] = −ω̄bAB
δSn−1

δfa[A
faB] (6.52)

(using (6.43) on the second equality), and

δ
(0)
ξ Sn−1 =

∫
dDx

δSn−1

δfaA
δ

(0)
ξ faA + ST

=

∫
dDx

(
δSn−1

δfaA
ξb∇̄bf

a
A −

δSn−1

δfaA
f bA∇̄bξ

a

)
+ ST

(6.53)
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Using (6.47), integrating by parts to get rid of ∇̄ε, one obtains∫
dDx

[
∇̄b

(
δSn
δfaA

ēbA

)
− ω̄aAB

δSn−1

δf bA
f bB +

δSn−1

δf bA
∇̄af

b
A + ∇̄b

(
δSn−1

δfaA
f bA

)]
ξa + ST = 0

(6.54)

Using (6.30) (without ϕ), we rewrite this as∫
dDx

[
∇̄b

(
δSn
δfaA

ēbA

)
ξa − ∇̄b

(
δSn−1

δēaA
ēbA

)
ξa
]

+ ST = 0 (6.55)

Following the same reasoning used to derive (6.50), we obtain the identity

∇̄b

(
δSn
δfaA

ēbA −
δSn−1

δēaA
ēbA

)
= ∇̄a

(
δSn
δfaA

ēbA −
δSn−1

δēaA
ēbA

)
= 0 (6.56)

where we’ve used (6.44) in the first equality. Based on the extensive analysis we did of metric

theories, it’s pretty straightforward to extend some of our results to tetrad theories. Hereupon,

the equation above is equivalent to

δSn
δfaA

ēbA =
δSn−1

δēaA
ēbA + ∇̄c∇̄dΨ[c(a][b)d][ē; f, ϕ]

⇔ δSn
δfaA

=
δSn−1

δēaA
+ ēbA∇̄c∇̄dΨ[c(a][b)d][ē; f, ϕ] ≡ δSn−1

δγaA

∣∣∣∣
γ→ē

(6.57)

(6.56) also implies

∇̄b

∞∑
n=1

χn
δSn
δfaA

ēbA = ∇̄b

∞∑
n=1

χn
δSn−1

δēaA
ēbA

⇔ ∇̄b

(
δS

δfaA
ēbA

)
− ∇̄b

(
δS0

δfaA
ēbA

)
= χ∇̄b

(
δS

δēaA
ēbA

)
⇔ ∇̄b

(
δS

δfaA
ēbA

)
= ∇̄b

(
δS0

δfaA
ēbA

)
+ χ∇̄bT

cb
Rosḡca|ē|

(6.58)

6.3 Self-coupling of FP mass term

After being sure of the form the self-coupling condition takes in the case of a tetrad theory,

we approach the main goal of this chapter: finding higher order self-interactions for the FP

massive graviton. We start by writing (2.32) as

A m
h = m2

∫
dDx

[(
habηab

)2
+ k′habηbch

cdηda

]
= m2

∫
dDxhabhijEabij[η] (6.59)
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with Eabij[ḡ] = ḡabḡij + k′ḡa(iḡj)b , whose covariantization is

Sm
h = m2

∫
dDx

√
−|ḡ|habhijEabij[ḡ] (6.60)

In this section, we fix D = 4 such that Lorentz indices go from 0 to 3 and we set k′ = −1

since we’re interested in the FP mass term. Let’s perform the change of variables {ḡab, hab} →
{ēaA, faA}. Besides ḡab = ēaAē

bA, we choose

hab = faAē
bA ⇔ faA = habēbA (6.61)

where f is constrained to obey

faAē
bA = f bAē

aA (6.62)

ensuring hab = hba and this way we are exchanging 44+1
2

= 10 independent variables in h by

the same number in f . Recall that we go back to inertial coordinates (ḡab → ηab) by bringing

ēaA to δaA ≡ δ̄aA. One sees that Sh, the covariantization of the Diff invariant action Ah, after

the change of variables is gauge invariant under

δfaA = ēbAδh
ab = 2ēbA∇̄(bξa) (6.63)

and one can derive the corresponding Gauge/Bianchi Identity. Note that, since hcd = hdc,

δSh
δfaA

ēbA = ēbA

∫
dDy

δSh
δhcd(y)

δhcd(y)

δfaA
= ēbA

∫
dDy

δSh
δhcd

δcae
dAδ(x− y) =

δSh
δhcd

δcaδ
d
b (6.64)

is symmetric under a↔ b (c.f. (6.39)). Hence, we have

δSh = 2

∫
dDx

δSh
δfaA

ēbA∇̄bξa + ST = 0 (6.65)

such that, integrating by parts, making surface terms vanish as usual and using the arbitrar-

iness of the parameter ξ, we obtain the off-shell identity

∇̄b

(
δSh
δfaA

ēbA

)
= 0 (6.66)

like we expected from (6.50). Moving on to the mass term, that is the centre of this section,

we have√
−|ḡ|habhijEabij[ḡ] = |ē|faAf iC(ē A

a ē
C
i −

1

2
ḡaiη

AC − 1

2
ē A
i ē C

a )

= |ē|
(
faAē

A
a f

i
C ē

C
i − faAē C

a f iC ē
A
i

)
= 2|ē|f A

a f C
i ē

[a
Aē

i]
C ≡ LFP[ē; f ]

(6.67)
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where we used contraint (6.62)24 for the second equality (faAē
A
i ē C

a = faAḡaiη
AC). In terms

of our new variables, A m
h is

AFP ≡ m2

∫
dDxLFP[δ̄; f ] = m2

∫
dDx f A

a f B
b F ab

AB[δ̄] (6.68)

where F ab
AB[δ̄] ≡ 2δ̄

[a
Aδ̄

b]
B|δ̄|. If we covariantize AFP, according to the definition we estabilished

in section 2.1 and have been employing since then, we obtain

SFP
0 [f ; ē] = m2

∫
dDxf A

a f B
b F ab

AB[ē] (6.69)

which coincides with Sm
h . However, with our current variables and specifically with the FP

mass term, we also have

ŜFP
0 [f ; ē] = m2

∫
dDx f A

a f B
b F̂ ab

AB[ē] (6.70)

where 2F̂ ab
AB[ē] = ē C

c ē D
d εABCD ε̃

abcd (note that εABCD = ε̃ABCD
25), since

F̂ ab
AB[δ̄] =

1

2
εABCD ε̃

abCD =
−1

2
εABCDε

abCD
√
−|η| = −1

2
εABCDε

abCD|δ̄|= 2|δ̄|δ[a
Aδ

b]
B (6.71)

Let us now focus on the self-coupling condition (6.57) using both covariantizations (since the

mass terms are zero order in derivatives we set Ψ = 0). Starting with ŜFP
0 :

δŜFP
0

δē Q
q

= m2f A
a f B

b ē C
c εABCQε̃

abcq ≡ m2f A
a f B

b N̂abq
ABQ (6.72)

⇒δŜFP
0

δē Q
q

∣∣∣∣
ē=δ̄

= m2f A
a f B

b εABQC ε̃
abqC = −m2|δ̄|f A

a f B
b εABQCε

abqC = 6m2|δ̄|f A
a f B

b δ
[a
Aδ

b
Bδ

q]
Q

(6.73)

Inertial coordinates will be useful as a means of comparison between both covariantized ac-

tions. Moving on to SFP
0 :

δSFP
0

δē Q
q

= m2f A
a f B

b

[
∂|ē|
∂ē Q

q

(
ēaAē

b
B − ēbAēaB

)
+ |ē|

∂
(
ēaAē

b
B − ēbAēaB

)
∂ētT

ηQT ḡ
qt

]
= m2f A

a f B
b |ē|

(
ēaAē

b
B ē

q
Q − ē

b
Aē

a
B ē

q
Q + ēaAḡ

bqηBQ + a
A ↔ b

B − ēbAḡaqηBQ − a
A ↔ b

B

)
= m2f A

a f B
b |ē|

(
ēaAē

b
B ē

q
Q − ē

b
Aē

a
B ē

q
Q + ēaAē

b
Qē

q
B + a

A ↔ b
B − ēaB ē

q
Aē

b
Q − a

A ↔ b
B

)
= 2m2f A

a f B
b |ē|

(
ē

[a
Aē

b]
B ē

q
Q + ē

[a|
Aē

q
B ē
|b]
Q − ē

q
Aē

[a
B ē

b]
Q

)
≡ m2f A

a f B
b N ′

abq
ABQ

(6.74)

24When possibel we use (6.62) to get rid of contractions between f ’s.
25Our conventions are such that: εa1...an

=
√
−|ḡ|ε̃a1...an

; εa1...an = εa1...an
ga1b1 ... ganbn ; εa1...an =

sgn(|ḡ|)√
−|ḡ|

ε̃a1...an where ε̃a1...an is numerically identical to ε̃a1...an
; and εa1...ap...b1...bn−p

εa1...ap...c1...cn−p =

sgn(|ḡ|)p! (n − p)! δ
[c1
b1
...δ

cn−p]
bn−p

(anti-symmetrization here concerns all indices between the ones next to the

parentheses).
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Constraint (6.62) was used above to get rid of ḡ and η. Taking ē = δ̄ we see that this is

different from (6.73). Similar to what we did in sections 4.2 and 5.2, we see that

δSFP
1

δf Q
q

=
δSFP

0

δē Q
q

(6.75)

imposes that SFP
1 has the following form26:

SFP
1 =

m2

3

∫
dDx f A

a f B
b f C

c Nabc
ABC (6.76)

This makes Nabc
ABC symmetric under any permutation of {aA, bB, cC}. With or without assuming

it, this would apply to N in the derivative below, or any other object in which N enters through

expression (6.76). We thus have

δSFP
1

δf Q
q

= m2f A
a f B

b Nabq
ABQ (6.77)

However N ′abqABQ is not symmetric under permutations of {aA, bB,
q
Q}, making A 0

FP unable to

satisfy the self-coupling condition (6.75). This time, non-minimal couplings can’t come to

the rescue since the mass term is free from derivatives. It’s great that we have also found

covariantization ŜFP
0 , preventing us from abandoning the possibility of self-coupling with the

FP mass term. From
δŜFP

1

δf Q
q

=
δŜFP

0

δē Q
q

(6.78)

it’s easy to see that

ŜFP
1 =

m2

3

∫
dDx f A

a f B
b f C

c N̂abc
ABC (6.79)

Note that N̂abq
ABQ = ē C

c εABCQε̃
abcq is symmetric under permutations of {aA, bB, cC}. You might

have noticed that we haven’t used (6.57) accurately, which should be

δSFP
n+1

δfaA
=
δSFP

n

δēaA
⇔

δSFP
n+1

δf D
d

ηADḡad = −δS
FP
n

δē B
b

ē A
b ē

B
a ⇔

δSFP
n+1

δf A
a

= −δS
FP
n

δē B
b

ēbAē
aB (6.80)

such that instead of (6.75) we should have

δSFP
1

δf Q
q

= −δS
FP
0

δē C
c

ēcQē
qC = −m2f A

a f B
b N ′

abc
ABC ēcQē

qC (6.81)

26In this section, an unspecified capital latin letter with indices may include not only the tetrad and its

inverse, but also the epsilon symbol.
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where (6.74) was used. Note that (6.76) can also be written as

m2

3

∫
dDx f A

a f B
b f Q

q Nabc
ABC ēcQē

qC (6.82)

where constraint (6.62) was used. Differentiating SFP
1 , as given by (6.76) and (6.82), w.r.t.

f Q
q we obtain

δSFP
1

δf Q
q

= −m
2

3
f A
a f B

b Nabq
ABQ −

m2

3
f A
a f C

c Naqc
AQC −

m2

3
f B
b f C

c N qbc
QBC (6.83)

and

δSFP
1

δf Q
q

= −m
2

3
f A
a f B

b Nabc
ABC ēcQē

qC − m2

3
f A
a f T

t Naqc
AQC ēcT ē

tC − m2

3
f B
b f T

t N qbc
QBC ēcT ē

tC

= −m
2

3
f A
a f B

b Nabc
ABC ēcQē

qC − m2

3
f A
a f C

c Naqc
AQC −

m2

3
f B
b f C

c N qbc
QBC

(6.84)

respectively. Comparing these we reach the identity

f A
a f B

b Nabc
ABC ēcQē

qC = f A
a f B

b Nabq
ABQ (6.85)

such that we can rewrite the self-coupling condition (6.81):

δSFP
1

δf Q
q

= −m2f A
a f B

b N ′
abq
ABQ (6.86)

Hence, like before, it’s not possible to solve the self-coupling condition with SFP
0 since N ′abqABQ

lacks the required symmetry. We have to call upon ŜFP
0 covariantization, since N̂abq

ABQ pos-

sesses that symmetry:

δŜFP
1

δf Q
q

= −δŜ
FP
0

δē C
c

ēcQē
qC = −m2f A

a f B
b N̂abc

ABC ēcQē
qC

= −m2f A
a f B

b N̂abq
ABQ = −δŜ

FP
0

δē Q
q

(6.87)

Therefore, we obtain

ŜFP
1 = −m

2

3

∫
dDx f A

a f B
b f C

c N̂abc
ABC = −m

2

3

∫
dDx f A

a f B
b f C

c ē D
d εABCD ε̃

abcd (6.88)
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which is minus our previous (wrong) expression for ŜFP
1 . The same happens with the next

step of the iterative procedure:

δŜFP
1

δē Q
q

= −m
2

3
f A
a f B

b f C
c εABCQε̃

abcq

δŜFP
2

δf Q
q

= −δŜ
FP
1

δē C
c

ēcQē
qC ⇒ SFP

2 =
m2

12

∫
dDx f A

a f B
b f C

c f D
d εABCD ε̃

abcd ⇒ δŜFP
2

δf Q
q

= −δŜ
FP
1

δē Q
q

δŜFP
2

δē Q
q

= 0

(6.89)

The last equation above makes the self-coulpling conditions in further steps of the iterative

procedure trivial. Hence we’ve arrived at

∞∑
n=0

χnŜFP
n = ŜFP

0 + χŜFP
1 + χ2ŜFP

2 ≡ ŜFP (6.90)

We have that
δŜFP

δēqQ
=
δŜFP

0

δēqQ
+ χ

δŜFP
1

δēqQ
=
δŜFP

1

δf qQ
+ χ

δŜFP
2

δf qQ
(6.91)

and
δŜFP

δf qQ
=
δŜFP

0

δf qQ
+ χ

δŜFP
1

δf qQ
+ χ2 δŜ

FP
2

δf qQ
=
δŜFP

0

δf qQ
+ χ

δŜFP

δēqQ
(6.92)

which implies (6.58), such that the equation of motion for the total action leads to the field

at a linear level (graviton) being coupled to the stress-energy tensor of the theory associated

to the total action. What we have ended up with is equivalent (as shown in [42]) to dRGT

theory of ghost-free massive gravity [4, 5] with less free parameters:

ŜFP = m2

∫
dDx

(
1

2
f A
a f B

b ē C
c ē D

d εABCD ε̃
abcd − χ

3
f A
a f B

b f C
c ē D

d εABCD ε̃
abcd

+
χ2

12
f A
a f B

b f C
c f D

d εABCD ε̃
abcd

) (6.93)
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7 Conclusion

We would like to conclude with a few important remarks that deserve some elaboration. The

Bi-connection formulation of GR (and its unimodular variation) is particularly appealing. See-

ing background independence as the “gauge symmetry” of Einstein’s theory, it’s reasonable

that when we probe it by making an experiment there is a specific gauge that we can choose

to make easier fitting the results into our theoretical framework. Due to the local nature of

our physical experiments, this choice of gauge consists in selecting a background and linear-

ising around it. For a theoretical physicist, the information generated by these experiments

(for spin-2 this is the detection of gravitational waves) is stored in the SRFTs that have

been developed throughout the last century and Bi-connection GR allows us to handle back-

ground independence explicitly through the auxiliary connection Γ̌! However before anyone

thinks that our “experiments” in flat spacetime are uniquely consistent with GR/background

independence, let us rewrite (4.29) and (4.33), respectively, in such a manner that

δS̃0

δγpq

∣∣∣∣
γ→ḡ

= −
√
−|ḡ|

(
1

2
A c d
ab ef pq +B c d

pq ef ab

)
[ḡ]∇̄ch

ab∇̄dh
ef −

√
−|ḡ|B c d

pq ef ab[ḡ]hab∇̄c∇̄dh
ef

and

δS1

δhpq
=
√
−|ḡ|

(
X c d
ab ef pq − 2X c d

pq ef ab

)
[ḡ]∇̄ch

ab∇̄dh
ef − 2

√
−|ḡ|X c d

pq ef ab[ḡ]hab∇̄c∇̄dh
ef

where S1 =
∫
dDx

√
−|ḡ|X c d

ab ef pq[ḡ]hpq∇̄ch
ab∇̄dh

ef . This way, since ∇̄[c∇̄d] = 0, it becomes

obvious that comparing the equations above before bringing them to the flat limit, like we did

in (4.34), is not one hundred percent equivalent to the self-coupling condition (and the same

applies beyond the first step of the iterative procedure). Instead, we should have had

δS1

δhpq
=

δS̃0

δγpq

∣∣∣∣
γ→ḡ
⇒

X c d
ab ef pq − 2X c d

pq ef ab = −1
2
A c d
ab ef pq −B c d

pq ef ab

2X
(c d)

pq ef ab = B
(c d)

pq ef ab

⇔


X

(c d)
ab ef pq = −1

2
A

(c d)
ab ef pq

B
(c d)

pq ef ab + A
(c d)

pq ef ab = 0

X
[c d]

ab ef pq − 2X
[c d]

pq ef ab = −1
2
A

[c d]
ab ef pq −B

[c d]
pq ef ab

such that before what we’ve actually done was solving the last equation by demanding that

the first and second terms on each side equate independently. There should be a priori other

solutions and we can thus infer that the self-coupling programme of FP SRFT does not lead

uniquely to GR. However Einstein’s theory is set appart due to background independence.
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The reason why we previously concealed this “small” mistake is that it allowed us to conduct

the programme in a way that suggest the following conclusion: to non-geometrically DERIVE

Einstein’s theory of General Relativiy, we would have to compare our SRFTs with the local

theories by physicists from another planet. But not any planet: they must inhabit a region of

the universe where curvature can’t be neglected! (So that they would self-couple a quadratic

action with non-commuting derivatives).

Let us end by mentioning some ways this work could be extended, like its relation to

the equivalence principles of GR and to the existence of a local concept of gravitational

energy. For completeness, it would be interesting to include the SRFT invariant under WTDiff

transformations [3] and consequently augmenting the sorts of “covariantizations” available.

Lastly, the author would like in future work to consider spinor matter fields and also inspect

the impact of field redefinitions on section 2.3 and on the iterative programme in general.
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A Additional ambiguity in special-relativistic action

Diff gauge invariance forces a = 1 = b in (2.17), as seen back at section 2.2, but there is still

some ambiguity (which we are going to parametrise through s ∈ R) in the way we can write

this action:

A =

∫
dDx

[
−1

4
∂ahbc∂

ahbc +
1

2

(
s∂bhbc∂ah

ac + (1− s)∂ahbc∂
bhac

)
− 1

2
∂ah

ab∂bh+
1

4
∂ah∂

ah

]
(A.1)

since ∫
dDx ∂ahbc∂

bhac =

∫
dDx ∂bhbc∂ah

ac + ST (A.2)

Covariantising this action and minimal coupling it, we get

S̃0 =
−1

2

∫
dDx

√
−|γ|∇ch

ab∇dh
ef
(
K c d
ab ef + sP

[cd]
a bef

)
≡ −1

2

∫
dDx

√
−|γ|∇ch

ab∇dh
efK(s) c d

ab ef

(A.3)

where P cd
a bef ≡ δceγfaδ

d
b . The question that immediatly arises is: if we then start the iterative

procedure, will we end up with an action similar to (4.54) with K(s) instead of K? This would

differ from (4.54) by more than surface terms and violate background independence.

The self-coupling condtion in the first step of the procedure leads again to (4.34) where A

and B, appart from depending on K(s) instead of K, are given by the same expressions as

in section 4.2. Can we satisfy the consistency requirement with an arbitrary s (we already

know this is possible when s vanishes)? We’ll now see that we can in the first step but in the

following ones there seems to be no solution for the self-coupling condition if s 6= 0: using

∇[c∇d]h
ab = 2R(a

icdh
b)i ⇐ ∇[c∇d]v

a = Ra
icdv

i 27, we get∫
dDx

√
−|γ|P [cd]

a bef∇dh
ef∇ch

ab =

∫
dDx

√
−|γ|P cd

a befh
ef∇[c∇d]h

ab + ST

= 2

∫
dDx

√
−|γ|P cd

a befR
(a
icdh

b)ihef + ST

(A.4)

which substitutes (A.2) (note that R vanishes when γ goes to ḡ). This can be written as

SNM
0 =

∫
dDx

√
−|γ|Q icd

a bjefRa
icdh

bjhef (A.5)

27The last equality is equivalent to (4.79).
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if Q icd
a bjef = 2δijP

cd
(a b)ef . Making use of a non-minimal coupling term proportional to this,

one expects to start the second step of the iterative procedure with

S̃1 =
−1

2

∫
dDx

∂
√
−|γ|K(s) c d

ab ef

∂γst
hst∇ch

ab∇dh
ef

≡ −1

2

∫
dDx

∂
√
−|γ|K c d

ab ef

∂γst
hst∇ch

ab∇dh
ef + s

∫
dDxP

[cd]
a befsth

st∇ch
ab∇dh

ef

(A.6)

The present consistency requirement could be similarly satisfied using

SNM
1 =

∫
dDx

√
−|γ|Q icd

a bjefstRa
icdh

bjhefhst ≡ 2

∫
dDxP cd

(a b)efstRa
icdh

bihefhst

=

∫
dDxP cd

a befsth
sthef∇[c∇d]h

ab = 2

∫
dDxP

[cd]
a befsth

st∇dh
ef∇ch

ab + ST

(A.7)

were it not for the fact that this requires P
[cd]

a befst = P
[cd]

a bstef which is false.

B Connecting Canonical and Rosenfeld’s EMT (altern-

ative)

One can write the r.h.s. of (3.24), taking into account that ∂L
∂∇̄chab δh

ab = ∂L
∂∂chab

δhab and
∂L
∂∇̄cϕδϕ = ∂L

∂∂cϕ
δϕ are weight-1 vector densities, as

δL =
δS

δhab
δhab+

δS

δϕ
δϕ+

δS

δḡab
δḡab+∇̄c

(
∂L

∂∇̄chab
δhab +

∂L

∂∇̄cϕ
δϕ

)
+∂c

(
∂L

∂∂cḡab
δḡab

)
. (B.1)

Actually, ∂L
∂∇̄cḡab δḡ

ab is a weight-1 vector density and so the coordinate derivative in front of

the last term above can also be replaced by the covariant one (see [34]). Hence,

δL =
δS

δhab
δhab +

δS

δϕ
δϕ+

δS

δḡab
δḡab + ∇̄c

(
∂L

∂∇̄chab
δhab +

∂L

∂∇̄cϕ
δϕ+

∂L

∂∂cḡab
δḡab

)
(B.2)

Now, we are also going to specify the variations of the dynamical fields. Starting with δḡab

and

δhab = ξc∂ch
ab − 2hc(a∂cξ

b)

= ξc∇̄ch
ab − 2hc(a∇̄cξ

b) ,
(B.3)
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we can already write most of the terms in (B.2) in terms of the transformation parameter:

δS

δhab
δhab =

δS

δhab
ξc∇̄ch

ab − 2
δS

δhab
hca∇̄cξ

b (B.4)

∇̄i

(
∂L

∂∇̄ihab
δhab

)
=∇̄i

(
∂L

∂∇̄ihab
ξc∇̄ch

ab

)
− 2∇̄i

(
∂L

∂∇̄ihab
hca∇̄cξ

b

)
=∇̄i

(
∂L

∂∇̄ihab
∇̄ch

ab

)
ξc +

(
∂L

∂∇̄ihab
∇̄ch

ab

)
∇̄iξ

c

− 2∇̄i

(
∂L

∂∇̄ihab
hca
)
∇̄cξ

b − 2

(
∂L

∂∇̄ihab
hca
)
∇̄i∇̄cξ

b

(B.5)

δS

δḡab
δḡab =− 2

δS

δḡab
∇̄aξb (B.6)

∇̄i

(
∂L

∂∂iḡab
δḡab

)
=− 2∇̄i

(
∂L

∂∂iḡab
∇̄aξb

)
=− 2∇̄i

(
∂L

∂∂iḡab

)
∇̄aξb − 2

(
∂L

∂∂iḡab

)
∇̄i∇̄aξb

(B.7)

For concreteness, we suppose that ϕ is a scalar field, such that

δϕ = ξc∂cϕ = ξc∇̄cϕ , (B.8)

and obtain the remaining terms in (B.2):

δS

δϕ
δϕ =

δS

δϕ
ξc∇̄cϕ (B.9)

∂L

∂∇̄iϕ
δϕ =

∂L

∂∇̄iϕ
ξc∇̄cϕ (B.10)

Writing (3.22) in terms of the covariant derivative,

δL = ∂c (ξcL ) = ∇̄c (ξcL ) = ξc∇̄cL + L ∇̄cξ
c , (B.11)

and equating with (B.2) after substituting equations (B.4) - (B.10), we have

0 =

[
δS

δhab
∇̄ch

ab +
δS

δϕ
∇̄cϕ− ∇̄i

(
δicL −

∂L

∂∇̄ihab
∇̄ch

ab − ∂L

∂∇̄iϕ
∇̄cϕ

)]
ξc

−

[
2
δS

δḡab
ḡac +

(
δcbL −

∂L

∂∇̄chad
∇̄bh

ad − ∂L

∂∇̄cϕ
∇̄bϕ

)
+ 2

δS

δhab
hac

+ 2∇̄i

(
∂L

∂∂iḡab
ḡac +

∂L

∂∇̄ihab
hca
) ]
∇̄cξ

b − 2

[
∂L

∂∂iḡab
ḡac +

∂L

∂∇̄ihab
hca
]
∇̄i∇̄cξ

b

(B.12)

75



In the first line of the equation above, all terms cancel out since it consists of the r.h.s. of

equality (3.18) being subtracted to the l.h.s.. The last term also vanishes identically since

∇̄i∇̄cξ
b is symmetric in the indices i and c whilst the coefficient in front of it (≡

√
−|ḡ|ψ ci

b )

is antisymmetric (ψ ci
b = −ψ ic

b ). All that remains is the term proportional to ∇̄cξ
b and we

see that its coefficient must vanish due to arbitrariness of the transformation parameter:

−
√
−|ḡ|T caRosḡab +

√
−|ḡ|T caCanḡab − 2

δS

δhab
hac +

√
−|ḡ|∇̄aψ

ca
b = 0 (3.36)

where we used definitions (3.29) and (3.19).

C Solving for non-minimal coupling term

Dividing (4.60) by
√
−|γ| we get

∆̃c υ
pqµ (aK

µ d
b)υ ef +

∂K c d
pq ef

∂γab
− 1

2
K c d
pq ef γab = −∆̃c i

pqτ jQ
τ [dj]
i abef (C.1)

Substituting the following equations in the equation above, one sees that it’s identically sat-

isfied.

∂K c d
pq ef

∂γab
=

1

2

[
δc(aδ

d
b)γp(eγf)q − γcdγp(aγb)(eγf)q − γcdγp(eγf)(aγb)q − δc(aδdb)γpqγef

+ γcdγp(aγb)qγef + γcdγe(aγb)fγpq + 2δc(eγf)(aγb)(pδ
d
q) − δc(eδdf)γp(aγb)q − δc(pδdq)γe(aγb)f

] (C.2)

∆̃c α
pqµ aK

µ d
bα ef =

1

4

(
2δc(eδ

d
f)γa(pγq)b − 4δc(eγf)bγa(pδ

d
q) + 3δcbγa(pδ

d
q)γef − δcaδd(pγq)bγef

+ 4δc[aγb](pγq)(eδ
d
f) + δcaδ

d
b [γefγpq − γepγqf − γeqγfp]− 3γcdγefγa(pγq)b + 4γcdγb(eγf)(qγp)a

) (C.3)

−∆̃c i
pqβ jQ

β[dj]
i abef =

1

4

(
[γabγef + γaeγfb + γafγbe]

[
γcdγpq − δc(pδdq)

]
+γab

[
2δc(eγf)(pδ

d
q) − γpqδc(eδdf) − γcdγe(pγq)f

]
+ (ab)↔ (ef)

) (C.4)

Q in this last equation is given by (4.62).
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D Extra iteration: “metric self-coupling” of the mass

term

δS̃m
2

δγab
= −m

2

48

√
−|γ|

[
1

2
γab

(
h4 + 12hsth

sth2 + 16k′heih
c
eh

i
ch+ 24k′hsthseh

edhdt

+6k′hsth
sthefh

ef
)

+ 4
(
habh

3 + 6hdahbdh
2 + 6hsth

sthabh+ 12k′hadh
dfhfbh

+4k′hseh
c
sh

e
chab + 24k′hajh

d
bh

f
dh

j
f + 6k′hdahbdhsth

st
)] (D.1)

From this we get five consistency requirements that are identically satisfied (two of them are

equivalent to (5.71)).

E Proof: partial actions below quadratic order vanish

S[ē; f ] =
∞∑
n=0

χn

n!

∫
dDxn... d

Dx1
δnS[e]

δecC(xn)... δebB(x1)

∣∣∣∣
e=ē

f bB(x1)... f cC(xn)

≡
∞∑
n=0

χn
∫
dDxn L (n)

(E.1)

(6.32) implies that

L (0) = Kb Ac D
a d [ē]∇̄bē

a
A∇̄cē

d
D (E.2)

and taking into account invariance under (infinitesimal) LLT28, we have

0 = δ̂L (0) = 2Kb Ac D
a d [ē]∇̄bδ̂ē

a
A∇̄cē

d
D +

∂Kb Ac D
a d [ē]

∂ēi I
δ̂ēi I∇̄bē

a
A∇̄cē

d
D

=

[(
2Kb Ic D

a d [ē]∇̄bē
a
B +

∂Kb Ac D
a d [ē]

∂ēi I
ēiB∇̄bē

a
A

)
εBI + 2

(
Kb Ac D

a d [ē]ēaB
)
∇̄bεBA

]
∇̄cē

d
D

(E.3)

where we used δ̂ēaA = ēaBε
B
A. This implies, using arbitrariness of the transformation para-

meter and its antisymmetry,

K
b [Ac D
a d [ē]ēaB] = 0 (E.4)

This leads to (using ω̄bAB’s antisymmetry)

L (0) = Kb Ac D
a d [ē]ω̄bAB ē

aB∇̄cē
d
D = K

b [Ac D
a d [ē]ēaB]∇̄cē

d
Dω̄bAB = 0 (E.5)

28Γ is a Lorentz scalar.
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Moving on to n = 1:∫
dDx1 L (1) =

∫
dDx1

δnS[e]

δebB(x1)

∣∣∣∣
e=ē

f bB(x1)

=

∫
dDx1

[
2

∫
dDxKb Ac D

a d [ē]∇̄bē
a
A

δ∇ce
d
D

δebB(x1)

∣∣∣∣
e=ē

f bB(x1) +
∂Kb Ac D

a d

∂ei I

∣∣∣∣
e=ē

f iI∇̄bē
a
A∇̄cē

d
D

]
(E.6)

The first term vanishes when we use (E.4) as in (E.5) and we have

L (1) =
∂Kb Ac D

a d [ē]

∂ēi I
f iI∇̄bē

a
A∇̄cē

d
D ≡ K ′

b Ac D I
a d i [ē]f iI∇̄bē

a
A∇̄cē

d
D (E.7)

Due to Lorentz invariance,

0 = δ̂L (1) = 2K ′
b Ac D I
a d i [ē]f iI∇̄bδ̂ē

a
A∇̄cē

d
D +K ′

b Ac D I
a d i [ē]δ̂f iI∇̄bē

a
A∇̄cē

d
D

+
∂K ′b Ac D I

a d i [ē]

∂ēuU
δ̂ēuUf

i
I∇̄bē

a
A∇̄cē

d
D = εBU(...) + ∇̄bεBA

(
2K ′

b Ac D I
a d i [ē]f iI ē

aB
)
∇̄cē

d
D

(E.8)

similarly to (E.3). Using arbitrariness of the transformation parameter and its antisymmetry

once more, this implies

K ′
b [Ac D I
a d i [ē]f iI ē

aB] = 0 (E.9)

One easily sees from (E.5) that L (1) also vanishes.
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