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Abstract

All known optical materials have a refractive index of order unity. While this is well-established experi-

mentally, there is as of yet no comprehensive theory to explain this observation, and in fact the saturation

of the refractive index seems to contradict traditional theoretical models. We formulate here a theory

of the optical properties of ordered atomic media at the interface of quantum optics, quantum chem-

istry, and multiple scattering of light, which is needed to resolve this issue. Specifically, using a minimal

theoretical model, we are able to capture the effect of quantum chemistry interactions on the collective

optical response of a 3D atomic array in the regime of linear optics. Contrary to traditional arguments,

we propose that the onset of quantum chemistry at sufficiently high atomic densities leads to the emer-

gence of fundamental inelastic scattering processes in the array, which attenuate the refractive index. In

particular, we reproduce recent analytical results on the antiferromagnetically ordered Fermi-Hubbard

model to argue that the ground-state charge fluctuations of our model represent the most significant

source of these processes. By systematically dissecting the interactions encoded in the full problem, we

are able to characterise the dominant effects associated with quantum chemistry and thus to support

this argument, while also recovering the standard quantum optics limit in a physically rigorous fashion.

Our work establishes a bridge between the generically incompatible paradigms of multiple scattering

and quantum chemistry, to address a problem whose eventual solution promises to have wide-reaching

implications – both in terms of the basic theory of electrodynamics and in terms of photonic technologies,

since it suggests the possibility of realising optical materials with ultrahigh refractive indices.
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Chapter 1

Introduction

1 Background & motivation

A key quantity which characterises the propagation of electromagnetic waves in a medium is the refractive

index n, which relates the wavevector k of a plane wave in the medium to its wavevector k0 in the

vacuum according to k = nk0 [1]. In a non-absorbing medium, n is real and typically positive, although

negative indices have also been engineered in artificial metamaterials [2, 3]. A real refractive index

corresponds with the ratio of the speeds of light inside and outside and the medium and equivalently

relates the wavelengths λ = 2π/|k| and λ0 = 2π/|k0| as n = λ0/λ. From the perspective of photonics,

the maximum refractive index of a material therefore places a lower bound on attainable length scales

of optical elements fabricated from it. Rather curiously, the maximum refractive index of all optical

materials with positive indices at visible wavelengths – for instance silica glass [4] and quartz glass [5] as

well as common semiconductors [6–10] and other solids [11] – is on the order of unity. This observation

is robust even close to the optical resonances of the materials, suggesting that there indeed exists some

fundamental limitation on the value of n. Understanding the physical processes which lead to this

saturation of the refractive index (and potential methods to circumvent them) could bear wide-reaching

implications for photonic technologies, since being able to engineer ultra-high index materials could pave

the way to developing optical circuitry at the nano-scale.

On a more fundamental level, developing a consistent theory of the refractive index would necessi-

tate a re-examination of long-standing theoretical models. In particular, the low value of the maximum

refractive index disagrees with current theories of optical response at the level of the most basic systems;

for instance, a single atom by itself has a characteristically large optical response: the resonant scatter-

ing cross-section of an atom has a maximum value of σsc = 3λ2
0/(2π), where λ0 denotes the resonant

wavelength associated with the targeted atomic transition [12]. In the visible range, λ0 ∼ 10−7m while

the characteristic length scale of the atom is given by the Bohr radius a0 ≈ 10−10m, therefore an atom

typically has an effective optical target area much larger than its physical size.

Both intuition and generic macroscopic models of refractive index suggest that the index should grow

with atomic density. However, the index problematically grows to unreasonable values, if one starts

from the large single-atom response described above. In particular, perhaps the most familiar classical

model for the refractive index is the Drude-Lorentz model [13]. Within this model, the refractive index
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Figure 1.1 – Maximum refractive index. Scaling of the maximum real part of the refractive index n with

the (re-scaled) atomic density Nλ3
0/V for a) the Drude-Lorentz model, as well as b) a 3D atomic crystal and c)

a disordered atomic ensemble, taking into consideration multiple scattering. The regime of dense atomic media,

where quantum chemistry effects become non-negligible, is indicated as the grey shaded region, while the range

of values of n for real materials is indicated in orange. The regime of non-interacting point scatterers, under

which the predictions a)–c) are valid, is also indicated.

is computed from the product of the single-atom polarisability α(ω) and atomic density N/V as

n(ω) =

(
1 + α(ω)

N

V

)1/2

. (1.1)

At suitable detuning, this model predicts a scaling of the maximum real part of the refractive index with

the atomic density as n ∼
(
Nλ3

0/V
)1/2

, which is of course unbounded as N/V → ∞ (see Fig. 1.1a).

The semi-classical Maxwell-Bloch equations, which treat the atoms as quantum mechanical two-level

systems [14], lead to the same qualitative result.

As is intuitively evident from eq. (1.1), these models rely on the assumption that the optical response

is characterised by the polarisation induced in each atom by the external electric field only. In fact, it is

the total local electric field which polarises each atom, and this includes not only the external field but

also the field re-scattered from all other atoms in the medium. The polarisation of each atom is therefore

sensitive to the microscopic configuration of the entire system (i.e. the instantaneous positions and

polarisations of all atoms), a fact which is entirely absent from the Drude-Lorentz model. Traditionally,

the field experienced by an atom due to other atoms in a medium is accounted for in the spirit of the

Lorentz-Lorenz model, which treats the collection of atoms as a smooth medium of uniform charge density

N/V generating a uniform electric field. The local field at a given atomic position is then calculated

by assuming that the atom sits in a small spherical vacuum exclusion, which leads to the well-known

Clausius-Mossotti relations [13]. However, the maximum real refractive index predicted by the Lorentz-

Lorenz model is still unbounded in the same way as for the Drude-Lorentz model. This is because the
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assumption of a smooth medium with uniform density N/V does not account for the granularity of the

atomic system, which crucially affects the local fields experienced by individual atoms.

In particular, the coherent scattering of light between atoms at discrete positions can lead to interfer-

ence effects which drastically alter the optical properties of the atomic medium: this so-called multiple

scattering enables a host of collective phenomena, including superradiance and subradiance [15–17], or

resonance shifts and changes in lineshape [18–20]. These cooperative effects can be enhanced even fur-

ther when the atomic scatterers are placed in ordered geometries [21], for instance enabling a strongly

enhanced optical cross-section with respect to the single-atom limit [22, 23]. Multiple scattering calcu-

lations for light in atomic media are well-motivated by potential applications: for instance, they have

led to the realisation of atomic mirrors [21, 24, 25] and there have been suggestions of their application

to novel methods of laser amplification [26]. Given the proven relevance of multiple scattering effects in

other contexts, it seems unavoidable that they should also play an important role in the problem of the

maximum refractive index.

Indeed, in Ref. [27], a full numerical treatment of the multiple scattering of light in a dilute atomic

gas was already shown to lead to results for the maximum refractive index consistent with the experi-

mental paradigm. In the sub-wavelength regime, the scattering cross-section of each atom exceeds the

typical inter-atomic spacing, and Ref. [27] shows that in this regime, multiple scattering becomes a

non-perturbative problem. This particular problem can be solved using the strong disorder renormalisa-

tion group, a standard method for dealing with many-body systems with strongly varying interactions

strengths [28, 29]. Specifically, the authors of Ref. [27] show that, due to the randomised atomic positions,

the many-atom interactions can be treated as a hierarchy of pair-wise strong, coherent nearest-neighbour

interactions. This leads to an effective inhomogeneous broadening across the ensemble, allowing for a

mapping of the collection of identical atoms onto an ensemble of atoms with significantly varying reso-

nances and lineshapes. Hence, light of a given frequency will only encounter roughly a single near-resonant

atom per volume element λ3
0, independent of the atomic density. This leads to a maximum real part of

the refractive index of around n ≈ 1.7 (see Fig. 1.1c).

The fact that the optical response of an atomic medium seems to be dominated by strong short-

range interactions underlines the shortcomings of the smooth medium models. However, interestingly,

while this explanation based purely on (classical) electrodynamics seems to be sufficient to explain the

maximum attainable value of the refractive index in disordered atomic ensembles, the same cannot be

said for the ordered case. An application of a non-perturbative multiple scattering formalism to an

ordered array of well-separated atoms, which will be reviewed in Chapter 2 of this dissertation, predicts

a scaling of the maximum refractive index with atomic density as n ∼
(
Nλ3

0/V
)1/3

(see Fig. 1.1b). While

this result is certainly different from the textbook models, it still predicts no saturation of the index.

The missing puzzle piece are non-radiative interactions between the atomic scatterers, which are

incompatible with the assumptions underlying the multiple scattering argument and are instead the

subject of quantum chemistry. Specifically, when the atomic lattice spacing a becomes comparable to
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the Bohr radius a0, the outer atomic orbitals overlap, leading to interactions between the atoms as well

as deformations of the orbitals [30–32]. In the case of ordered atomic media, these interactions cause the

narrow atomic energy levels to broaden out and form continuous bands of states. The study of absorption

and emission of light in such systems is well-studied and much more complex than in the case of a single

atom [33]: in addition to photon-mediated transitions of electrons between bands, there are intra-band

electronic transitions, phonon-assisted absorption, exciton-assisted absorption, or absorption via defects

to account for. In principle, all of these effects contribute to the optical properties of solid-state matter

in general, and to the refractive index in particular. Ignoring all of these subtleties and assuming an

optical response purely characterised by the direct inter-band electronic transitions, a standard approach

in quantum chemistry is to calculate the dielectric function ε(ω) using Fermi’s Golden Rule according

to the prescription (see e.g. Ref. [34])

Im ε(ω) =

(
V q2

2π~m2ω2

)∫
d3k

∑
m,m′

|〈φkm|p̂|km′〉|2f(km)(1− f(km′))δ(Ekm − Ekm′ − ~ω) , (1.2)

where Re ε(ω) can be calculated from the well-known Kramers-Kronig relations. Here, Ekm denotes the

m-th energy band, the state |φkm〉 denotes a crystal wave state, and f(km) is the Fermi distribution. The

problem of calculating optical properties then reduces to the problem of calculating electronic structure

to obtain the form of the |φkm〉.

The starting point for this is the Born-Oppenheimer approximation, which assumes that the slow-

moving nuclei can be treated as stationary relative to the electrons [35]. The main focus of quantum

chemistry is then to find accurate and computationally feasible solutions to electronic Schrödinger equa-

tions. A number of standard techniques have been devised and fine-tuned to overcome the computational

complexity of this challenge [36–38]. The most popular are methods which approximate the many-

body problem self-consistently as a single-body problem for each electron, such as Hartree-Fock Theory

(HFT) [39] or Density Functional Theory (DFT) [40]. In particular, DFT offers formidable (polynomial)

scaling of computational effort while providing accurate results. Greater computational efficiency can

be achieved by introducing external parameters, as done in a large number of so-called semi-empirical

techniques [41–43]. The speedups of such approaches relative to conventional HFT or DFT come at the

cost of numerical accuracy. On the other side of this tradeoff, the assumptions of HFT and DFT can be

improved upon by accounting for instantaneous electron-electron Coulomb repulsion. This is the domain

of ab initio (i.e. first-principles) calculations, based on many-body wavefunctions [44–46].

Importantly, state-of-the-art computational quantum chemistry simulations along the lines of eq. (1.2)

produce similar orders of magnitude for the maximum refractive index as observed in experiments (see

for example Refs. [47–49]). This suggests that the onset of quantum chemistry is responsible for the

deviation of the scaling in Fig. 1.1b towards the order of unity. However, even if it were possible to

calculate the electronic structure of the medium to arbitrary accuracy (i.e. to perform ‘exact quantum

chemistry’), Fermi’s Golden Rule itself is an approximation and, in particular, corresponds to the lowest

order expansion of a multiple scattering problem. Therefore, even the most advanced quantum chemistry
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methods do not incorporate a full non-perturbative multiple scattering treatment, and so while they may

reproduce accurate values of the refractive index, they are not able to resolve the related conceptual issues.

In summary, up to now, there is no theory that correctly describes the maximum value of the refractive

index of optical media. It is clear that such a theory must not only unify quantum optics and quantum

chemistry, in order to capture the transition from dilute atomic media to solid-state materials, but also

incorporate multiple scattering of light in a non-perturbative fashion. The goal of this thesis is to develop

such a theory for a simple 3D atomic crystal, which is valid around the transition from discrete atoms

to quantum chemistry (i.e. as the line in Fig. 1.1b crosses the boundary of the grey shaded region). This

theory will both elucidate the dominant physical mechanisms by which the predicted scaling of n saturates

and eventually decreases, and predict that an ultrahigh refractive index (i.e. values of n ∼ 50 − 100) is

in principle achievable.

2 Minimal theoretical model

In the face of the individual complexity of both the multiple scattering and the quantum chemistry

aspects of the problem outlined above, the challenge of accurately calculating the scaling of the maximum

refractive index with density seems daunting. We briefly outline here the minimal model which we propose

in order to reduce the complexity of the problem and tackle the interplay of quantum chemistry and

multiple scattering in a systematic way.

The key conceptual step in our minimal model is an effective reduction of the dimensionality of the

problem, both in terms of the quantum chemistry and multiple scattering aspects. To accomplish this,

we view a generic 3D crystal as a layering of parallel square arrays with lattice constant a in the xy

plane, spaced at intervals az in the z-direction. The advantage of this (initially purely formal) change of

perspective is two-fold. Firstly, we can consider this model in the quantum optics limit i.e. at densities

below the threshold for quantum chemistry interactions. While in this regime the optical properties of

3D atomic crystals are not well-understood, there has been key theoretical work on non-perturbative

multiple scattering in 2D arrays [21, 24]. In particular, it has been established that square arrays display

a remarkable cooperative response, whereby near-resonant normally incident plane waves with zero in-

plane wavevector can only be re-radiated with the same wavevector, accompanied by a short-range

evanescent field. For az � a, the effect of the evanescent field from each plane on atoms in other planes

can be disregarded and the multiple scattering in the full 3D crystal simplifies to a repeated single-mode

scattering at each plane. In this way, the multiple scattering aspect of the index problem is effectively

reduced from 3D to 1D.

The second advantage of our model is that we may choose az � a in such a way that quantum

chemistry interactions persist within each 2D array but that the different planes will be sufficiently far

separated for quantum chemistry interactions between them to be negligible. In this way, the quantum

chemistry aspect of the index problem is effectively reduced from 3D to 2D. An obvious advantage

of this assumption will be that it trivially reduces the complexity of the formal quantum chemistry
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calculations – as we will see, the ground state manifold of our planar array is well-captured by the

half-filled Fermi-Hubbard model, for which there exist a number of state-of-the-art quantum chemistry

studies in 2D (for a review see e.g. Ref. [50]). However this assumption will also prove crucial to

formulating our hypothesis of the effect of quantum chemistry on the refractive index: in the quantum

optics limit, near-resonant light will experience a (large) phase shift at each 2D plane [24]. The summative

phase shift of light propagating through the full 3D structure allows us to infer the (large) refractive

index of the crystal, leading to the scaling in Fig. 1.1b. A controlled expansion around of the quantum

chemistry interactions in a0/a� 1 (i.e. around the onset of quantum chemistry interactions) then allows

key processes associated with quantum chemistry within each 2D array to be included into its optical

response in a perturbative way, and we simply have to look for those processes which reduce the phase

shift at the plane, leading to an attenuation of the overall phase shift and therefore a saturation of the

refractive index. This is the aim of this dissertation.

3 Structure of the thesis

The dissertation is structured as follows: In Chapter 2 we first formalise the description of the model

introduced in the last section in the dilute limit where the atoms can be treated as discrete scatterers.

In particular, we reproduce the multiple scattering analysis of the collective optical response of the

individual 2D layers and derive an explicit expression for the scaling of the refractive index of the full 3D

crystal. Chapter 2 serves as a point of reference for a treatment of non-perturbative multiple scattering

during the next three chapters, where we focus instead on the effect of quantum chemistry on the optical

properties of the 2D arrays.

In Chapter 3, we begin this discussion by setting up a formal (minimal) model for quantum chemistry

on a 2D lattice. This model serves as the workhorse for the two following chapters. In particular, in

Chapter 4 we analyse in some detail the ground state of this model. Using methods from many-body

quantum field theory, we investigate the ground state charge dynamics and reproduce key results related

to the formation of holon-doublon pairs, i.e. the double occupancy of a single site by two electrons, leaving

behind an empty site. We introduce the main hypothesis of the thesis, namely that the associated buildup

of density-density correlations in the ground state represents a source of inelastic scattering processes

leading to the saturation of the index.

Chapter 5 is then dedicated to dissecting in detail the interactions of our model and demonstrating

that the model is amenable to a multiple scattering analysis (akin to the one in Chapter 2) with some

corrections exponentially small in a0/a. In this way, we are able to show that the holon-doublon pairs

characterised in Chapter 4 in fact represent the dominant correction to the quantum optics limit at the

interface to the quantum chemistry regime. To make the relevance of this effect even more explicit, we

return in Chapter 6 to the multiple scattering picture to make a convincing argument that the holon-

doublon pairs may, with the exception of one other effect, be practically exclusively responsible for the

saturation of the refractive index. We conclude by underlining the potential implications of this result.
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Chapter 2

Quantum optics limit

In this chapter, we begin by examining the minimal model introduced in the previous chapter in the

quantum optics limit, i.e. in the limit where the atoms are sufficiently far separated for quantum chem-

istry effects to be negligible. We submit the individual planar arrays to a non-perturbative multiple

scattering treatment, firstly to derive the cooperative response advertised in the previous chapter (Sec-

tion 2), and secondly, based on this, to obtain the scaling of the refractive index for the 3D crystal shown

in Fig. 1.1b (Section 3). To preface the calculations presented in this chapter, we begin by introducing

briefly the toolkit of the formal theory of multiple scattering (Section 1).

1 Multiple scattering theory

1.1 Quantisation in dispersive media

In our review of multiple scattering theory, we will focus in particular on a quantum spin model which has

in the past been successfully used to study collective excitations and exotic optical properties in ordered

atomic arrays [17, 51–53]. Underlying the spin model is a formalism for the quantisation of the scattered

electric field based on the microscopic Huttner-Barnett model [54] and first introduced in Refs. [55, 56]. It

has been devised primarily to describe macroscopic quantum electrodynamics within dispersive dielectric

materials, where standard canonical quantisation becomes unfeasible since the irreversible dynamics of

the polarisation noise do not preserve the field commutators. The procedure relies on the introduction of

additional bosonic quantised ‘loss’ degrees of freedom to which the electric field can couple. Specifically,

the electric field operator can then be defined as Ê(r) =
∫
dω Ê(r, ω), with

Ê(r, ω) = i

√
~
πε0

ω2

c2

∫
d3r′

√
Im ε(r′, ω)G(r− r′, ω) · f̂(r′, ω)︸ ︷︷ ︸
Ê(+)(r, ω)

+ h.c. , (1.1)

where ε(r′, ω) is the permittivity. Here, f̂(r′, ω) denotes a bosonic operator associated with the medium-

assisted field, which obeys standard bosonic canonical commutators, and we have indicated how to de-

compose the field into positive- and negative-frequency components as Ê(r, ω) = Ê(+)(r, ω)+ Ê(−)(r, ω).

The primary advantage of this formalism for our case of atoms in free space is that it allows us to

circumvent the tedious technicalities of the textbook method of quantisation by mode decomposition.
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Chapter 2 Quantum optics limit

1.2 Spin model formalism

We now consider a collection of N two-level atoms at positions Ri (i = 1, . . . , N), with an optically

allowed transition between the ground (|g〉) and excited (|e〉) states, associated with resonance frequency

ω0 and dipole matrix element d0. For each atom, we define the atomic coherence operators σ̂+ = |e〉〈g|

and σ̂− = |g〉〈e|. Under a dipole approximation (i.e. assuming negligible variation in the field on the

atomic length scale), the formal Hamiltonian for a coupling of the atoms to the field (1.1) is [57]

H =
∑
i

~σ̂+
i σ̂
−
i︸ ︷︷ ︸

HA

+

∫
d3r

∫
dω ~ω f̂†(r, ω)f̂(r, ω)︸ ︷︷ ︸

HF

−
∫
dω
∑
i

d̂i · Ê(Ri, ω)︸ ︷︷ ︸
HAF

, (1.2)

where d̂i = d∗0σ̂
+
i + d0σ̂

−
i is the atomic dipole moment operator. Here, HA and HF are the bare

many-atom and field Hamiltonians and HAF realises the light-matter interaction.

1.2.1 Effective atomic master equation

Tracing out the radiative degrees of freedom, the atomic dynamics governed by the Hamiltonian (1.2) are

captured by a master equation for the atomic density matrix ρ̂A, which reads ˙̂ρA = −i/~[Heff , ρ̂A]+L[ρ̂A]

with an effective Hamiltonian Heff and Linblad operator L given by [52, 58]

Heff = ~ω0

∑
i

σ̂+
i σ̂
−
i + ~

∑
i,j

J ij σ̂+
i σ̂
−
j

L[ρ̂A] =
∑
i,j

Γij

2

(
σ̂+
i σ̂
−
j ρ̂A + ρ̂Aσ̂

+
i σ̂
−
j − 2σ̂−i ρσ̂

+
j

)
.

(1.3)

Here, J ij and Γij are the rates for coherent and dissipative interactions, respectively, defined as [17]

J ij = −µ0ω
2
0

~
d∗0 · Re G(Rij , ω0) · d0

Γij = −2µ0ω
2
0

~
d∗0 · Im G(Rij , ω0) · d0 ,

(1.4)

where Rij ≡ Rj −Ri and G(r, ω0) denotes the dyadic Green’s tensor [59], i.e. the photonic propagator,

whose properties we outline in the next section. Importantly, the derivation of the atomic master equation

involves the Born-Markov approximation [60], which we encounter again in Chapter 5 and which is valid

when the correlations in the radiation field decay much faster than the atomic correlations [57, 58, 61].

Additionally, the evaluation of the Green’s tensor on-resonance in eq. (1.4) is only valid when retardation

of the light propagating between atoms can be neglected [62]. This assumption is validated by the fact

that when interacting with an atom, a photon incurs a delay on the timescale ∼ 1/Γ0. Since Γ0 is small

for real atoms, these delays dominate the retardation of photons in the atomic system, while the delay

arising simply from the finite velocity of light is negligible. As a final approximation, in Heff we have

ignored the off-resonant van der Waals interactions between ground state atoms, which we also revisit

in Chapter 5.
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Chapter 2 Quantum optics limit

We note that, within the formalism of quantum jump operators [63], the atomic dynamics are alter-

natively captured by an effective non-Hermitian Hamiltonian [17]

Heff = ~
(
ω0 − i

Γ0

2

)∑
i

σ̂+
i σ̂
−
i − µ0ω

2
0

∑
i,j 6=i

d∗0 ·G(Rij , ω0) · d0 σ̂
+
i σ̂
−
j , (1.5)

where Γ0 = ω3
0 |d0|2/(3πε0~c3) is the single-atom spontaneous decay rate. This is the version of the spin

model that we will refer back to in later chapters.

1.2.2 Input-output relations

Given a solution to the atomic dynamics, the multiple-scattered field can be reconstructed. The starting

point are the Heisenberg equations i~˙̂
f(r, ω) = [f̂(r, ω), H] for the medium-assisted field operators [52],

˙̂
f(r, ω) = −iωf̂(r, ω) +

ω2

c2

√
1

π~ε0
Im ε(r′, ω)

∑
i

G(r−Ri, ω) · d0 σ̂
−
i . (1.6)

This expression can be formally integrated, performing another Markov approximation and neglecting

retardation for consistency with eqns. (1.4) and (1.5), to obtain the positive-frequency field component

Ê(+)(r) = Ê
(+)
0 (r) + µ0ω

2
0

∑
i

G(r−Ri, ω0) · d0 σ̂
−
i . (1.7)

Here, Ê
(+)
0 (r) denotes the incident field, whereas the second term accounts for the scattering of the field

by the atoms. This quantum input-output formalism for the electric field has been successfully used in

the past to study light propagation in waveguides and nanostructures [58, 64, 65].

1.3 Dyadic Green’s tensor

1.3.1 Basic definitions and properties

Before reviewing the application of the spin model formalism to the exactly solvable case of a square

array in the next section, we pause for a moment to examine in more detail the structure and properties

of G(r, ω). First, we note that it is related to the conventional scalar Green’s function G0(r, ω) =

eikr/(4π|r|) [1, 12], familiar from the Lorenz gauge, according to

G(r, ω) =

(
1+

1

k2
∇⊗∇

)
G0(ω, r) . (1.8)

The position-space expression for the Green’s tensor can be computed explicitly by eq. (1.8) as

G(r, ω) =
eikr

4πk2

[(
k2

r
+

ik

r2
− 1

r3

)
1 +

(
−k

2

r
− 3ik

r2
+

3

r3

)
r⊗ r

r2

]
− 1

3k2
δ(3)(r) . (1.9)

where k = ω/c = |k| and r = |r|. The structure of this expression already gives some insight into the

physics captured by the Green’s tensor: in the near- and far-field regimes, the Green’s tensor has a

radial dependence of ∼ 1/r3 and ∼ 1/r, respectively. The former can be identified with non-radiative,

strong, coherent dipole-dipole coupling [27, 66], while the latter has the characteristic form of long-range

radiative interactions [59]. We return to this point in Chapter 5.
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Chapter 2 Quantum optics limit

Formally, the Green’s tensor solves the (dyadic) Helmholtz equation with a δ-source, hence a general

solution to the Maxwell equations with current density source J(r, ω) takes the form [59]

E(r, ω) = iµ0ω

∫
d3r′G(r− r′, ω) · J(r′, ω) . (1.10)

By inserting the current density J(r, ω) = −iωd(ω)δ(3)(r) for an oscillating classical dipole d(t) =

d(0)e−iωt at r in this expression, it is evident that the components Gαβ(r−r′, ω) (α, β ∈ {x, y, z}) define

the α-component of the electric field at point r due to a dipole at point r′ oriented along the β-axis.

1.3.2 Longitudinal and transverse components

The field (1.10) can be decomposed into its longitudinal (‖) and transverse (⊥) components obeying

∇×E‖(r, ω) = 0 and ∇ ·E⊥(r, ω) = 0, respectively. This is simple in momentum space: using the fact

that a general momentum-space vector field V(q) decomposes as V(q) = V‖(q) + V⊥(q) with

V‖(q) = q
q ·V(q)

q2

V⊥(q) = V(q)− q
q ·V(q)

q2
,

(1.11)

where q = |q|, we can separate the momentum-space Maxwell equations for the electric field into equa-

tions for the longitudinal and transverse components, which read

iq ·E‖(q, ω) =
ρ(q, ω)

ε0(
q2 − k2

)
E⊥(q, ω) = iωµ0J

⊥(q, ω) .

(1.12)

Combining this with the additional momentum-space relation iq · J‖(q, ω) = iωρ(q, ω) which follows

from the Maxwell equations, the momentum-space version of eq. (1.10) is

E(q, ω) =
iµ0ω

q2 − k2
J⊥(q, ω) +

1

iωε0
J‖(q, ω) . (1.13)

We note also, writing the field as E(r, ω) = iωA(r, ω)−∇φ(r, ω) with scalar potential φ(r, ω) and vector

potential A(r, ω), that in the Coulomb gauge (∇ ·A(r, ω) = 0)

E‖(r, ω) = −∇φ(r, ω)

E⊥(r, ω) = iωA(r, ω) .
(1.14)

For an arbitrary charge distribution, the Coulombic electrostatic interactions will be encoded by the

scalar potential φ(r, ω) while the radiative interactions will result from a coupling to A(r, ω). Therefore

eq. (1.13) implies a decomposition of the Green’s tensor into longitudinal and transverse components

G‖(q, ω) = − 1

k2

q⊗ q

q2

G⊥(q, ω) =

1− q⊗ q

q2

q2 − k2
,

(1.15)
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Chapter 2 Quantum optics limit

which, based on eq. (1.14) and assuming the Coulomb gauge, we identify as encoding the electrostatic

and radiative interactions in our system, respectively [67]. The interactions in the spin model Hamilto-

nian (1.5) can then be decomposed naturally into direct Coulombic and photon-mediated interactions

according to the decomposition of the Green’s tensor. We will revisit this idea in Chapter 5. We can

also obtain explicit expressions for the components (1.15) in position-space by performing the inverse

Fourier transform of the above equations to obtain [12]

G‖(r, ω) =
1

4πk2

[
− 1

r3
+

3

r3

r⊗ r

r2

]
− 1

3k2
δ(3)(r)

G⊥(r, ω) =
eikr

4πk2

[(
k2

r
+

ik

r2

)
1+

(
−k

2

r
− 3ik

r2

)
r⊗ r

r2

]
+

eikr − 1

4πk2

[
− 1

r3
+

3

r3

r⊗ r

r2

]
.

(1.16)

2 Optical response in 2D

Having introduced a minimal toolkit for a non-perturbative treatment of multiple scattering in many-

atom systems, we now apply it to the case of a square atomic array. Specifically, we consider N two-level

atoms (ground state |g〉, excited state |e〉, resonance ω0) arranged at fixed positions Ri (i = 1, . . . , N)

in a square array with lattice constant a. For concreteness, we choose the array to lie in the xy-plane,

with primitive lattice vectors a1 = ax̂ and a2 = aŷ. We work in the sub-wavelength regime a < λ0

(λ0 = 2πc/ω0) and we also assume that the array side length L = (
√
N − 1)a� λ0, which allows us to

approximate the lattice as infinitely extended and perfectly crystalline. The system is then translationally

invariant and hence the atomic eigenmodes of the spin model Hamiltonian obey Bloch’s Theorem [68]. We

will also assume that the atoms are purely radiative, and that the excited state decays with spontaneous

decay rate Γ0. Our setup is shown in Fig. 2.1a,b.
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|G ⟩

ωcoop ω (k∥ = 0)

Δcoop

Γcoop

Γ0 + Γ′ 

= = =

a)

b)

= = =

c)

. . .

. . .
1 2 3 m − 2 m − 1 m

a

az ≫ a
a

E0,k∥=0 eimπ E0,k∥=0
|E ⟩

|G ⟩

ω (k∥ = 0)

Δcoop

Γcoop

Γ

a) b)

|e⟩

|g⟩

ω0 ω

Δ

Γ0

c)
a

a

L

y

xR0

a2

a1

E−sc,k∥=0 E+sc,k∥=0

z = 0

zy

x

E0,k∥=0

Figure 2.1 – 2D atomic array. a) Generic (purely radiative) two-level atom in the array, interacting with a

field at frequency ω (detuning ∆ = ω − ω0). b) Lattice structure of the 2D array in the xy-plane. c) Scattering

of a normally incident field by the 2D array.
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Chapter 2 Quantum optics limit

2.1 Weak-driving regime

In terms of the refractive index problem, we are interested only in the regime of linear optics, i.e. of a

weak driving field. This essentially implies a single incident photon, so we can truncate the spin model

Hilbert space to a single-excitation subspace. By Bloch’s theorem, single excitations in the system

will be delocalised across the lattice in the form of a spin-wave |ψk〉 =
∑
i eik·Ri σ̂+

i |g〉 of fixed crystal

momentum k [17, 51, 53]. Within the single-excitation subspace, the spin model Hamiltonian Heff can

then be diagonalised in a basis of these spin-wave states. Technically, the assumption of an excitation

shared coherently between the atomic degrees of freedom in this way is an approximation: the excitation

is actually stored in the lattice as a polariton, i.e a photon-atom composition. Discarding the radiative

contribution is valid in our limit of negligible retardation between atoms.

In the single-excitation and low-saturation (〈σ̂+
i σ̂
−
i 〉 ∼ 0) regime, the Heisenberg equations for the

atomic coherence operators map onto coupled equations for N classical dipoles di (i = 1, . . . , N) [52],

di(ω) = di,0(ω) + α(ω)µ0ω
2
∑
j 6=i

G(Rij , ω) · dj(ω) . (2.1)

where di,0(ω) is the value of di(ω) in the presence of no other dipoles. This allows for a purely classical

treatment of the problem, which has been successfully applied in a number many-atom systems [21, 24,

25]. The underlying physical assumption is that in response to a local (classical) field, an atom develops

an induced dipole moment di(ω) = α(ω)E(Ri, ω), where α(ω) is the electric polarisability [69]. For a

two-level atom driven by light at detuning ∆ = ω − ω0 (|∆| � ω0) [70, 71],

α(ω) ≈ − 3ε0

4π2
λ3

0

Γ0/2

ω − ω0 + iΓ0/2
≡ − α0

∆ + iΓ0/2
. (2.2)

Note than in eq. (2.1) we have neglected the re-scattered field from the dipole itself, i.e. we have effectively

ignored coupling to on-site fluctuations in the electric field. This is self-consistent if we assume that we

have already incorporated into the atomic spectra the Lamb shift, i.e. the shift in the atomic energies

due to local vacuum fluctuations [24, 72].

Under the above set of assumptions, we now treat our atomic lattice as a square array of classical

dipoles governed by eq. (2.1). Following Ref. [24], we will show that such an array displays a remarkable

cooperative response which allows for a simple effective description of the array, and which allows us to

build up the formal theory of the minimal model outlined in Chapter 1. We will restrict ourselves to

presenting the key arguments of the calculation, with the full technical detail in Appendix A.

2.2 Collective optical response

2.2.1 Cooperative radiative response

We note that a general wavevector k = (kx, ky, kz) can be decomposed as k = k‖ + kz ẑ, where k‖ =

(kx, ky, 0) is the component of k in the lattice plane. We will consider incident fields of the form

E0(r) =
∑
k‖

E0,k‖eik‖·reikzz , (2.3)
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Chapter 2 Quantum optics limit

where we assume that the plane wave amplitudes E0,k‖ lie entirely in the xy-plane. Fourier transforming

the dipole equations (2.1), we are simply able to read off the self-consistent formal solution

d(k‖) =
4π2α

Na2

(
1− 4π2α

λ2ε0
g(k‖)

)−1

·
∑
q‖

E0,q‖δ
(2)(q‖ − k‖) , (2.4)

where g(k‖) =
∑
i6=0 G(ω,Ri)e

−ik‖·Ri with R0 = (0, 0) . This already encodes the first important

qualitative point regarding the collective response of the array: an incident plane wave can only excited

a collective mode at the same in-plane wavevector k‖ as its own.

This observation motivates us to write the Fourier decomposition of the dipoles di in a form more

closely resembling the plane wave decomposition (2.3), as di =
∑

k‖
d0,k‖eik‖·Ri , where the sum is

performed over the same wavevectors as for the incident field and where d0,k‖ = αe(k‖) ·E0,k‖ with

αe(k‖) = − 3ε0

4π2
λ3

0

Γ0/2

∆ + (λ0/λ)3∆e(k‖) + i(λ0/λ)3Γe(k‖)/2
. (2.5)

By comparison with eq. (2.2), it is clear that αe(k‖) represents an effective polarisability, which is no

longer isotropic, and that the interaction of the light with the array leads to a collective radiative response

characterised by a cooperative frequency shift ∆e and a cooperative radiative decay rate Γe,

∆e(k‖) =
3λΓ0

2
Reg(k‖) (2.6)

Γe(k‖) = 3λΓ0 Img(k‖) + Γ0 . (2.7)

In fact, we are able to obtain a more convenient form of the cooperative linewidth (2.7). We make the

simplifying assumption that E0(r) = E0(r)x̂ so that di = dix̂. Then the cooperative linewidth becomes

Γe,xx(k‖) =
∑
G

3πΓ0

a2k3

k2 − |k‖ −G|2x√
k2 − |k‖ −G|2︸ ︷︷ ︸

Γxx|k‖,G

. (2.8)

where Γ|k‖,G denotes the ‘partial decay rate’ for the diffraction associated with the reciprocal vector G.

We can alternatively write Γe,xx(k‖) =
∑
m Γxx|k‖,Gm

, where Gm ·Ri = 2πM with M ∈ Z unique for

each pair m, i ∈ Z. We refer to m as the diffraction order, and on the square lattice we note that we can

simply identify m ∼ (mx,my) with Gm = (2π/a)(mxx̂ +myŷ) (for mx,my ∈ Z) [24].

2.2.2 Scattered electric field

So far our discussion of the optical response has been focused entirely on the atoms, however a clas-

sical analogue of the input-output relation for the electric field introduced in the previous section are

readily obtained by substituting di = αe,xx(k‖)E0,k‖eik‖·Ri x̂ into the dipole equations. Using the same

arguments as above, the scattered field due to an incident plane-wave with in-plane momentum k‖ reads

Esc,k‖(r) = αe,xx(k‖)E0,k‖

k3

3πε0Γ0

∑
m

iΓxx|k‖,Gm

2
eikz|z|ei(k‖+Gm)·r‖ . (2.9)
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Chapter 2 Quantum optics limit

This expression emphasises the fact that the array scatters back into the mode of the incident wave,

which is the second crucial qualitative observation.

With reference to eq. (2.8), we note that for a diffraction order m to contribute to the cooperative

linewidth, the associated partial decay rate Γxx|k‖,Gm
must be imaginary according to eq. (2.7). By

eq. (2.8), this imposes the condition k > |k‖ −Gm|, which limits the number of diffraction orders that

participate in the radiative response. In fact, this condition amounts to the requirement that the field

propagate out of the lattice plane [24]. Therefore in eq. (2.9), for diffraction orders m with k < |k‖−Gm|

the scattered field becomes evanescent, i.e. short-range and non-propagating [59].

2.3 Response at normal incidence

We now want to consider the special case of a normally incident wave, i.e. the case where k‖ = 0, leaving

only a single incident plane wave mode with amplitude E0,k‖=0 which we choose as E0,k‖=0 = E0x̂ such

that the incident field is simply a plane wave E0(z) = E0eikzzx̂.

2.3.1 Effective description

At normal incidence, the cooperative response of the 2D array is actually captured by a simple effective

model: The fact that an incident plane wave with k‖ = 0 can only excite collective modes with k‖ = 0

as well implies that, in the linear optics regime, the light only couples only to a single spin-wave state,

|ψk‖=0〉. In the single-excitation subspace, the atomic spin model Hamiltonian which we can construct

for the 2D array is therefore diagonal in the 2-dimensional basis of states {|G〉, |E〉} with

|G〉 ≡ |g〉⊗N

|E〉 ≡ |ψk‖=0〉 =
1√
N

∑
i

σ̂+
i |g〉 .

(2.10)

This means we can think of the array at normal incidence as an effective single-mode system with ground

state |G〉 and excited state |E〉, resonance frequency ωcoop ≡ ω0−∆e,xx(k‖ = 0), and radiative linewidth

Γcoop ≡ Γe,xx(k‖ = 0). This effective description is depicted in Fig. 2.2c.

2.3.2 Cooperative linewidth

In fact, at normal incidence we can obtain the cooperative linewidth Γcoop analytically. Specifically, if

we assume a < λ/2, only the zero diffraction order (m = 0 i.e. G = 0) contributes to the radiative

response. Substituting k‖ = G = 0 in eq. (2.8),

Γcoop =
3Γ0

4π

(
λ0

a

)2

. (2.11)

The cooperative frequency shift ∆e,xx(k‖ = 0) can be computed numerically [24, 73–75], but its specific

value (a small fraction of the bare atomic frequency ω0) is not of importance here.
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2.3.3 Scattered electric field

To characterise the optical properties of our effective single-mode system, we then apply the same con-

siderations we used to arrive at eq. (2.11) to the expression for the scattered field (2.9), whereby

Esc,k‖=0(z) ≈ − iΓcoop/2

∆coop + i(Γcoop + Γ0)/2
E0eikz|z| , (2.12)

having assumed that (λ0/λ)3 ≈ 1 for small detuning and defined ∆coop = ω − ωcoop. At a normal

scattering interface, the total field then decomposes into the incident field E0,k=0 as well as the compo-

nents E±sc,k‖=0 of the scattered field Esc,k‖=0 propagating into the ±z direction (see Fig. 2.1c). We can

calculate the associated amplitudes of transmission t and reflection r as

t = lim
z→+∞

E+
sc,k‖=0(z)

E0(z)
and r = lim

z→−∞

E−sc,k‖=0(z)

E∗0 (z)
, (2.13)

which are related by t = 1 + r. By examination of eq. (2.12), it is simple to see that

t(∆coop) =
2i∆coop

Γcoop − 2i∆coop
and r(∆coop) =

−Γcoop

Γcoop − 2i∆coop
. (2.14)

In particular, we note that r(∆coop = 0) = −1 i.e. on-resonance the array becomes perfectly reflecting

with a phase shift of π. We also note that close to resonance, the transmission coefficient, while small,

still implies a large phase shift of ∼ π/2 for transmitted light.

This cooperative resonance agrees with numerical studies predicting a drastically enhanced optical

cross-section for fine-tuned ordering and lattice spacing in atomic arrays and relating this to a subradiant

collective mode of the array [21]. The perfect reflectivity is a striking example of the impact of order

on multiple scattering, since for disordered atomic systems, multiple scattering actually greatly impedes

optical extinction [76–79]. Even more fundamentally, it underlines the importance of accounting for non-

perturbative multiple scattering: disregarding multiple scattering effects, r = −1 could only be achieved

in the limit of infinite atomic density [80].

3 Refractive index in 3D

Having discussed the simpler and better understood problem of multiple scattering in 2D, we now return

to our initial problem of a 3D atomic array. We will single out the z-direction as the direction of

propagation of the incident electric field and the x-direction as its direction of polarisation, so that we

consider incident plane waves at wavevector k = kẑ of the form E0(z) = E0eikzx̂, as in the case above. As

for the 2D case, we will require that the crystal is perfectly translationally invariant and that the atoms

are non-absorbing, in which case incident light will propagate losslessly in the atomic crystal, implying

a purely real and isotropic refractive index n. Within the crystal, incident plane waves will scatter into

collective spin-wave excitations propagating at a modified wavevector k′ = nk. The refractive index can

then be inferred from the total phase shift ∆ϕ = nkLz incurred by a plane wave after it has propagated

through the crystal, where Lz denotes the length of the crystal in the z-direction.
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3.1 Effective 1D description

As described in Chapter 1, we adopt the perspective of the 3D crystal as a layering of m equidistant

planar arrays (see Fig. 2.2a). If we choose these to be separated by az � a, for normally incident light

this is equivalent to a line of m single-mode emitters, since the evanescent field from each emitter can be

ignored and the emitters couple only via the scattered incident plane wave (see Fig. 2.2b). The scattering

is characterised by the reflectivity and transmittivity derived above. This is the reduction of the multiple

scattering aspect of the problem to 1D promised in Chapter 1. If we consider near-resonant incident

light, then the propagation of light through the crystal simply amounts to a phase ∼ π picked up at each

of the emitters, amounting to a total phase of ∆ϕ ∼ mπ picked up after propagation through the full

crystal. This implies a refractive index n ∼ λ0/az, which leads to the scaling in Fig. 1.1b.

3.2 Quantum chemistry effects

We argued in Chapter 1 that our minimal model allows us to incorporate the effects of quantum chemistry

in a simple way. We can now formalise this idea using the effective single-mode description of the 2D

arrays: if we include an inelastic decay channel with linewidth Γ in our single-mode model,

r(∆coop) = − Γcoop

Γcoop + Γ− 2i∆coop
, (3.1)

leading to imperfect reflectivity. According to the above reasoning, since r 6= −1 implies a lower phase

shift at each 2D plane this will lead to a lower value of n. One possible source of such an additional

linewidth Γ could be imperfections not captured by our idealised atomic array model (e.g. atomic

motion), and indeed such effects are often heuristically cited as the reason for the saturation of n.

Instead, we will argue that the inelastic linewidth is associated with fundamental processes which emerge

with the onset of quantum chemistry, leading to a saturation of the refractive index at densities where

these processes become non-negligible.
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Figure 2.2 – 3D atomic array. a) Structure of a 3D atomic crystal in terms of square atomic arrays and

phase shift of a normally incident plane wave propagating through the crystal. b) Equivalent description of the

3D crystal as a chain of effective single-mode emitters. The short-range evanescent and propagating fields are

indicated as green shaded regions and plane waves. c) Structure of the effective single-mode emitters.
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Quantum chemistry I: Minimal 2D model

In order to identify quantum chemistry effects which introduce inelastic scattering processes in the man-

ner outlined previously, we now move to the regime where the atomic density within our 2D arrays is

sufficiently high for quantum chemistry effects to become non-negligible. To study the optical proper-

ties of the arrays in this new regime, where the discrete scatterer assumption of the previous chapter

breaks down, our starting point must be the formal description of the array, including the electrostatic

interactions between the atoms as well as the coupling of each atom to the electromagnetic field.

While the two-level atom model of the previous chapter is valid for any number of closed singlet-triplet

atomic transitions [21] (e.g. in alkaline-earth-metal atoms [81, 82]), we restrict ourselves to the simple

case of hydrogen atoms (see Appendix C). In particular, we will consider only a single atomic transition

between 1s and 2p states, which we denote as |s〉 and |p〉. This is consistent with the assumption of

the single-excitation regime we introduced above. For consistency with the preceding notation, we will

denote the resonance frequency and wavelength of the transition by ω0 and λ0.

1 Electronic Hamiltonian

Based on the perspective of quantum chemistry, we set up the problem of a hydrogen atom lattice from the

formal Hamiltonian for N interacting electrons (charge q) on a background of protons at fixed positions

Ri (i = 1, . . . , N), coupled to an electromagnetic field with vector potential A(r). This formulation

of the problem is exact up to the Born-Oppenheimer approximation. We assume that each electron is

localised around a single atomic site, allowing us to label the electrons by the atomic indices. In the

language of first quantisation, the i-th electron is characterised by position r̂i and momentum p̂i, obeying

the commutator [r̂i, p̂j ] = i~δij . The full Hamiltonian describing the lattice can then be written in the

minimal coupling form [67] as

H =
1

2m

∑
i

(
p̂i − qÂ(r̂i)

)2

−
∑
ij

V (|r̂i −Rj |) +
1

2

∑
ij 6=i

V (|r̂i − r̂j |) . (1.1)

The first term of the Hamiltonian corresponds with a sum of gauge-invariant single-particle Hamiltonians

for a free electron interacting with a quantised electromagnetic field, while the second and third terms

encode the electron-proton and electron-electron interactions, respectively, with Coulomb potential

V (|r− r′|) =
q2

4πε0

1

|r− r′|
. (1.2)
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1.1 Gauge fixing

The quadratic atom-field coupling term in (1.1) can be expanded in any gauge but it is most convenient

to choose the Coulomb gauge ∇ ·Â(r) = 0. We note that the Coulomb gauge is essentially the statement

that p̂ · Â(r) = 0 expressed in a position basis |r〉 where 〈r|p̂|ψ〉 = −i~∇〈r|ψ〉. Noting that

∇ · Âψ + Â · (∇ψ) = (∇ · Â)ψ + 2Â · (∇ψ) −−−−−→
∇·Â=0

2Â · (∇ψ) , (1.3)

we see that the Coulomb gauge simplifies the cross-terms in the expansion of the coupling term. Then,

H ≈
∑
i

p̂2
i

2m︸ ︷︷ ︸
T

− q

m

∑
i

p̂i · Â(r̂i)︸ ︷︷ ︸
V

−
∑
ij

V (|r̂i −Rj |)︸ ︷︷ ︸
Up

+
1

2

∑
ij 6=i

V (|r̂i − r̂j |)︸ ︷︷ ︸
Ue

. (1.4)

Here we have also made the approximation that the term quadratic in Â(r) is negligible. This is

reasonable if we recall that we are working in the sub-wavelength regime a < λ0. Since a � a0, this

automatically places us in the long-wavelength limit λ0 � a0, under which we are able to approximate

that Â(r̂i) ≈ Â(Ri) [67]. This assumption only becomes invalid for particularly high-energy photons

(e.g. x-rays) or fields that are strong enough to force the electron far from the nucleus (e.g. ionizing

fields). Since the quadratic term then no longer couples to the atomic states, we can safely ignore it.

The new form (1.4) of the Hamiltonian neatly discerns the different contributions to the Hamiltonian,

separating not only the electron-proton (Up) and electron-electron (Ue) electrostatic interactions, but

also a purely kinetic term (T ) and the term capturing the atom-field interaction (V ).

1.2 Electromagnetic field

As a final formal point, we note that we will treat the electromagnetic field from the very beginning using

second quantisation, i.e. we will assume that the vector potential admits the mode decomposition [83]

Â(r) =
∑
k

fk
(
âkeik·r + h.c.

)
with fk =

(
~

2ωkε0V

)1/2

êk , (1.5)

where ωk = c|k| is the photonic dispersion relation and êk is the unit polarisation vector for the transverse

field, defined such that êk·k = 0. The operators â†k, âk are the bosonic creation and annihilation operators

for photons at wavevector k, obeying the canonical commutation relations

[âk, âk′ ] = [â†k, â
†
k′ ] = 0

[âk, â
†
k′ ] = δkk′ .

(1.6)

A multi-photon state containing nk photons at wavevector k is constructed using these operators with

respect to the bosonic vacuum |0a〉 (defined by âk|0a〉 = 0) as [83]

|nk1 , nk2 , . . .〉 =

(
â†k1

)nk1

√
nk1

(
â†k2

)nk2

√
nk2

. . . |0a〉 . (1.7)
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Chapter 3 Quantum chemistry I: Minimal 2D model

2 Bloch & Wannier electrons

2.1 Bloch electrons

We now turn to the problem of diagonalising the Hamiltonian (1.4). Neglecting for a moment the

electron-electron interaction, the Hamiltonian (1.1) decomposes as H =
∑
i hi into a sum of single-

particle Hamiltonians defined for each atomic electron according to

h =
p̂2

2m
− Vnuc(r̂) , (2.1)

which describe the motion of an electron in the potential Vnuc(r) =
∑
i V (|r−Ri|) formed by the protons

on the lattice. Notably, the potential Vnuc(r) inherits the periodicity of the lattice: for a general lattice

vector R = mxa1 +mya2 (mx,my ∈ Z), it satisfies Vnuc(r + R) = Vnuc(r).

The form of the eigenfunctions φkα(r) = 〈r|φkα〉 (eigenvalue Ekα) of a generic many-body Hamilto-

nian which decomposes in this way into single-particle Hamiltonians with a periodic potential is dictated

by Bloch’s Theorem, which states that φkα(r) = ukα(r)eik·r with crystal momentum k lying in the

First Brillouin Zone (1BZ) and ukα(r) = ukα(r + R). Such eigenstates describe electrons completely

delocalised across the crystal, where α labels distinct bands of electrons [68, 84]. In our particular case,

α subsumes both an index µ, which labels the state of an electron with respect to the atomic energy

levels, and the spin index σ ∈ {↑, ↓}: when the inter-atomic spacing a is decreased, the atomic µ-orbitals

between sites hybridise to form two degenerate delocalised orbitals (i.e. bands) each, with the degeneracy

associated with different spin values. The Hamiltonian therefore has Bloch eigenstates |φkµσ〉, associated

with spin-σ electrons in the µ-orbital band, at crystal momentum k.

2.2 Wannier electrons

The plane wave structure of the Bloch eigenfunctions |φkµσ〉 motivates the construction of a localised

electron wavepacket by a suitable superposition of Bloch modes with a sufficiently broad range of crystal

momenta. Explicitly, we define a transformation between delocalised Bloch states |φkµσ〉 and localised

Wannier states |φiµσ〉 [85] according to

|φiµσ〉 =
1√
N

∑
k∈1BZ

e−ik·Ri |φkµσ〉

|φkµσ〉 =
1√
N

∑
i

eik·Ri |φiµσ〉
(2.2)

To be precise, the Wannier states have the form |φiµσ〉 = |φiµ〉|σ〉. In a position basis |r〉, the Wannier

wavefunctions φiµ(r) = 〈r|φiµ〉 are identical in the sense that φiµ(r) = φµ(r−Ri), where we assume that

φµ(r) is strongly localised in r. Since the choice of Wannier functions is actually non-unique [86, 87],

we will assume for the sake of concreteness so-called maximally localised Wannier functions [88], which

are known to be exponentially localised [89]. At very short distances from the atomic site, the Wannier

orbitals are practically indistinguishable from the underlying hydrogenic orbitals, which is a property

that we will make use of repeatedly in Chapter 5.
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Chapter 3 Quantum chemistry I: Minimal 2D model

Term Element Integral expression

T T |ijµµ′ − ~2

2m

∫
d3r φ∗µ(r−Ri)∇2

rφµ′(r−Rj)

Up Up|ijkµµ′ − q2

4πε0

∫
d3r φ∗µ(r−Ri)

1
|r−Rk|φµ

′(r−Rj)

Ue Ue|ijklµµ′νν′ + q2

8πε0

∫
d3r φ∗µ(r−Ri)

(∫
d3r′φ∗ν(r′ −Rj)

1
|r−r′|φν′(r′ −Rl)

)
φµ′(r−Rk)

V V |ijµµ′;k + i~q
m fk ·

∫
d3r eik·Riφ∗µ(r−Ri)∇φµ′(r−Rj)

Table 1 – Second quantisation matrix elements. The table shows a summary of the matrix elements

associated with the kinetic (T ), electrostatic (Up +Ue) and atom-field coupling (V ) terms in the Hamiltonian, as

well as their explicit expressions in terms of the Wannier functions φiµ(r) = φµ(r−Ri). Note than in the matrix

element for V we have made the long-wavelength approximation

3 Second quantisation

In the framework of solid state physics or quantum chemistry, the suitable language in which to tackle a

many-body Hamiltonian such as (1.4) is the formalism of second quantisation. We therefore define a set

of fermionic creation operators ĉ†iµσ, which act on a fermionic vacuum state |0c〉 (defined by ĉiµσ|0c〉 = 0)

to create a Wannier electron with spin σ in the µ-orbital localised around the i-th site as |φiµσ〉 = ĉ†iµσ|0c〉,

and which obey canonical anticommutation relations

{ĉiµσ, ĉjµ′σ′} = {ĉ†iµσ, ĉ
†
jµ′σ′} = 0

{ĉiµσ, ĉ†jµ′σ′} = δijδµµ′δσσ′ .
(3.1)

Within the formalism of second quantisation, an n-body operator Ô can be written in terms of the

fermionic operators ĉiµσ, ĉ
†
iµσ according to the prescription [90]

Ô =
∑
i1...in
i′1...i

′
n

∑
µ1...µn
µ′
1...µ

′
n

∑
σ1...σn
σ′
1...σ

′
n

〈φi1µ1σ1 . . . |Ô|φi′1µ′
1σ

′
1
. . .〉 ĉ†i1µ1σ1

. . . ĉ†inµnσn ĉi′nµ′
nσ

′
n
. . . ĉi′1µ′

1σ
′
1
.

(3.2)

In particular, applying this to the electronic Hamiltonian, we arrive at the second quantised Hamiltonian

which provides the starting point for an analysis of the 2D lattice using standard methods from quantum

chemistry and condensed matter theory:

H =
∑
ij

∑
µν

∑
σ

T |ijµν ĉ†iµσ ĉjνσ︸ ︷︷ ︸
T

+
∑
ijk

∑
µν

∑
σ

Up|ijkµν ĉ†iµσ ĉjνσ︸ ︷︷ ︸
Up

+
∑
ijkl

∑
µµ′νν′

∑
σσ′

Ue|ijklµµ′νν′ ĉ†iµσ ĉ
†
jνσ′ ĉlν′σ′ ĉkµ′σ︸ ︷︷ ︸

Ue

+
∑
ij

∑
µν

∑
σ

∑
k

(
V |ijµν;kâkĉ

†
iµσ ĉjνσ + h.c.

)
︸ ︷︷ ︸

V

(3.3)

The matrix elements associated with each of the interaction terms can be written explicitly in terms of

real space overlap integrals involving the Wannier functions φiµσ as shown in Table 1.
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Chapter 4

Quantum chemistry II: Ground state

In this chapter, we begin our analysis of the model introduced in the preceding chapter by studying

its ground state. We first derive an effective Hamiltonian for the ground state manifold of the model

(Section 1.1) and analyse its structure, identifying in particular a tension between the spin and charge

sectors (Section 1.2).

We highlight one specific characteristic effect associated with the interplay between the spin and

charge sectors, namely the buildup of density-density correlations in the ground state. The resulting

imbalance of electrons on individual sites has a direct effect on the optical response of the lattice:

atoms with an excess or deficit of electrons will not respond to light in the same way as an isolated

hydrogen atom. To an incoming photon, the true ground state then resembles a lattice with random

pairs of neighbouring atoms ‘punched out’ on those sites where there are holon-doublon pairs which

do not participate in the collective optical response. The effective holes in the lattice scatter incident

incoherently into all directions. This suggests that the ground state charge fluctuations give rise to such

fundamental inelastic scattering processes as contribute to the saturation of the refractive index.

Denoting the fraction of sites with holes punched out as 2D/N , where D is the doublon occupancy

i.e. the average number of doubly occupied sites in the ground state, a reasonable estimate of the change

in radiative response is that it introduces a new inelastic linewidth Γ = (σeff/σsc)(2D/N)Γcoop. Here,

σeff and σsc denote the effective cross-sections of a punched out hole and an atom. In Chapter 6, we will

show that σeff is actually significantly larger than σsc. This implies that the holes punched out by the

density-density correlations span a large number of lattice sites, i.e. a single punched out hole can break

the collective optical response of a large number of surrounding atoms.

In order to understand how this effect is ‘activated’ with the transition from the quantum optics limit

to the quantum chemistry regime, we therefore round off this chapter by developing a formal quantum

field theoretic description for the ground state manifold (Sections 2 and 3), which in particular allows us

to derive an asymptotic value for D around the onset of quantum chemistry.
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Chapter 4 Quantum chemistry II: Ground state

1 Ground state model

1.1 Effective Hamiltonian

In the absence of photon-mediated excitations to the p-orbital, the atomic electrons in the lattice will

be confined to the lower-energy s-orbital. Starting from the full quantum chemistry Hamiltonian, the

effective Hamiltonian on the ground state manifold then becomes

H =
∑
ij

∑
σ

T |ijssĉ†iσ ĉjσ +
∑
ijk

∑
σ

Up|ijkssĉ†iσ ĉjσ +
∑
ijkl

∑
σσ′

Ue|ijklssssĉ†iσ ĉ
†
jσ′ ĉlσ′ ĉkσ , (1.1)

where the orbital index µ = s is suppressed. For exponentially localised Wannier orbitals, we assume

that only nearest-neighbour terms contribute significantly to the Hamiltonian. Under this assumption,

H ≈ µ
∑
i

(n̂i↑ + n̂i↓)−t
∑
〈i,j〉

∑
σ

ĉ†iσ ĉjσ︸ ︷︷ ︸
HK

+U
∑
i

n̂i↑n̂i↓︸ ︷︷ ︸
HU

. (1.2)

We can identify the role of each of the three terms in this Hamiltonian: The first term controls the

occupation number in the model via a chemical potential µ = Tiiss + Up|iiss. Since we consider a fixed

electron number N , we may ignore this term. The second term (HK) induces a short-range tunnelling

of electrons between neighbouring sites, well-known from solid state tight-binding models as nearest-

neighbour hopping [68], with amplitude t ≡ Up|ijiss. If we assume periodic boundary conditions, it can

be written as HK = −t
∑
〈i,j〉

∑
σ ĉ
†
iσ ĉjσ = −t

∑
i,δ,σ

(
ĉ†iσ ĉi+δσ + h.c.

)
, where we only sum over half of

the connecting vectors, i.e. δ ∈ {a1,a2}. Finally, the third term (HU ) represents an energy penalty

U ≡ Ue|iiiissss associated with the double occupancy of a site by two electrons. We note that this is only

the on-site contribution of the third term in (1.1), while we have ignored the nearest-neighbour terms

associated with matrix elements like Ue|i+δiiissss. We will see in the next chapter that these terms act to

renormalise the value of t in the ground state manifold. Since we are assuming a0/a� 1, we are working

in the strong coupling regime U � t, i.e. the on-site interaction is large compared to the tunnelling.

1.1.1 Particle-hole symmetry

We make one more formal change in the Hamiltonian (1.2) to highlight the particle-hole symmetry [91]

of the hopping term. Under the operator transformation b̂iσ = (−1)iĉ†iσ, we can see that b̂†iσ b̂iσ =

(−1)2iĉiσ ĉ
†
iσ = ĉiσ ĉ

†
iσ = 1 − ĉ†iσ ĉiσ. The transformation therefore interchanges the number of particles

(i.e. electrons) and holes (i.e. empty sites). Notably, on the square lattice HK is invariant under such a

transformation, however HU is not. Since particle-hole symmetry is an important feature, for instance

allowing for numerical approaches using Quantum Monte Carlo algorithms [92, 93], we write

H = −t
∑
i,δ,σ

(
ĉ†iσ ĉi+δσ + h.c.

)
+ U

∑
i

(
n̂i↑ −

1

2

)(
n̂i↓ −

1

2

)
. (1.3)

This differs from our Hamiltonian only by a constant energy shift and a shift in the chemical potential,

both of which are irrelevant for us, and is clearly now invariant under the particle-hole transformation.
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1.1.2 Fermi-Hubbard model

We recognise (1.3) as the single-band Fermi-Hubbard model [94, 95] at half-filling (i.e. N electrons in a

system ofN sites). This equivalence between the effective low-energy Hamiltonian of an array of hydrogen

atoms and the Fermi-Hubbard model has been confirmed by full quantum chemistry calculations in one

dimension [96, 97], and we will assume that this holds also in the 2D case. The Hubbard model is the

minimal model describing strongly-interacting electronic systems. It was first introduced to study the

magnetic properties of transition metals [98, 99] but has more recently been a major workhorse for the

study of transitions of conductors to a Mott insulator phase [100]. There has been extensive research

on this topic, sparked by the experimental observation that some transition-metal show unexpected

insulating behaviour [101] as a consequence of strong Coulombic repulsion of the electrons [102–104].

1.2 Spin and charge dynamics

Despite its simple structure, the Hubbard model is not exactly solvable in arbitrary dimensions. Ana-

lytical approaches exist in 1D [105] and infinite dimensions [106], and in two dimensions asymptotically

exact solutions models have been constructed (which we will draw on here) [107–109]. Away from these

limiting cases, one needs to resort to numerical methods (for a review, see e.g. Ref. [50]). The subtleties

of strongly correlated electronic systems such as the Hubbard model reside for the most part in the

interplay between the charge and spin degrees of freedoms associated with the electrons. In fact, a prime

example of the effect of spin on charge dynamics is the ground state |G〉 of the Hubbard model in our

strong-coupling regime of U � t, which is defined both by a charge and a spin configuration.

1.2.1 Ground state fluctuations

At zero order in t/U , the ground state charge distribution at half-filling is trivially the one which min-

imises HU , i.e. the occupation of each site by exactly one electron, implying |G〉 ≈ ĉ†1σ1
ĉ†2σ2

. . . ĉ†NσN |Ω〉.

At this order, the spin configuration (σ1, σ2, . . . , σN ) is irrelevant. However, at leading order in t/U , the

ground state spin configuration becomes crucial: with every site occupied by one electron, an electron

hopping to a neighbouring site incurs an energy penalty U , making such a process distinctly off-resonant

(see Fig. 4.1). Therefore we consider the virtual process of an electron hopping to a neighbouring sites

and back (intermittently violating energy conservation, see Fig. 4.1). Such virtual processes arise at

second order in a perturbative treatment of the problem. It can be shown that the second-order pertur-

bative energy correction due to a single virtual hopping event is ∝ −t2/U , thus reducing the ground state

energy and making it energetically favourable for the ground state to host virtual hopping. By the Pauli

exclusion principle, an electron can only hop to an occupied site if it has the opposite spin value to the

electron already present on the site. Therefore, the most energetically favourable spin configuration is

the antiferromagnetically (AF) ordered one. In this manner, the ground state charge fluctuations induce

an effective spin interaction.
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E

U

0
final state 

(no spin flip)
final state 
(spin flip)

or

initial state
i i + δ

intermediate state
i i + δ

i i + δ i i + δ

t t

holon doublon

initial / final state
⟨HU ⟩ = 0

t

t

intermediate state
⟨HU ⟩ = U

holon

doublon

Figure 4.1 –Virtual hopping in the ground state. Diagrammatic representation of the off-resonant formation

of a holon-doublon pair from an antiferromagnetically ordered initial state. The initial and final states belong to

the low-energy sector (LES) of the model, while the intermediate state is marked by an energy difference U .

1.2.2 Heisenberg spin interaction

The above qualitative reasoning can be formalised in the spirit of Ref. [110], by projecting the eigenvalue

equation of the full Hamiltonian onto the low-energy sector (LES) of the Hubbard model Hilbert space

containing only the 2N degenerate states where each site is singly occupied. To lowest order in t/U , the

effective Hamiltonian in the LES becomes

Heff =
J

2

∑
i,j

(
Si · Sj −

1

4

)
, (1.4)

where J = 4t2/U > 0 and Si is the vector of spin operators Si = (Sxi , S
y
i , S

z
i )T on the i-th site, defined

in terms of the vector of Pauli matrices σ = (σx, σy, σz)T as [111]

Si =
1

2

∑
σ,σ′

ĉ†iσσσσ′ ĉiσ′ . (1.5)

The Hamiltonian (1.4), which was first derived in Ref. [112], is called the Heisenberg model, and it

provides a fundamental description of quantum magnetism [113]. We consider in particular the AF spin-

1/2 (i.e. for electrons) and isotropic (i.e. invariant under rotations in spin space) Heisenberg model [114].

1.2.3 Slave-fermion formalism

From the preceding discussion, it is already clear that charge and spin are treated essentially indepen-

dently from each other in the strong-coupling limit U/t � 1: rather than considering the spin and

number density of the electrons as inextricably linked, we treat electrons as consisting of two separate

quasiparticle excitations, the spinon (associated with the electron spin) and chargon (associated with the

electron number). Our conventional picture of the electron then arises as a bound state of the two. To be

specific, on a lattice we may distinguish in the charge sector between two local quasiparticle excitations,

the holon (an absence of electrons at a site) and the doublon (two electrons occupying a site). As shown

in Fig. 4.1, the charge fluctuations in the ground state generate holons and doublons, which appear

pairwise on neighbouring sites and are otherwise largely uncorrelated [115].
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A suitable formalism in which to treat these spin-charge separated dynamics is the so-called slave-

fermion formalism, which decomposes the fermionic operators ĉ†iσ explicitly into bosonic operators ŝ†iσ,

which create a single spin at the i-th site, and fermionic operators d̂†i or ê†i , which create a doublon or

holon at the i-th site from the vacuum |0c〉 (ŝiσ|0c〉 = d̂i|0c〉 = êi|0c〉 = 0). Explicitly,

ĉiσ = ŝ†iσd̂i + sign(σ)ê†i ŝiσ (1.6)

where σ denotes the opposite spin to σ and where sign(σ) takes the values +1 for σ =↑ and −1 for

σ =↓ [108]. The local conservation of electron number imposes the constraint

1 = d̂†i d̂i + ê†i êi + ŝ†i↑ŝi↑ + ŝ†i↓ŝi↓ . (1.7)

Rather than accounting for this constraint via a Lagrange multiplier in the Hamiltonian, we will imple-

ment it self-consistently in our calculations, following the approach in Ref. [108].

2 Spin sector dynamics

Before we are able to quantify the ground state fluctuations in the charge sector, we have to develop

a formal way to treat the spin sector Heisenberg dynamics. A key property of the spin-1/2 Heisenberg

model is that its ground state supports long-range AF order [116]. Although this has only been rigorously

proven in 1D [117] and 3D [118], as well as for non-square 2D lattices [119, 120], it is generally accepted

that this is also true on square lattices [116, 121] at zero temperature [122].

2.1 Néel mean-field theory

Perfect AF order corresponds with the Néel state |ΨAF〉 = | ↑〉⊗A| ↓〉⊗B, where A and B denote the

sub-lattices of the square lattice under a bipartition. Formally, Néel order in the spin sector can be

realised by a mean-field assumption [108]

ŝ†i↑ → 〈ŝ
†
i↑〉 = b0 and ŝi↑ → 〈ŝi↑〉 = b0 for i ∈ A

ŝ†i↓ → 〈ŝ
†
i↓〉 = b0 and ŝi↓ → 〈ŝi↓〉 = b0 for i ∈ B

(2.1)

where b0 ∈ R. The way in which we implement this assumption is by simply replacing suitable combi-

nations of spin operators with these mean-field expectation values. Applied to (1.7), this implies that

b20 =

1− 〈d̂†i d̂i〉 − 〈ê
†
i êi〉 − 〈ŝ

†
i↓ŝi↓〉 for i ∈ A

1− 〈d̂†i d̂i〉 − 〈ê
†
i êi〉 − 〈ŝ

†
i↑ŝi↑〉 for i ∈ B

(2.2)

which gives us the condition for self-consistency of our slave-fermion approach. Intuitively, the assump-

tion of static spins on each sub-lattice amounts to a renormalisation of the exchange interaction as

J → Jb20 when dealing with spin dynamics on the other sub-lattice, which we implement below.
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2.2 Linear spin-wave theory

In fact, the Néel state is the ground state of the classical Heisenberg model, however in the quantum

case we must account for zero-point quantum fluctuations around |ΨAF〉. These low-lying collective

excitations are traditionally treated using linear spin-wave theory [123, 124]. This approach can be

thought of, essentially, as a leading-order semiclassical expansion around the Néel state [123, 124].

The semiclassical expansion is equivalent to an expansion in the inverse of the spin value S, where the

classical limit corresponds with S →∞. We realise this via the Holstein-Primakoff transformation [125]

S+
i = b̂i

√
2S − b̂†i b̂i and Szi = S − b̂†i b̂i , (2.3)

where b̂†i is shorthand for ŝ†iσ with the spin σ suppressed since on A,B the value of σ is fixed. It is

advantageous to define transformed spin operators S̃xi = Sxi , S̃yi = −Syi and S̃zi = −Szi for i ∈ B,

corresponding with a rotation of the spins on sublattice B by π [116]. Noting that S̃±i = S̃∓i ,

Heff = Jb20
∑
i,δ

(
−Szi S̃zi+δ +

1

2

(
S+
i S̃

+
i+δ + S−i S̃

−
i+δ

))
. (2.4)

Under the Holstein-Primakoff transformation, to leading order in 1/S, we can then approximate

Heff = −Jb
2
0NS

2z

2
+ Jb20S

∑
i

∑
δ

(
b̂†i b̂i + b̂†i+δ b̂i+δ + b̂ib̂i+δ + b̂†i b̂

†
i+δ

)
+ . . . ,

where z = 4 is the coordination number of our square lattice and where . . . indicates terms O(S0). As

we show in Appendix B, in reciprocal space Heff takes the form

Heff = −Jb
2
0NS(S + 1)z

2
+
Jb20Sz

2

∑
k∈1BZ

( b̂†k b̂−k )

 1 γk

γk 1

 b̂k

b̂†−k

 , (2.5)

where we have defined the tight-binding parameter γk = 2z−1
∑

δ eik·δ. This Hamiltonian can be di-

agonalised by a bosonic Bogoliubov transformation, i.e. an isomorphism between sets of creation /

annihilation operators obeying the same commutators [126]. Specifically, we consider a transformation b̂k

b̂†−k

 =

 uk vk

vk uk

 β̂k

β̂†−k

 , (2.6)

and choose uk, vk to be real and spherically symmetric in k. We require u2
k − v2

k = 1 to preserve the

operator algebra. For appropriately chosen uk, vk (see Appendix B),

Heff = −Jb
2
0NS(S + 1)z

2
+
Jb20Sz

2

∑
k∈1BZ

ωk︸ ︷︷ ︸
zero-point energy

+
∑

k∈1BZ

Ωkβ̂
†
kβ̂k , (2.7)

where Ωk = Jb20Sz
√

1− γ2
k. Under the linear spin-wave approximation, the Hamiltonian therefore

supports a single band of free magnonic quasiparticle excitations with energy dispersion Ωk.
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3 Field theoretic description

We now turn to the full problem of the charge dynamics on the AF spin background. We formulate in

this section the quantum field theory (QTF) treatment of this problem, as introduced in Refs. [108, 121],

which allows us to calculate D in the strong coupling regime t/U � 1. A brief review of the many-body

QFT formalism is given in Appendix B.

Conceptually, to treat the full Hubbard dynamics we assume that the spin sector is described by the

Heisenberg model under linear spin-wave theory, an assumption that is known to reproduce quantitatively

well key observables like the sub-lattice magnetisation [116]. Then, the effect on the charge dynamics

due to the coupling of the charge sector to the spin background can be calculated, assuming that the

charge dynamics do not exhibit back-action on the spin properties.

3.1 Slave-fermion Hamiltonian

3.1.1 Mean-field assumption

For consistency with our treatment of the AF background, we first re-write the full Hubbard Hamiltonian

in terms slave-fermion formalism operators as H = H(0) +H(1) with [108]

H(0) =
U

2

∑
i

(
d̂†i d̂i + ê†i êi −

1

2

)
− t

∑
i,δ,σ

sign(σ)
((
d̂†i ê
†
i+δ + ê†i d̂

†
i+δ

)
ŝiσ ŝi+δσ + h.c.

)
H(1) = −t

∑
i,δ,σ

((
d̂†i+δd̂i − ê

†
i+δ êi

)
ŝ†iσ ŝi+δσ + h.c.

)
.

(3.1)

We note that H(0) contains only pairs of spin operators consistent with the mean-field assumption, in

the sense that the spins on the different sub-lattices have opposite orientations. On the other hand,

H(1) contains pairs of spin operators which go beyond the Néel state approximation. Therefore, while

H(0) captures the motion of free chargons on a perfectly AF ordered spin background, H(1) describes a

coupling of the chargon degrees of freedom to the low-lying excitations in the spin background. Enforcing

the mean-field assumption (2.1) and defining Q = (π/a, π/a), a derivation like in Section 2 leads to [108]

H(0) = −NU
4

+
∑

k,q∈1BZ

( d̂†Q−k êk )

 U/2 tb20z

tb20z U/2

 d̂Q−k

ê†k


H(1) =

tb0z√
N

∑
k,q∈1BZ

( d̂†Q−k êk )

 γk−qb̂−q + γkb̂
†
q 0

0 γk−qb̂q + γkb̂
†
−q

 d̂Q−k+q

ê†k−q

 .

(3.2)

3.1.2 Bogoliubov transformations

To express the spin-charge interaction in a physically sensible way, we re-write H(1) by direct substitution

of the Bogoliubov transformation (2.6) in terms of a coupling to the collective spin modes as

H(1) =
∑

k,q∈1BZ

m(k,q)
(
d̂†kd̂k+qβ̂

†
q + êk+qê

†
kβ̂
†
q + h.c.

)
, (3.3)
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where we have defined the coefficient m(k,q) = −tb0z(γk+quq + γkvq)/
√
N to lighten the notation (see

Appendix B). To develop this expression further, we note that H(0) can be diagonalised similar to the

spin-wave Hamiltonian using a fermionic Bogoliubov transformation [126], d̂Q−k

ê†k

 =

 µk νk

−νk µk

 f̂−k

ĝ†k

 , (3.4)

where now µ2
k + νk = 1 to preserve the anticommutators. Under this transformation and including the

magnonic self-energy term, the (diagonal) Hamiltonian H(0) then becomes

H(0) = E +
∑

k∈1BZ

Ωkβ̂
†
kβ̂k +

∑
k∈1BZ

Ek

(
f̂†kf̂k + ĝ†kĝk

)
, (3.5)

where E denotes the sum of the magnonic and fermionic zero-point energies and where Ek =
√
U2/4 + (tb20zγk)2

(see Appendix B). In terms of the transformed operators, H(1) becomes

H(1) =
∑

k,q∈1BZ

M1(k,q)
(
f̂†k+qf̂kβ̂q + h.c.

)
+

∑
k,q∈1BZ

M2(k,q)
(
ĝkĝ
†
k+qβ̂q + h.c.

)
+

∑
k,q∈1BZ

M3(k,q)
(
f̂†−kĝ

†
k+qβ̂q + h.c.

)
+

∑
k,q∈1BZ

M4(k,q)
(
f̂†−kĝ

†
k+qβ̂

†
−q + h.c.

)
.

(3.6)

where the coefficients Mi(k,q) are derived explicitly in Appendix B.

3.2 Diagrammatic analysis

3.2.1 Interaction vertices

We have now arrived at a full description of the Hubbard charge dynamics coupled to the low-lying

excitations in the AF spin background. The interacting quantum field theory we obtain after our Bogoli-

ubov transformations comprises two fermionic fields (associated with the f -type and g-type chargons)

and one collective bosonic field (associated with the magnons). A prime advantage of working with these

auxiliary fields (associated with operators f̂k, ĝk, and β̂k) rather than the physical fields (associated with

operators d̂k, êk, and b̂k) is that the many-body ground state |G〉, while non-trivial to define in terms of

the latter, is simply the free theory vacuum for the former, i.e.

f̂k|G〉 = ĝk|G〉 = β̂k|G〉 = 0 . (3.7)

From the form of the interation Hamiltonian (3.6), there follows naturally a diagrammatic description

of the full Hubbard dynamics, in terms of the trivalent spin-charge coupling vertices shown in Fig. 4.2.

The fact that |G〉 is annihilated by f̂k, ĝk, and β̂k then in particular allows us to apply the machinery

of Feynman diagrams to the auxiliary fields without reservation (calculating scattering matrix elements

using a perturbative expansion in terms of free theory vacuum expectation values – i.e. many-body

ground state correlators – , Wick contracting the correlators, deriving Feynman rules, etc.).
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Figure 4.2 –Hubbard interaction vertices. Representative interaction vertices, with f -type (solid) and g-type

(dashed) fermionic, as well as magnonic (wavy) propagators indicated.

3.2.2 Physical & auxiliary propagators

In particular, in order to calculate the doublon occupancy D we will be interested in the spectral function

for the doublons, and accordingly in the doublon Green’s function G(k, t) = 〈Ω|T d̂k(t)d̂†k(0)|Ω〉, where

|Ω〉 denotes the interacting theory vacuum. Under the fermionic Bogoliubov transformation,

d̂†Q−kd̂Q−k =
2Ek + U

4Ek
f̂†kf̂k −

tb20zγk
4Ek

f̂†kĝ
†
k +

2Ek − U
4Ek

ĝkĝ
†
k −

tb20zγk
4Ek

ĝkf̂k (3.8)

which allows us to relate G(Q−k, t) directly to the 2-point correlators for the auxiliary fields. As already

expressed above, these can then be calculated perturbatively in a diagrammatic fashion, using the free

fermionic Green’s functions (see Appendix B)

〈G|T f̂k(t)f̂†k(0)|G〉 = 〈G|T ĝk(t)ĝ†k(0)|G〉 =

∫
dω e−iωt i

ω − Ek + i0+

〈G|T f̂†k(t)ĝ†k(0)|G〉 = 〈G|T ĝk(t)f̂k(0)|G〉 = 0

(3.9)

3.2.3 Non-crossing approximation

A traditional approach to evaluate the perturbative expansion is to employ the self-consistent Born

approximation (SCBA), and this has yielded successful results in qualiatively similar problems involving

the coupling of a chargon to the low-lying excitations of a spin background [121, 127–131]. In fact, the

SCBA is much more broadly applicable and is a well-known tool in many areas of condensed matter

physics, including electron-phonon coupling [132, 133] or impurity scattering [134, 135]. The SCBA is

best explained by considering a simpler version of our interacting field theory, comprised from only a

single fermionic field f̂k and a collective bosonic field β̂k. Under the SCBA, the self-energy associated

with the fermionic propagator G(k, t) is approximated by neglecting those diagrams in an infinite-order

perturbative expansion which contain crossing interaction lines [135]. In particular, for a trivalent vertex

of the form
∑

k,qM(k,q)
(
f̂†k+qf̂kβ̂q + h.c.

)
, this means that the correction to the free propagator is

simply the ‘Fock’-type diagram in Fig. 4.3a with the virtual fermionic propagator dressed by all loop

corrections to the self-energy. The explicit expression of this diagram in terms of the re-summed 1-particle

irreducible diagrams without crossing interaction lines is shown in Fig. 4.3b. In our case, the SCBA only

neglects the vertex renormalisation, which does not qualitatively change the results of interest [108, 121].
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Further detailsmay be found in appendixB.2. This asymptotic form is shown infigure 3, allowing us to conclude
that the double-occupation function is suppressed at largeU according to µD U1 2. The results fromanumber
of independent numerical studies, also shown infigure 3 are fully consistentwith U1 2 scaling at largeU.

At half-filling, the value ofD should changemonotonically from0 to 1/4, which correspond respectively to
the fully localised ( = ¥U ) and the completely delocalised cases (U= 0). AsU decreases, charge fluctuations are
enhanced and the on-site Coulomb interaction is screened,making localisation effects smaller and reducing the
Mott gap. The result is largerD values for smallerU, indicating an increasingmixing of the lower and upper
Hubbard bands. Still, it is only at very small values, <U 2, of the on-site repulsion that our results begin to
indicate the breakdown of the approximation, which benchmarks the limits of its applicability. They do not
approach =D 1 4 atU=0, which is no surprise because neither the strong-coupling slave-fermion formalism
nor the single-mode spin-wave approximation to aNéel antiferromagnetic ground state as a description of the
spin dynamics is appropriate in this limit.

In general, it is not true thatD should increase continuously with decreasingU. In some variationalMonte
Carlo calculations [58, 60], the behaviour ofD appears to show an abrupt change at a critical interaction
strength,Uc, which has been interpreted as afirst-orderMott transition.However, neither our result nor those
obtained from cluster perturbation theory [86], quantumMonteCarlo simulations [18] orDMRG [50] contain
any evidence for aMott transition at finiteU. As a consequence of the perfect nesting, the nearest-neighbour
square-latticeHubbardmodel is a special case where even aweak-coupling treatment gives an insulating state
for allU, i.e.Uc=0. As noted in section 1, this small-U result has led to intense debate over the question of
whether insulating behaviour could be driven by antiferromagnetism rather than by theCoulomb interaction,
andwhether there could be a transition between the two regimes atfiniteU. However, the result thatUc=0 in
thismodelmeans that all values ofU are continuously connected to the strong-coupling limit, where the answers
are clear. Indeed, detailed numerical calculations have recently been used to argue [43] that themodel also has
noMott–Hubbard transition at anyfiniteU in the paramagnetic phase at low butfinite temperatures,meaning
that no other effective terms are generated.We conclude fromour calculations ofD that the holon–doublon
description yields the correct functional form and semi-quantitative accuracy throughout the regime of
intermediate and strong coupling (specifically, >U 2).

4. Spectral function

4.1.Derivation and calculation
Wecalculate the spectral function of the original electron operators, sck , which in the slave-fermion framework
are decomposed into convolutions of the holon operator, e, the doublon operator, d, and the Schwinger-boson

Figure 3.Double-occupancy parameter,D, shown as a function of U1 2 on logarithmic axes. Red points showour large-U results,
calculated for a system size of 48×48 andwith broadening parameter h = 0.08. Results fromCPT,QMCandDMRG, shown in the
same colour and symbol scheme as in figure 2, confirm the trend towards the limiting large-U functional form =D U2.70 2 (dashed
purple line).

7

New J. Phys. 18 (2016) 103004 X-JHan et al

D

(t /U )2

=
G G(0) G(0)G

a) c)

å= +( ) ( )D
t b

U N
k k

U

4 1
cos cos

2.70
. 13

k
x y

2
0
4

2
2

2
�

Further detailsmay be found in appendixB.2. This asymptotic form is shown infigure 3, allowing us to conclude
that the double-occupation function is suppressed at largeU according to µD U1 2. The results fromanumber
of independent numerical studies, also shown infigure 3 are fully consistentwith U1 2 scaling at largeU.

At half-filling, the value ofD should changemonotonically from0 to 1/4, which correspond respectively to
the fully localised ( = ¥U ) and the completely delocalised cases (U= 0). AsU decreases, charge fluctuations are
enhanced and the on-site Coulomb interaction is screened,making localisation effects smaller and reducing the
Mott gap. The result is largerD values for smallerU, indicating an increasingmixing of the lower and upper
Hubbard bands. Still, it is only at very small values, <U 2, of the on-site repulsion that our results begin to
indicate the breakdown of the approximation, which benchmarks the limits of its applicability. They do not
approach =D 1 4 atU=0, which is no surprise because neither the strong-coupling slave-fermion formalism
nor the single-mode spin-wave approximation to aNéel antiferromagnetic ground state as a description of the
spin dynamics is appropriate in this limit.

In general, it is not true thatD should increase continuously with decreasingU. In some variationalMonte
Carlo calculations [58, 60], the behaviour ofD appears to show an abrupt change at a critical interaction
strength,Uc, which has been interpreted as afirst-orderMott transition.However, neither our result nor those
obtained from cluster perturbation theory [86], quantumMonteCarlo simulations [18] orDMRG [50] contain
any evidence for aMott transition at finiteU. As a consequence of the perfect nesting, the nearest-neighbour
square-latticeHubbardmodel is a special case where even aweak-coupling treatment gives an insulating state
for allU, i.e.Uc=0. As noted in section 1, this small-U result has led to intense debate over the question of
whether insulating behaviour could be driven by antiferromagnetism rather than by theCoulomb interaction,
andwhether there could be a transition between the two regimes atfiniteU. However, the result thatUc=0 in
thismodelmeans that all values ofU are continuously connected to the strong-coupling limit, where the answers
are clear. Indeed, detailed numerical calculations have recently been used to argue [43] that themodel also has
noMott–Hubbard transition at anyfiniteU in the paramagnetic phase at low butfinite temperatures,meaning
that no other effective terms are generated.We conclude fromour calculations ofD that the holon–doublon
description yields the correct functional form and semi-quantitative accuracy throughout the regime of
intermediate and strong coupling (specifically, >U 2).

4. Spectral function

4.1.Derivation and calculation
Wecalculate the spectral function of the original electron operators, sck , which in the slave-fermion framework
are decomposed into convolutions of the holon operator, e, the doublon operator, d, and the Schwinger-boson

Figure 3.Double-occupancy parameter,D, shown as a function of U1 2 on logarithmic axes. Red points showour large-U results,
calculated for a system size of 48×48 andwith broadening parameter h = 0.08. Results fromCPT,QMCandDMRG, shown in the
same colour and symbol scheme as in figure 2, confirm the trend towards the limiting large-U functional form =D U2.70 2 (dashed
purple line).

7

New J. Phys. 18 (2016) 103004 X-JHan et al

D

(t /U )2

b)

= + + +…

≈ +G G(0)

a) c)

å= +( ) ( )D
t b

U N
k k

U

4 1
cos cos

2.70
. 13

k
x y

2
0
4

2
2

2
�

Further detailsmay be found in appendixB.2. This asymptotic form is shown infigure 3, allowing us to conclude
that the double-occupation function is suppressed at largeU according to µD U1 2. The results fromanumber
of independent numerical studies, also shown infigure 3 are fully consistentwith U1 2 scaling at largeU.

At half-filling, the value ofD should changemonotonically from0 to 1/4, which correspond respectively to
the fully localised ( = ¥U ) and the completely delocalised cases (U= 0). AsU decreases, charge fluctuations are
enhanced and the on-site Coulomb interaction is screened,making localisation effects smaller and reducing the
Mott gap. The result is largerD values for smallerU, indicating an increasingmixing of the lower and upper
Hubbard bands. Still, it is only at very small values, <U 2, of the on-site repulsion that our results begin to
indicate the breakdown of the approximation, which benchmarks the limits of its applicability. They do not
approach =D 1 4 atU=0, which is no surprise because neither the strong-coupling slave-fermion formalism
nor the single-mode spin-wave approximation to aNéel antiferromagnetic ground state as a description of the
spin dynamics is appropriate in this limit.

In general, it is not true thatD should increase continuously with decreasingU. In some variationalMonte
Carlo calculations [58, 60], the behaviour ofD appears to show an abrupt change at a critical interaction
strength,Uc, which has been interpreted as afirst-orderMott transition.However, neither our result nor those
obtained from cluster perturbation theory [86], quantumMonteCarlo simulations [18] orDMRG [50] contain
any evidence for aMott transition at finiteU. As a consequence of the perfect nesting, the nearest-neighbour
square-latticeHubbardmodel is a special case where even aweak-coupling treatment gives an insulating state
for allU, i.e.Uc=0. As noted in section 1, this small-U result has led to intense debate over the question of
whether insulating behaviour could be driven by antiferromagnetism rather than by theCoulomb interaction,
andwhether there could be a transition between the two regimes atfiniteU. However, the result thatUc=0 in
thismodelmeans that all values ofU are continuously connected to the strong-coupling limit, where the answers
are clear. Indeed, detailed numerical calculations have recently been used to argue [43] that themodel also has
noMott–Hubbard transition at anyfiniteU in the paramagnetic phase at low butfinite temperatures,meaning
that no other effective terms are generated.We conclude fromour calculations ofD that the holon–doublon
description yields the correct functional form and semi-quantitative accuracy throughout the regime of
intermediate and strong coupling (specifically, >U 2).

4. Spectral function

4.1.Derivation and calculation
Wecalculate the spectral function of the original electron operators, sck , which in the slave-fermion framework
are decomposed into convolutions of the holon operator, e, the doublon operator, d, and the Schwinger-boson

Figure 3.Double-occupancy parameter,D, shown as a function of U1 2 on logarithmic axes. Red points showour large-U results,
calculated for a system size of 48×48 andwith broadening parameter h = 0.08. Results fromCPT,QMCandDMRG, shown in the
same colour and symbol scheme as in figure 2, confirm the trend towards the limiting large-U functional form =D U2.70 2 (dashed
purple line).

7

New J. Phys. 18 (2016) 103004 X-JHan et al

D

(t /U )2

b)

≈ +G G(0)

= + + + +…

Figure 4.3 –Doublon occupancy in the SCBA. a) Diagrammatic self-consistent Born approximation (SCBA)

and b) explicit expression of the SCBA diagram in terms of re-summed non-crossing 1-particle irreducible dia-

grams. Double [single] solid lines represent the dressed [bare] fermionic propagators G [G(0)], and wavey lines

represent bosonic propagators. c) Scaling of the doublon occupancy D with (t/U)2, reproduced from Ref. [108].

The graphs show the calculation based on the SCBA compared with state-of-the-art numerics for t/U > 0 as

well as the asymptotic value in the limit of t/U → 0.

The SCBA inherits its name from the well-known Born approximation, which is well-suited for weak

coupling constants and involves taking into consideration only the 1-loop correction to the self-energy

(i.e. the contribution of the first loop diagram in Fig. 4.3b) [135]. In fact, a particular advantage of the

SCBA is that the diagrammatic statement of Fig. 4.3a can be translated into a closed-form expression for

the propagator once we have calculated the self-energy under the Born approximation. In Appendix B,

we show that for a generic field theory like the one considered above, this has the form

Σ1-loop(k, ω) =
∑
q

M2(k− q,q)×G(0)(k− q, ω − Ωq) . (3.10)

Enforcing the SCBA then amounts to replacing the bare fermionic propagator with the dressed one in

this expression, to obtain the self-consistent prescription for the propagator as

G(k, ω) =
1

ω − Ek −
∑

qM
2(k− q,q)×G(k− q, ω − Ωq)

. (3.11)

Crucially, the right hand side of this self-consistent equation is evaluated only at lower frequencies than

the left hand side, which implies that in practice the full interacting propagator G(k, ω) can be calculated

by sweeping from very small to very large frequency values. We will not implement these numerics here

but refer the reader to the numerics in Ref. [108].

3.3 Doublon occupancy

Having developed the formal field theoretic tools to describe the charge dynamics on the AF background,

we are now in a position to calculate the ground state doublon occupancy D, which we can formally

define in real and reciprocal space as

D =
1

N

∑
i

〈Ω|d̂†i d̂i|Ω〉 =
1

N

∑
k∈1BZ

〈Ω|d̂†kd̂k|Ω〉 . (3.12)
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3.3.1 Numerical evaluation for t/U > 0

Within the QFT framework of the previous section, the doublon occupancy can be expressed as [108]

D = − 1

Nπ

∑
k∈1BZ

∫
dω f(ω) Im G(k, ω − iδ) . (3.13)

where f(ω) is the Fermi distribution. The propagators for the auxiliary fields can be calculated numer-

ically for various values of t/U by the self-consistent method of the previous section, and the retarded

doublon propagator G(k, ω − iδ) can be inferred from this. This allows us to calculate D numerically

using eq. (3.13). This was done in Ref. [108], leading to the scaling in Fig. 4.3c. Evidently, the scaling

compares favourably with state-of-the-art Quantum Monte Carlo (QMC) [136, 137], Cluster Perturbation

Theory (CPT) [138], and Density Matrix Renormalisation Group (DMRG) [50] numerics.

3.3.2 Asymptotic value for t/U → 0

In fact, the studies in Fig. 4.3c, while they provide us with a precise characterisation of the ground state

manifold, are not strictly speaking necessary for our problem of the saturation of the refractive index.

As alluded to previously, the limit of t = 0 corresponds with an absence of quantum chemistry (i.e. at

sufficiently large atomic separations there is no tunnelling between sites), and so if we want to estimate

the effect of the ground state charge fluctuations at the onset of quantum chemistry, the more relevant

result is the asymptotic scaling of D with t/U as t/U → 0.

This is obtained from the free chargon Green’s function in Ref. [108], however in our notation we are

able to obtain it in a more direct manner: for t/U → 0, the spin background is frozen in AF order so

that H → H(0) and hence |Ω〉 → |G〉. Using
∑

k∈1BZ d̂
†
kd̂k =

∑
k∈1BZ d̂

†
Q−kd̂Q−k and performing the

inverse Bogoliubov transformation as in eq. (3.8), we obtain

D =
1

N

∑
k∈1BZ

Ek − U/2
2Ek

〈G|ĝkĝ†k|G〉︸ ︷︷ ︸
= 1

+ vanishing expectation values (3.14)

To compute the asymptotic scaling of D, we perform a Taylor expansion in t/U , whereby

D ≈ 1

N

∑
k∈1BZ

1

U

(
U

2

(
1 + 2

(
t

U

)2

(b20zγk)2

)
− U

2
+ . . .

)
≈
(
t

U

)2
(b20z)

2

N

∑
k∈1BZ

γ2
k , (3.15)

which leads to the final result that D ≈ 2.7(t/U)2 in the asymptotic strong coupling limit. Fig. 4.3c

confirms this by comparison with the numerical results.

In summary, we have shown that at the onset of quantum chemistry, virtual tunnelling in the ground

state leads to a buildup of density-density correlations on a fraction of ∼ 2.7(t/U)2 sites. In principle,

these correlations have the potential to affect the collective response of each planar array in our minimal

model. To be precise, we formulate the hypothesis that: 1. the ground state charge fluctuations are the

dominant correction to the quantum optics limit and 2. their effect on the optical response is sufficiently

large to affect the refractive index in a significant way. We provide arguments to confirm these two

aspects of our hypothesis in the next two chapters.
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Quantum chemistry III: Excited states

To understand how the occurrence of holon-doublon pairs compares to other effects that emerge with the

onset of quantum chemistry, we now move on to dissect the dynamics encoded by the full 2D Hamiltonian.

We consider first the kinetic and electrostatic contributions (Section 1), and then the photon-mediated

contributions (Section 2).

We will assume a hierarchy of processes associated with, in order of decreasing contribution, three

types of the matrix elements: (i) between the same Wannier orbital on the same site, (ii) between

different Wannier orbitals on the same site, and (iii) between Wannier orbitals on different sites. This

allows us to tackle the effect of quantum chemistry in a controlled way: the hierarchisation amounts to

an effective expansion of the interactions in a0/a� 1. The leading-order terms encode the first effects to

become prominent as the atomic density is increased. Using a variety of arguments, we will estimate the

role of these effects on the optical response of the array. We will show in particular that, except for the

interaction which leads to the formation of holon-doublon pairs, the corrections to the quantum optics

limit due to quantum chemistry effects are exponentially small in a0/a. To underline this point, we will

show that we are able to recover the spin model description of the array as a limiting case (Section 3).

1 Electrostatic interactions

1.1 On-site electron energies

The most dominant contributions to T + U will be type (i) on-site processes. In particular, the kinetic

and electron-proton on-site matrix elements contribute a term of the form

E1 =
∑
i

εs (n̂is↑ + n̂is↓) +
∑
i

εp (n̂ip↑ + n̂ip↓) , (1.1)

with εµ = T |iiµµ + Up|iiiµµ. We recognise this to be the energy contribution εµ associated with an

electron in the µ-orbital, comprised from its kinetic energy and atomic binding energy. This becomes

more intuitive when we estimate the value of εµ (or rather of T |iiµµ and Up|iiiµµ) by approximating the

Wannier functions by the hydrogen wavefunctions. Doing this (see Appendix C), we find that

T |iiµµ =
1

n2
µ

mq4

2(4πε0~)2
and Up|iiiµµ = − 1

n2
µ

mq4

(4πε0~)2
, (1.2)

where nµ denotes the principal quantum number (ns = 1, np = 2). We recognise (1.2) to be the average

gross structure kinetic and potential energy for atomic electrons in a hydrogen atom, respectively [72].
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Figure 5.1 – Doublon quantum chemistry. Diagrammatic representation of type (ii) processes on doubly

occupied sites captured only by full quantum chemistry. Black [white] circles denote electrons [the absence of

electrons] and σ ∈ {↑, ↓} denotes the associated spin value, with σ indicating the opposite spin value of σ.

Intuitively, while the on-site electron-proton interaction leads to a binding energy of the form (1.1),

the electron-electron on-site repulsion will lead to an energy penalty for the simultaneous occupation of

a site by two electrons. The type (i) matrix element Ue|iiiiµµ′νν′ is associated with terms

E2 =
∑
i

usn̂is↑n̂is↓ +
∑
i

upn̂ip↑n̂ip↓ (1.3)

E3 =
∑
i

∑
σ,σ′

uσσ
′

sp n̂isσn̂ipσ′ (1.4)

with coefficients uµ = Ue|iiiiµµµµ + c.c., u↑↑sp = u↓↓sp = Ue|iiiisspp + Ue|iiiispps + c.c., and u↑↓sp = u↓↑sp =

Ue|iiiisspp + c.c.. Indeed, E2 encodes the on-site repulsion of two electrons in the same orbital (with

opposite spins to obey Pauli exclusion), while E3 encodes the on-site repulsion of two electrons in different

orbitals. We also note that in fact uσσsp contains both the dominant type (i) contribution Ue|iiiisspp and a

smaller type (ii) contribution Ue|iiiispps. In the notation of the previous chapter, us = U and we can now

estimate this on-site electron-electron repulsion using the hydrogen wavefunctions as (see Appendix C)

U =
5εs
4
. (1.5)

1.2 Doublon quantum chemistry

In addition to the type (i) matrix elements associated with (1.3) and (1.4), the on-site electron-electron

interaction also encodes type (ii) processes involving transitions of a single electron which creates or

breaks up doublons (e.g. Ue|iiiisssp), as well as less strong contributions (e.g. Ue|iiiispps) involving two

simultaneous electron transitions on-site, as shown in Fig. 5.1.

These terms constitute a subset of full quantum chemistry: two electrons on the same atomic site

have (correlated) orbitals that do not in general resemble the single-electron orbitals. Therefore these

processes, which will be inherently non-perturbative, are not amenable to any simple solution. This

also means that we are in general unable to quantify these terms, however this is not of immediate

interest to our problem; In the previous chapter, we have already introduced the effect of density-density

correlations in the form of holon-doublon pairs within the Hubbard model. The processes in Fig. 5.1

will change the results we obtained in this context quantitatively, but not qualitatively, since they are in

some sense ‘internal’ to the density-density correlation buildup on individual sites. This statement has

been verified in state-of-the-art quantum chemistry calculations on the 1D hydrogen chain.
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1.3 Dipole interactions

In the discussion above, we have not yet considered another class of ‘on-site’ terms arising from the

electron-proton interaction, with matrix elements Up|iijµµ′ (j 6= i). Since the matrix element Uijklµµ′νν′

for electron-electron interaction is composed of two individual overlaps of Wannier functions, there exist

similar terms for i = k, j = l, i 6= j. Although such terms involve two distinct sites, dominant type (i)

and (ii) processes can still arise. The relevant matrix elements are

Up|iijµµ′ = − q2

4πε0

∫
d3x φ∗µ(x)φµ′(x)

1

|x + Rij |
(1.6)

Ue|ijijµµ′νν′ =
q2

8πε0

∫
d3x φ∗µ(x)φµ′(x)

∫
d3yφ∗ν(y)φν′(y)

1

|x− y + Rij |
, (1.7)

where we have performed the changes of variable x = r−Ri and y = r−Rj , and defined Rij = Ri−Rj .

We can see that these terms should be slightly less dominant than the type (i) terms we considered above,

since the integrand is of order O(a−1) rather than order O(a−1
0 ).

The localisation of the Wannier functions will mean that the integrand in the matrix elements in

eq. (1.6) (or eq. (1.7)) will be negligible for all x (or x− y) except in some vicinity of the atomic site on

the order of a0. Therefore x (or x−y) can be viewed as a small correction to Rij in the limit a0/a� 1,

and we can Taylor expand the integrand around x = 0 (or x− y = 0) to approximate these processes.

1.3.1 Electron-proton potential expansion

In the case of the electron-proton matrix element (1.6), the single-variable Taylor expansion in x reads

1

|x + Rij |
=

1

Rij︸︷︷︸
O(|x|0)

−x · Rij

R3
ij︸ ︷︷ ︸

O(|x|1)

− 1

2

|x|2

R3
ij

+
3

2

|x ·Rij |2

R5
ij︸ ︷︷ ︸

O(|x|2)

+ . . . , (1.8)

where we have defined Rij = |Rij |. We note that this is in fact nothing other than the standard multipole

expansion of the Coulomb potential in Cartesian coordinates [1]. The interaction terms which arise from

this are, to quadratic order in |x|,

at order O(|x0|) : − q2

4πε0

∑
i,j 6=i

∑
µ

∑
σ

1

Rij
n̂iµσ

at order O(|x1|) : +
q

4πε0

∑
i,j 6=i

∑
µ,µ′ 6=µ

∑
σ

dµµ′ ·Rij

R3
ij

ĉ†iµσ ĉiµ′σ

at order O(|x2|) : − q

8πε0

∑
i,j 6=i

∑
µ

∑
σ

Rij · qµµ ·Rij

R5
ij

n̂iµσ ,

(1.9)

where we have defined the dipole and quadrupole matrix elements

dµµ′ = q

∫
d3x x φ∗µ(x)φµ′(x)

qµµ′ = q

∫
d3x (3x⊗ x− |x|2) φ∗µ(x)φµ′(x)

and where we also noted that, by the parity of the Wannier functions, dµµ = 0 and qµµ′ 6=µ = 0.
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Once again approximating the Wannier functions by the hydrogen wavefunctions, and assuming that

only the px-orbital participates optically, we find that the dipole matrix element is aligned with the

x-axis, i.e. dsp = dspx̂, and has a magnitude dsp = dps = 256a0q/(243
√

2). With reference to classical

electrostatics, the physical interpretation of the terms in (1.9) becomes clear: The first term corresponds

with a sum of charge-charge interactions between electrons on the i-th site and the protons on all other

sites. The second term corresponds with a sum of charge-dipole interactions between the polarisation

associated with the electron at the i-th site and the protons, which drives transitions between the s- and

p-orbitals on the i-th site. The third term is a higher-order quadrupole interaction process.

1.3.2 Electron-electron potential expansion

The case of the electron-electron matrix element (1.7) requires a Taylor expansion in two variables, which

contains a number of terms identical to those in (1.8) as well as a cross term at quadratic order in |x|,

1

|x− y + Rij |
=

1

Rij︸︷︷︸
O(|x|0)

− (x− y) · Rij

R3
ij︸ ︷︷ ︸

O(|x|1)

− 1

2

|x|2 + |y|2

R3
ij

+
3

2

|x ·Rij |2 + |y ·Rij |2

R5
ij

+
x · y
R3
ij

− 3(x ·Rij)(y ·Rij)

R5
ij︸ ︷︷ ︸

O(|x|2)

+ . . . .

(1.10)

Most of the terms in this expansion lead to interactions of the same form as those in (1.9), namely

at order O(|x1|) : +
q2

8πε0

∑
i,j 6=i

∑
µ,ν

∑
σ,σ′

1

Rij
n̂iµσn̂jνσ′

at order O(|x2|) : − q

4πε0

∑
i,j 6=i

∑
ν

∑
µ,µ′ 6=µ

∑
σ,σ′

dµµ′ ·Rij

R3
ij

n̂jνσ′ ĉ†iµσ ĉiµ′σ − i↔j
µ↔ν

at order O(|x2|) : +
q

8πε0

∑
i,j 6=i

∑
µ,ν

∑
σ,σ′

Rij · qµµ ·Rij

R5
ij

n̂iµσn̂jνσ′ + i↔j
µ↔ν ,

(1.11)

which represent repulsive charge-charge and charge-dipole interactions of (possibly multiple) electrons

on different sites. However, the cross-term leads to an additional new term

at order O(|x2|) :
∑
i,j 6=i

∑
µ,µ′ 6=µ
ν,ν′ 6=ν

∑
σ,σ′

dµµ′ · (1− 3R̂ij ⊗ R̂ij) · dνν′

8πε0R3
ij

ĉ†iµσ ĉiµ′σ ĉ
†
jνσ′ ĉjν′σ′ , (1.12)

where R̂ij = Rij/Rij . This amounts to a sum of pairwise interactions of the electronic dipoles at each

site, which drives transitions of the electrons between the s- and p-like orbitals on either site.

In terms of the optical response, since we are working in the single-photon regime, we will be interested

only in individual excitation from the ground state |G〉. As we outlined in the previous chapter, to lowest

order |G〉 ≈ |g〉⊗N |ΨAF 〉 i.e. each atomic site is occupied by a single electron with a spin value dictated

by the antiferromagnetic spin order. To this order, it is easy to see that all terms in (1.9) exactly cancel

the terms in (1.11), leaving only the dipole-dipole interaction term (1.12).
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Figure 5.2 – Dipole interactions. Diagrammatic representation of the type (i) and (ii) processes associated

with the residual electrostatic interaction (1.12). Black [white] circles denote electrons [the absence of electrons]

and σ, σ′ ∈ {↑, ↓} denote the associated spin value.

1.3.3 Dipole-dipole and dispersion forces

In fact, the dipole-dipole term gives rise to two distinct types of processes, depicted in Fig. 5.2. The

processes in Fig. 5.2a are resonant, since the energy of both the initial and final states is εs + εp. They

reflect the dipole-dipole resonance forces [139], which scale with atomic separation Rij . as ∼ 1/R3
ij and

are captured by the multiple scattering formalism [12, 66]. On the other hand, in Fig. 5.2b,c the initial

and final states are marked by an energy difference of ±(2εp− 2εs) = ±2~ω0, making them off-resonant.

We deal with these processes using second order perturbation theory.

The result of the perturbative calculation is an effective inter-atomic potential which scales with

the atomic separation Rij as ∼ 1/R6
ij , and which is attractive for ground-state atoms and repulsive for

excited-state atoms, as indicated in Fig. 5.2d,c. An alternative derivation based on the medium-assisted

field quantisation introduced in Chapter 1 leads to the same result [140]. We identify this effective

interaction as the well-known van der Waals (vdW) interaction [141–145]. It is fundamentally different

in nature to the Coulomb interactions, which rely on a permanent dipole moment: the vdW attraction

arises because one atom induces a polarisation in another, thereby correlating the electron states of

both atoms. This may occur for initially neutral charge configurations (E(1) = 0) and also results in

similar interactions between single atoms and macroscopic conducting bodies [146]. Because it depends

fundamentally on the frequency-dependent polarisability of the atoms, the vdW interaction is called a

dispersion force [147], while the dipolar Coulomb interaction is called an orientation force [148]. We will

encounter another key example of a dispersion force in Section 2.

1.3.4 Local Stark shift

Moving beyond the lowest order approximation to |G〉, we will have to account for the effects of holon-

doublon pairs. Within a minimal semiclassical toy model of a single atom interacting with the classical

electric field due to a holon-doublon pair modelled as a static dipole, the effect of a static electric field

on an atom is a shift in the atomic energy levels. This is known as the Stark effect [72]. However, it can

be shown that the effect of this local Stark shift is negligible for a� a0.
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1.4 Nearest-neighbour hopping

So far we have only considered the type (i) and (ii) matrix elements corresponding with on-site terms.

If we consider now type (iii) matrix elements between different sites, the exponential localisation of

the Wannier orbital will ensure that we can safely neglect interactions beyond nearest-neighbour terms.

The type (iii) matrix elements of interest are therefore T |i+δiµν , Up|i+δiiµν , and Up|i+δiiiµµ′νν′ (up to

permutations of the atomic site index). Note that here we have also disregarded those matrix elements

with integrands on the order O(a−1) discussed above, since these will be sub-dominant.

1.4.1 Hopping Hamiltonian

Starting with only the contributions from the kinetic and electron-proton terms, we note that those

matrix elements are associated with the hopping of a single electron between nearest-neighbour sites (see

Fig. 5.3a,b). The most efficient way to describe this effect is in terms of the single-particle electronic

hamiltonian h, defined in eq. (2.1). Using the fact that h is band diagonal, the full Hamiltonian including

the nearest-neighbour hopping terms from both the kinetic and electron-proton terms can be written as

Hhopping =
∑
i

∑
δ

∑
µ

∑
σ

tµδ

(
ĉ†iµσ ĉi+δµσ + h.c.

)
, (1.13)

where we have defined the hopping parameters tµδ = 〈φi+δµσ|h|φiµσ〉 = Up|i+δiiµµ + Ti+δiµµ. We

note that while the kinetic and electron-proton terms may individually induce inter-band hopping (e.g.

through Up|i+δiips 6= 0, see Fig. 5.3b), their matrix elements for such processes cancel in the final Hamil-

tonian. In fact, the electron-electron interaction also induces a nearest-neighbour intra-band hopping,

however in this case, an electron will only hop to a site that is already occupied by another electron,

either in the same orbital (see Fig. 5.3c) or in a different orbital (see Fig. 5.3d).

1.4.2 Renormalised hopping parameter

We consider first the former case, shown in Fig. 5.3c. This interaction-induced short-range tunneling can

still be captured by the Hamiltonian (1.13) with a different hopping parameter. In general, the renor-

malisation of the hopping parameter will be local and dynamical, since it depends on the occupation and

spin configuration of neighbouring sites. However in the ground state manifold, where we consider only

single-band hopping with tsδ = t, the antiferromagnetic spin ordering will result in a global renormalisa-

tion t→ t′ of the hopping parameter and consequently of the Heisenberg coupling J → (t′/t)2J . Again,

since we consider only single-photon excitations out of this manifold, this will be the more relevant case.

While the hopping parameters could certainly be evaluated using the hydrogen wavefunctions, this

will not yield good results due to small oscillations in the tail of the Wannier orbitals which persist

qualitatively even for the maximally localised choice of Wannier functions and which are not reproduced

by the hydrogen wavefunctions. This leads to a sign error which results in an inversion of the bands

associated with (1.13). Instead, the (renormalised) hopping parameters can be inferred from the energy

splitting in hydrogen H2 molecules [149].
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Figure 5.3 – Nearest-neighbour hopping. Diagrammatic representation of the different kinds of type (iii)

nearest-neighbour hopping processes and their effect. Black [white] circles denote electrons [the absence of

electrons] and σ, σ′ ∈ {↑, ↓} denote the associated spin value, with σ indicating the opposite spin value of σ.

1.4.3 Spin-correlated energy fluctuations

Turning to the latter case, shown in Fig. 5.3d, we have to consider the intra-band hopping of an s-orbital

electron to a site already occupied by a p-orbital electron and vice versa. The associated Hamiltonian is

H ′hopping =
∑
i

∑
δ

∑
µ

∑
σ,σ′

(
tσσ

′

µδ n̂iµσ ĉ
†
i+δµσ′ ĉiµσ′ + h.c.

)
, (1.14)

where we have defined hopping amplitudes tσσ
′

µδ which crucially depend on the spin-spin correlations with

the electrons on its neighbouring sites. We also note that the final states associated with these hopping

processes incur an energy penalty of uσσ
′

sp , therefore the processes are distinctly off-resonant and can once

again be treated using perturbation theory, with leading order correction ∆ω0 ∝ (tσσ
′

µδ )2/uσσ
′

sp .

The effect of these hopping processes then amounts to an inhomogeneous shift in the atomic reso-

nances across the array, depending on the spin-spin correlations of each atom with its nearest neighbours.

However, it is reasonable to assume that ∆ω0 � Γ0 and that therefore this effect will not be appreciable

in terms of the collective optical response. This could be confirmed using coupled-dipole simulations for

an array of non-identical atoms similar to those in Ref. [27].

1.4.4 Travelling excitation ‘impurity’

In fact, there is a higher-order process associated with this hopping to an already occupied site which we

need to consider. It is shown in Fig. 5.4a and involves an excited electron tunneling to a neighbouring

site (incurring an energy penalty u↑↓sp) and the ground-state electron on this site tunnelling to the now

unoccupied site, therefore effectively ‘switching places’ with the excited electron.
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Figure 5.4 – Second order photon-mediated interactions. a) Diagrammatic representation of the higher-

order process initiating the formation of a propagating magnetic polaron. b) Propagation of the impurity through

the AF ordered lattice leaving behind a trail of flipped spins.

Intuitively, this process can influence the optical properties of the array: after an incident photon

has excited a single electron from the AF ground state |G〉, through repeated switching of sites with

neighbouring ground-state atoms, the ‘impurity’ of the excitation among the ground-state atoms can

propagate through the lattice, leaving behind a trail of flipped spins (see Fig. 5.4b). Eventually, the

electron will then decay radiatively to a state with a different spin configuration than |G〉, therefore this

higher-order process opens up a new inelastic decay channel.

The process in Fig. 5.4a can be viewed as a hopping of the impurity with effective hopping amplitude

teff ∼ (t↑↓pδ)2/u↑↓sp. In terms of the Hubbard model parameters t = tsδ and U = us, we know that

t↑↓pδ � t due to the longer tails of the real-space excited-state wavefunctions. In the strong-coupling

regime t/U � 1, assuming u↑↓sp ∼ U this implies that teff � t as well. The short characteristic timescales

of the photon are then comparable only with the timescale ~/teff and not ~/t. Hence, the excited electron

de-excites under re-emission of a photon before the AF spin order is significantly disturbed. If we assume

that on the photonic timescales the hopping process only takes place a single time, then after the ‘swap’

in Fig. 5.4, a first estimate of the linewidth Γ associated with this new inelastic decay channel is simply

Γ ∼ teff ∼ (t↑↓pδ/U)2U . Clearly, since t↑↓pδ � t this actually implies that this mechanism sets in earlier

than the holon-doublon mechanism which scales as (t/U)2, therefore at the onset of quantum chemistry,

this new process seems to be the dominant one.

We defer a rigorous study of this process and its effect on the refractive index to later work and note

here only that the problem of a propagating impurity in in a Heisenberg antiferromagnet is actually well-

established in condensed matter theory [150–152]. Formally, the local distortion of the spin background

due to the coupling of the impurity to the low-lying magnonic excitations has been interpreted as the

creation and subsequent diffusion of a magnetic polaron [153]. Both the transient dynamics [154] and the

long-time dynamics [155] of such polarons have been resolved experimentally. As a matter of fact, the

field theoretic approach of Chapter 4 has been instrumental in developing the quasiparticle description

of the polaron dynamics, along with formulations in terms of quantum walks on Cayley trees [151, 156].
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1.5 Other processes

There are, of course, a number of other type (iii) processes which arise due to the electron-electron

interaction. Specifically, these are processes involving an inter-band transition of a single electron between

nearest-neighbour sites, an inter-band transition of an electron on a single site accompanied by an intra-

band nearest-neighbour hopping, or the least dominant processes involving two inter-band transitions,

some of which create or break up a doublon. These processes are schematically collected in Fig. 5.5. We

will not investigate these effects in any detail since they are sub-dominant.
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Figure 5.5 – Other nearest-neighbour processes. Diagrammatic representation of the least dominant type

(iii) processes arising from the electron-electron interaction. Black [white] circles denote electrons [the absence

of electrons] and σ, σ′ ∈ {↑, ↓} denote the associated spin value, with σ indicating the opposite spin value of σ.

2 Photon-mediated interactions

2.1 On-site atom-light interactions

We now move on to the photon-mediated interactions, starting with the dominant type (i) and (ii)

on-site processes. These processes are simply the well-known resonant and off-resonant excitation and

de-excitation of a single atom by a single photon [14], associated with the interaction Hamiltonian

HAF =
i~q
m

∑
i

∑
k

fk ·
(
pspe

ik·Ri â†kĉ
†
iσsĉiσp + pspe

−ik·Ri âkĉ
†
iσsĉiσp −h.c.) , (2.1)

where we have re-substituted the expression for the on-site matrix elements V |iiµν;k and defined

psp =

∫
d3r φ∗s(r)∇φp(r) =

i

~
〈s|p̂|p〉 . (2.2)

By standard arguments, psp is related to the dipole matrix element according to psp = −mω0dsp/(q~) [67].
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2.2 Long-range interactions

These processes involve only a single atom, however they combine to form higher-order processes involv-

ing the exchange of a photon between two different atoms (see Fig. 5.6). They are the photon-mediated

counterparts to the processes in Fig. 5.2; while the latter arise from the direct atom-atom coupling via

the Coulomb potential, in this case the interactions are mediated by the field, leading to retardation. As

in the electrostatic case, we again discern resonant (Fig. 5.6a) and off-resonant (Fig. 5.6b) terms. The

resonant terms represent the retarded dipole-dipole interactions which combine with the instantaneous

electrostatic dipole-dipole interactions (Fig. 5.2a) in the multiple scattering picture. They show a de-

pendence ∼ 1/Rij as well as spatial oscillations of the potential, characteristic of radiative long-range

interactions [157–159].

Similarly, the off-resonant interactions provide the retarded counterparts to the vdW interactions

(Fig. 5.2b,c), which are commonly referred to as Casimir-Polder (CP) forces and represent the second

well-known class of dispersion forces [147]. the vdW and CP interactions represent the opposing limiting

cases of Rij � λ0 and Rij � λ0, respectively. Unlike the their vdW couterpart, the CP interactions

cannot be captured by the standard perturbative approach of Ref. [144], but using normal mode quantum

electrodynamics can be shown to scale as ∼ R7
ij for ground-state atoms [160], and ∼ R2

ij for excited-state

atoms [161], although there remains uncertainty about associated spatial modulations [147]. Since the

off-resonant processes fall off more strongly with atomic separation than the resonant interactions, they

are sub-dominant.

2.3 Photon-assisted hopping

The most dominant of the type (iii) processes, involving hopping of electrons between nearest-neighbour

sites accompanied by an emission or absorption of a photon, are shown in Fig. 5.7. Again, these can be

separated into processes which are resonant and off-resonant. In terms of the optical properties of the

array, the ‘worst-case scenario’ associated with a photon assisted excitation of an s-orbital electron to

the p-orbital of a neighbouring atom would be a radiative decay of the electron to the s-orbital of the

new atom, since this would be inelastic. The radiative decay of a p-orbital electron to the s-orbital of

a neighbouring sites represents a similar inelastic process. We can therefore account for the processes

in Fig. 5.7a simply by modifying Γcoop → Γcoop + Γinel, where Γinel denotes the (radiative) decay rate

associated with the inelastic processes.

2.4 Other processes

As in the electrostatic case, there are of course many other type (iii) processes included in the term V ,

most importantly the sub-dominant hopping processes shown in Fig. 5.8. However, by the same argument

as before, we argue that the modifications to the optical response due to more dominant processes is

already exponentially small in a0/a.
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Figure 5.6 – Second order photon-mediated interactions. Diagrammatic representation of the higher-

order processes composed from the type (i) and (ii) processes associated with on-site interaction of a single atoms

with single photons. Black [white] circles denote electrons [the absence of electrons], σ, σ′ ∈ {↑, ↓} denote the

associated spin value, and the arrow represents the photon.
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Figure 5.7 – Dominant photon-assisted nearest-neighbour hopping. Diagrammatic representation of the

dominant type (iii) photon-assisted inter-band hopping. Black [white] circles denote electrons [the absence of

electrons] and σ ∈ {↑, ↓} denotes the associated spin value, and the arrow represents the photon.
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Figure 5.8 – Sub-dominant photon-assisted nearest-neighbour hopping. Diagrammatic representation

of the sub-dominant type (iii) photon-assisted intra-band hopping. Black [white] circles denote electrons [the

absence of electrons] and σ ∈ {↑, ↓} denotes the associated spin value, and the arrow represents the photon.
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3 Quantum optics limit

The discussion above is summarised in Table 2. The bottom line is that the key dominant effects

of quantum chemistry are dipole-dipole interactions (both due to direct atom-atom interactions and

mediated by atom-field interactions), as well as on-site electron-electron repulsion and nearest-neighbour

hopping. The other, less straightforward effects of quantum chemistry are negligible compared to these

dominant processes or can be neatly integrated into the multiple scattering description, as also indicated.

Having already discussed the interplay of hopping and on-site repulsion extensively in the last chapter, we

will now derive in the section below a formal description of the dynamics associated with the (resonant)

dipole-dipole interactions.

Physical process Effective description Sec.

On-site electron binding energy and electron-electron repulsion
Hubbard model

1.1

(Spin-correlated) nearest-neighbour hopping 1.4.1,2

Non-retarted dipole-dipole interactions
Spin model

1.3.3

Retarded dipole-dipole interactions 2.2

Higher-order hopping processes Magnetic polaron 1.4.4

Photon-assisted nearest-neighbour hopping Inelastic decay rate 2.3

Local Stark shift around holon-doublon pairs
Local inhomogeneities

1.3.4

Spin-correlated local energy fluctuations 1.4.3

Holon / doublon internal processes

Negligible / not relevant

1.2

Non-retarded van der Waals interactions 1.3.3

Retarded Casimir-Polder interactions 2.2

Table 2 – Categorisation of dominant physical processes. The table lists the dominant effects associated

with the onset quantum chemistry, grouped in terms of their role in the optical response of the array.

3.1 Effective Hamiltonian

For the case of singly occupied sites, we can express the effective action of the Wannier operators in terms

of atomic operators for the atoms, defined in this case as σ̂+ = |p〉〈s| and σ̂− = |s〉〈p|. In particular,

we can make the effective substitutions ĉ†ipσ ĉisσ ∼ σ̂+
i and ĉ†isσ ĉipσ ∼ σ̂−i , as well as n̂ipσ ∼ σ̂+

i σ̂
−
i and

n̂isσ ∼ σ̂−i σ̂
+
i . We will assume dsp = dspx̂ and express Rij in spherical polar coordinates (Rij , θij , φij).

The Hamiltonian which captures the processes described in Sections 1.3.3 and 2.2 then takes the form

H =
∑
i

~ω0σ̂
+
i σ̂
−
i︸ ︷︷ ︸

HA

+
∑
k

~ωkâ
†
kâk︸ ︷︷ ︸

HF

−iω0

∑
i

(dspσ̂
+
i − h.c.) · Â(Ri)︸ ︷︷ ︸
HAF

+
|dsp|2

4πε0

∑
i,j 6=i

1− 3 sin2 φij
R3
ij

σ̂+
i σ̂
−
j︸ ︷︷ ︸

HAA

(3.1)
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where we have in HAF re-substituted the mode decomposition of the vector potential and used the

relation between the momentum and position matrix elements. Here and throughout the next sections,

the subscripts A and F refer to the atomic (matter) and field (radiation) degrees of freedom, respectively.

With reference to eq. (1.16) of Chapter 2, we recognise that

HAA = −µ0ω
2
0 |dsp|2

∑
i,j 6=i

G‖xx(ω0,Rij) σ̂
eg
i σ̂

ge
j . (3.2)

Obtaining a similarly concise expression for the photon-mediated interactions encoded in HAF is slightly

less trivial; Since the spin model provides an ‘all matter’ description of the atomic array, to obtain a

more suitable form of the interactions encoded in HAF we should integrate our the radiative degrees of

freedom. Below, we follow the formalism of Ref. [162] to do this, employing concepts from the theory of

open quantum systems and from non-equilibrium statistical physics.

3.2 Master equation dynamics

3.2.1 Effective Hamiltonian I

We will describe the state of the compound atom-field system in terms of its density matrix ρAF . In

what follows, we will use tildes to denote the interaction picture. The evolution of the density matrix

ρ̃AF (t) is governed by the Born-Markov master equation [60]

∂tρ̃AF (t) = − 1

~2

∫ ∞
0

dτ [H̃AF (t), [H̃AF (t− τ), ρ̃AF (t)]] . (3.3)

In deriving this equation, we make the approximations that the reservoir provided by the radiation field

is large (Born approx.) so that ρ̃AF (t) ≈ ρ̃A(t)|0〉〈0|, and that the field and atoms remain uncorrelated on

the time-scales of the evolution of the atomic density matrix (Markov approx.) so that ρ̃A(t− τ) ≈ ρ̃A(t)

and we can extend the integration limit τ →∞ [16]. Tracing out the field subsystem,

∂tρA(t) = − i

~
[HA, ρA(t)]− 1

~2

∫ ∞
0

dτU†A(t)
(
〈0|H̃AF (t)H̃AF (t− τ)|0〉ρ̃A(t) + h.c.

)
UA(t)︸ ︷︷ ︸

− i
~ (H′effρA(t)− ρA(t)H

′†
eff) + . . .

+ . . . (3.4)

Here we have isolated terms corresponding with Hamiltonian dynamics under an effective (non-Hermitian)

Hamiltonian H′eff , which we can infer as

H′eff = HA −
i

~

∫ ∞
0

dτ〈0|U†A(t)H̃AF (t)H̃AF (t− τ)UA(t)|0〉 . (3.5)

3.2.2 Linear response approach

From the explicit expression for the interaction-picture atom-field coupling Hamiltonian H̃AF (t), we see

U†0 (t)H̃AF (t)H̃AF (t− τ)U0(t)

= ω2
0

∑
i,j

∑
α,β

[(
dαsp(d

∗
sp)

β σ̂+
i σ̂
−
j eiω0τ + h.c.

)
−
(
dαspd

β
spσ̂

+
i σ̂

+
j e−iω0τ + h.c.

)]
Cαβ(Ri,Rj , τ) ,

(3.6)
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where we have defined the real-space 2-point correlation function for the vector potential,

Cαβ(Ri,Rj , τ) = 〈Aα(Ri, τ)Aβ(Ri, 0)〉 . (3.7)

In fact, we can drop the second term in the square brackets in eq. (3.6), since for i = j it vanishes exactly

(σ̂±i σ̂
±
i = 0) and for i 6= j it encodes the off-resonant van der Waals interactions (cf. Table 2). We

express the correlator as Cαβ(r, r′, τ) = 1/2(Sαβ(r, r′, τ) + χ′′αβ(r, r′, τ)) where

Sαβ(r, r′, τ) = 〈{Ãα(r, τ), Ãβ(r′, 0)}〉

χ′′αβ(r, r′, τ) = 〈[Ãα(r, τ), Ãβ(r′, 0)]〉
(3.8)

are the (anti)symmetrised correlators. By the Fluctuation-Dissipation Theorem (FDT) [163], the sym-

metrised and antisymmetrised correlators are related at temperature T = 1/(βkB) according to

Sαβ(r, r′, τ) = coth

(
~βω

2

)
χ′′αβ(r, r′, τ) ,

which implies that at zero temperature (β →∞) we have Cαβ(r, r′, τ) = χ′′αβ(r, r′, τ). Then,

H′eff = HA −
iω2

0

~
∑
i,j

∑
α,β

∫ ∞
0

dτ
(
dαsp(d

∗
sp)

β σ̂+
i σ̂
−
j eiω0τ + h.c.

)
χ′′αβ(Ri,Rj , τ) . (3.9)

The challenge now becomes the evaluation of the antisymmetric correlator χ′′αβ(Ri,Rj , τ). One way

to do this is to calculate it from the linear response function χαβ(Ri,Rj , ω) = (2i/~)χ′′αβ(Ri,Rj , τ) of the

vector potential in analogy to the calculation in Ref. [164] for the physical electric field. As pointed out

in Ref. [164], the virtue of this approach is that, while χ′′αβ(Ri,Rj , ω) is a quantum mechanical quantity,

χαβ(Ri,Rj , ω) can be computed directly and classically. Specifically, we start from Maxwell’s equations

with an external source term Jext(r
′, ω), which we know are solved in the Coulomb gauge by [59]

A(r, ω) = µ0

∫
d3r′G⊥(r− r′, ω) · Jext(r

′, ω) .

In the language of linear response theory, A(r, ω) and Jext(r
′, ω) are a conjugate generalised displacement

and force. The linear response function of the vector potential can therefore be computed as

χαβ(r, r′, ω) =
δ〈Aα(r, ω)〉
δJβext(r

′, ω)
= µ0G

⊥
αβ(r− r′, ω) , (3.10)

whereby the Fourier transform of the antisymmetrised correlator is χ′′αβ(r, r′, ω) = (−i~µ0/2)G⊥αβ(r −

r′, ω). Substituting the result for χ′′αβ(Ri,Rj , ω) into the expression for the effective Hamiltonian,

H′eff = HA − µ0ω
2
0

∑
i,j

∑
α,β

∫ ∞
−∞

dω

2π

∫ ∞
0

dτ e−iωτ
(
dαsp(d

∗
sp)

β σ̂+
i σ̂
−
j eiω0τ + h.c.

)
G⊥αβ(Rij , ω)︸ ︷︷ ︸

Jij

. (3.11)

3.2.3 Effective Hamiltonian II

We look at the terms with i = j and i 6= j separately, starting with the on-site terms (i = j),

Jii =

∫ ∞
−∞

dω

2π

∫ ∞
0

dτ
(
σ̂+
i σ̂
−
i ei(ω0−ω)τ + σ̂−i σ̂

+
i e−i(ω0+ω)τ

)
dsp ·G⊥(0, ω) · d∗sp .
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Physically, the second term in this expression reflects a renormalization of the ground state energy due to

coupling with a vacuum field, which we do not compute explicitly here. We also note that the exponential

ei(ω0−ω)τ is fast-oscillating away from ω = ω0, so that the integrand is attenuated for ω 6= ω0. Hence,

Jii ≈ σ̂+
i σ̂
−
i dsp ·G⊥(0, ω0) · d∗sp

∫ ∞
0

dω

2π

∫ ∞
−∞

dτ ei(ω0−ω)τ (3.12)

To evaluate the remaining integrals, Ref. [67] notes that in the Markov approximation we may write∫ ∞
0

dτ

∫ ∞
−∞

dω e−i(ω0−ω)τ ≈ 2π

∫ ∞
0

dτδ(τ) = π , (3.13)

where in the last step we have split the delta function because the peak of the delta function lies

at the limit of integration. Here we have ignored a (divergent) principal value term associated with

a renormalisation of the excited atomic energy, which again we do not compute explicitly. Absorbing

implicitly both the ground- and excited-state renormalisation into our description of the atomic spectrum,

Jii = σ̂+
i σ̂
−
i |dsp|2G⊥xx(0, ω0) using also the fact that G(r, ω) = GT(r, ω) and dsp = dspx̂.

This expression is actually not trivial, since it is clear from eq. (1.9) in Chapter 2 that G⊥xx(r, ω)

diverges as r → 0. In fact, significant efforts have been devoted to finding suitable regularisation

techniques for this divergence (see e.g. Ref. [69]). In our case, we observe that physically, the real part

of G⊥xx(0, ω) will be associated with an on-site energy (which we again ignore), while the imaginary part

can be identified with a spontaneous decay rate (e.g. by comparison with Wigner-Weisskopf theory for

single atoms [67]). Indeed, from eq. (1.16) in Chapter 2 we infer that

G⊥xx(r, ω) =
1 + cos2 θ cos2 ϕ

8πr︸ ︷︷ ︸
divergent Re G⊥xx(r, ω)

+
ik

6π
+ O(r) (3.14)

where we have temporarily switched to polar coordinates (r, θ, ϕ) for r. Hence we see that

Jii =
i|dsp|2ω0

6πc
σ̂+
i σ̂
−
i . (3.15)

For the off-site terms (i 6= j), exactly the same approximations as above then lead to

Jij ≈ |dsp|2G⊥xx(Rij , ω0)σ̂+
i σ̂
−
j . (3.16)

This allows us to write the final effective atomic Hamiltonian Heff = H′eff +HAA as

Heff = ~
(
ω0 − i

Γ0

2

)∑
i

σ̂+
i σ̂
−
i − µ0ω

2
0 |dsp|2

∑
i,j 6=i

Gxx(Rij , ω0) σ̂+
i σ̂
−
j , (3.17)

where we have re-inserted the expression for HAA and identified the single-atom spontaneous decay

rate Γ0 = ω3
0 |dsp|2/(3πε0~c3). Clearly this has the form of the non-hermitian spin model Hamiltonian

introduced in Chapter 2: by ignoring the ground state density-density fluctuations and retaining only the

leading order terms in the expansion in a0/a, we formally recover the quantum optics limit.
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Conclusion

1 Summary of results

In this thesis, we have presented for the first time a strategy to incorporate the dominant effects of

quantum chemistry into the description of an atomic array in a perturbative fashion: starting from the full

quantum chemistry Hamiltonian for a lattice of hydrogenic atoms (i.e. the formal Hamiltonian without

any simplifying assumptions beyond the Born-Oppenheimer approximation), we have systematically

derived the corrections to the quantum optics limit of discrete scatterers due to the onset of quantum

chemistry in the lattice by performing a controlled expansion of the full Hamiltonian in a0/a � 1. In

particular, this has allowed us to estimate the modifications to the well-studied collective optical response

of the atomic array as the inter-atomic spacing is decreased.

The picture which we arrive at is that among all the quantum chemistry corrections, there are two

distinct processes which become the dominant optical effects that emerge with the onset of quantum

chemistry: 1. inelastic scattering of incident light by the buildups of density-density correlations in the

ground state and 2. the creation and diffusion of a magnetic polaron in response to an incident photon.

Although the latter is even more dominant than the former at larger atomic separations, in this thesis

we have focused on the former and, using asymptotic analytical results for the ground state model of the

array, we were able to infer the scaling of the associated inelastic linewidth.

While our analysis showed that at the onset of quantum chemistry, the optical response of the atomic

array is well-captured by the conventional spin model of multiple scattering applied to a punctured

lattice to reflect the electron imbalance on individual sites, we were also able to methodically deal with

the other processes which arise at the lowest orders of the expansion in a0/a: rather than an untameable

collection of complicated effects, we saw that to lowest order, the essence of quantum chemistry lies

in a manageable number of processes which can be conveniently categorised in terms of their influence

on the optical response of the array. Specifically, we found processes which contribute an inelastic

linewidth to the collective response but which are sub-leading compared to the two effects mentioned

above (e.g. photon-assisted short-range inter-band tunneling) and effects which are essentially irrelevant

to our problem (e.g. negligible local Stark shifts due to holon-doublon pairs in the ground state or

spin-correlated renormalisation of system parameters which does not effect our results qualitatively).

Most importantly, our analysis of quantum chemistry effects in a 2D array enabled us, via the
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construction of a simple minimal model for the refractive index in 3D crystals, to for the first time

combine non-perturbative multiple scattering and quantum chemistry to make realistic statements about

the saturation of the refractive index. Based on our results, the two dominant optical effects are, at least

for moderate atomic densities, solely responsible for the attenuation of the index. Leaving aside for a

moment the magnetic polaron effect, the question which remains is whether the holon-doublon inelastic

linewidth Γ alone is in fact large enough relative to the ideal cooperative linewidth Γcoop to attenuate the

refractive index to the experimentally observed orders of magnitude (i.e. whether the optical response

of a lattice with individual atoms removed is sufficiently different from a fully filled lattice to deflect the

curve in Fig. 1.1b significantly). If we are able to show that this is indeed the case, we will have identified

a single mechanism (or rather one of two mechanism) practically single-handedly responsible for the low

maximum refractive index of real atomic materials.

2 Density-density correlations

The missing piece of information is the doublon scattering cross-section σeff , or rather the ratio σeff/σsc

which enters our definition of the holon-doublon inelastic linewidth. However, since the problem of the

lattice with missing atoms can be treating under the assumption of discrete scatterers at the onset of

quantum chemistry, we can estimate σeff simply by refining the multiple scattering analysis of Chapter 2

to account for a single empty site.

2.1 Response in 2D revisited

We consider again a square lattice with sites Ri (i = 1, . . . , N) in the xy-plane, onto which we place

N − 1 two-level atoms modelled as classical dipoles di (i = 1, . . . , N , i 6= h). We consider a uniform

incident plane wave polarised along the x-axis (implying di = dix̂), with amplitude E0 and wavevector

k with k‖ = 0. Formally, removing the single dipole at the lattice position Rh from a fully filled lattice

leads to new coupled-dipole equations

di = αE0 + αµ0ω
2
∑
j 6=i,h

Gxx(Rij , ω)dj . (2.1)

We write the self-consistent solutions to these equations as di = d0 + ci where d0 denotes the (uniform)

solution to the problem with no hole (see Chapter 2),

d0 = − 3πε0

k3
0

Γ0︸ ︷︷ ︸
α0

1

ω − ωcoop + iΓcoop/2
E0 . (2.2)

The coefficients ci denote the corrections to the solution with no holes and they obey

ci = αµ0ω
2

∑
j 6=i,h

Gxx(Rij , ω)cj −Gxx(Rih, ω)d0

 . (2.3)
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This implies that the problem of a lattice with a single dipole removed at site Rh is equivalent to a

superposition of two problems: the ideal problem (i.e. a lattice with no holes) and the problem of a

single dipole oscillating perfectly out of phase with the solution to the ideal problem.

The expression (2.3) does not treat the site of the hole on equal footing with the others, since the

ci are defined only for i 6= h. To extend this formula to all sites, we can equivalently introduce a local

driving field Ωi, leading to the new equations

ci = αΩi + αµ0ω
2
∑
j 6=i

Gxx(Rij , ω)cj , (2.4)

with i = 1, . . . , N . From these equations, we recover ci = −d0 for i = h and eq. (2.3) for i 6= h when we

define the driving field self-consistently as

Ωi =


−d0

α
− µ0ω

2
∑
j 6=hGxx(Rhj , ω)cj , i = h

0 , i 6= h

(2.5)

In Appendix A, we derive a reciprocal-space solution to eqs. (2.4) and (2.5), as well as the associated

self-consistent definition of the driving field,

Ωh =
d0

α0

(
2π

a

)2(∫
d2k‖

1

∆ + ∆e,xx(k‖) + iΓe,xx(k‖)/2

)−1

︸ ︷︷ ︸
I−1

(2.6)

Evaluating this explicitly and computing the associated real-space solution requires an understanding of

the band structure ∆e,xx(k‖) and decay rate Γe,xx(k‖) and is non-trivial [75]. However, using general

arguments, we can already estimate from eq. (2.6) the magnitude of the optical effect of the hole.

2.2 Holon/doublon cross-section

2.2.1 Lossless propagation in guided modes

The cross-section σeff manifests itself in the fraction of light that enters the lattice and does not re-

emerge. Since we consider non-absorbing atoms, the only mechanism under which this is possible is if

the incident light scatters into guided modes in the array, allowing it to propagate losslessly. For the

square lattice, these modes lie outside the circular reciprocal-space volume defined by |k‖| < k0 [17].

To estimate σeff , the main qualitative approximation we make is therefore to assume that the integral

I is dominated by those trajectories in reciprocal-space along which Γx,ee(k‖) = 0. Under a lowest-order

approximation to the band structure ∆e,xx(k‖) around k0, we then have

I ≈
∫
d2k‖

1

∆ + ∆e,xx(k‖)
≈
∫
d2k‖

1

(k‖ − k0,‖) · ∇∆e,xx(k‖)|k0

. (2.7)

In fact, for the case of a 2D array, the guided modes are associated with isoenergetic curves which are

approximately straight in reciprocal space. Now if, for instance, we define such a curve as lying along a
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constant value of kx, then

I ≈
∫
dkx

∫
dky

1

(ky − k0,y)
∂∆e,xx(k‖)

∂ky

∣∣∣∣
k0

∼ i

a

∫
dky

1

d∆e,xx(k‖)

dky

∣∣∣∣
k0

δ(ky − k0,y) , (2.8)

where we have evaluated the integral along the kx-axis of the 1BZ and used the Sokhotski–Plemelj

theorem 1
x−i0+ = iπδ(x)+P 1

x , neglecting the principal value term since we are interested in the resonant

contributions only.

2.2.2 Effective hole size

If we want to examine purely a rough scaling of this expression, we can note that the band structure

is characterised by the near-field interactions, and therefore d∆e,xx(k‖) ∼ Γ0/(ka)3. The characteristic

scale of ky is set by the first Brillouin zone, hence dky ∼ 1/a, which implies that

Ωh ∼ −
d0

α0

iΓ0

(k0a)3
(2.9)

To estimate the ratio σeff/σsc, we first calculate the time-averaged energy transferred to the hole

dipole due to the driving by the local field Ωh as Im(Ωhch) ∼ d2
0Γ0/(α0k

3
0a

3). We can compare this

to the work done by the external field on a dipole in the perfectly cooperative lattice, Im(E0d0). The

ratio of the two effectively corresponds with the fraction of energy lost by the hole, compared to the

energy radiated per atom in the perfect case, which is essentially equivalent to the desired figure of merit

σeff/σsc. Using the fact that on-resonance, d0 ∼ iα0E0/Γcoop ∼ i(k0a)2α0E0/Γ0, we find that

Im(Ωhch)

Im(E0d0)
=
σeff

σsc
∼ 1

k0a
. (2.10)

Physically, this is the very meaningful result which we already anticipated: the hole removes an amount

of energy from the incident field equivalent to the energy absorbed by 1/(k0a) � 1 sites. In other

words, the holon-doublon pairs do not only effectively remove single atoms from the array but lead to

the breakdown of the cooperative response of a large number of surrounding atoms. We may therefore

safely assume that the inelastic scattering of incident light by the density-density correlation buildups in

the ground state significantly affects the optical response of the 2D arrays. According to our reasoning

above, the ground state fluctuations then represent the dominant effect leading to the saturation of the

refractive index with the onset of quantum chemistry.

3 Discussion & outlook

With this last calculation, we have arrived at a remarkable result with possibly wide-reaching impli-

cations: at least for the simplest case of hydrogenic atoms, it is not an intractable amalgamation of

quantum chemistry effects which leads to a saturation of the refractive index. Instead, we can identify

concrete process whose (disproportionately large) optical effect can be straightforwardly estimated using

standard methods from condensed matter theory and quantum optics. While we have focused here only
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on one of these processes, and while our calculations are to some extent exemplary in nature, the rele-

vance of our analysis seems undeniable: on the one hand, our result uproots the traditional understanding

of the optical properties of dense atomic media and, on the other hand, it could inspire the purposeful

design of optical materials with ultrahigh refractive index.

This work represents only the first step towards a comprehensive theory of the optical properties of

atomic media at the interface between quantum optics and quantum chemistry. There are some technical

details which we have neglected in this work, most importantly a rigorous calculation of the effective hole

size and a thorough analysis of the magnonic polaron effect, but also a more quantitative assessment of

those sub-leading process which also contribute an inelastic linewidth. Additionally, the connection to

the formal quantum chemistry regime could be firmed up by confirming some of our assumptions (e.g.

the equivalence of the ground state manifold and the Hubbard model) using state-of-the-art quantum

chemistry simulations on 2D lattices. Similarly, our result could be validated from the perspective of

condensed matter theory, by applying the slave-fermion formalism to the full 3D lattice to calculate

the impurity scattering associated with individual holons and doublons. Most of these avenues will be

explored in future work.

Beyond this, a generalisation of the ideas we have presented also requires an extension to more

complicated atomic species. A feasible point of entry are common approaches in atomic physics and

quantum chemistry which model the core electrons of larger atoms as simply affecting the pseupotential

in which the valence electrons move [165, 166], and generalisations of the spin model to more complicated

atomic structures [167]. Heuristically speaking, the variation in the dipole moment for different atoms

may affect the dominance of certain effects and therefore the exact mechanisms which saturate the

refractive index. However, it seems reasonable to assume that in these cases we will still be able to make

qualitatively similar statements about the source of the maximal refractive index – that there are few

individual corrections to the quantum optics limit with dominant effects on the optical response.

Our results are also impactful beyond the immediate question of the maximum refractive index: the

notion that individual far-detuned atoms in an array break the collective optical response of the array

across a much larger effective number of emitters is a highly interesting observation in its own right.

It could lead to a much better understanding of the stability of collective optical properties of ordered

geometries of quantum emitters, and could on the other hand perhaps be exploited to engineer exotic

new cooperative behaviour.
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[28] F. Iglói and C. Monthus, Physics Reports 412 (2005).

[29] G. Refael and E. Altman, Comptes Rendus Physique, Disordered systems / Systèmes désordonnés
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Appendix A

Multiple scattering in 2D

In this appendix we provide the details of the two multiple scattering calculations presented in Chapter 2.2

(Section 1) and Chapter 6.2 (Section 2), which were omitted from the main text for the sake of readability.

We define the Fourier transforms on an infinite 2D lattice as

F (k‖) =
1

N

∑
i

F (Ri)e
−ik‖·Ri

F (Ri) = Na2

∫
1BZ

d2k‖

(2π)2
F (k‖)e

ik‖·Ri

1 Square array without holes

1.1 Mode-wise optical response

We note that at a lattice site the incident field in eq. (2.3) of Chapter 2 is simply E0(Ri) =
∑

k‖
E0,k‖eik‖·Ri

and the discrete Fourier spectrum implied by this expression can be formally written as

E0(k‖) =
1

Na2

∑
q‖

E0,q‖(2π)2δ(2)(q‖ − k‖) (1.1)

Accordingly, we are able to Fourier transform the dipole equation in eq. (2.1) of Chapter 2 to obtain

d(k‖) = αE0(k‖) +
4π2α

λ2ε0N

∑
i,j 6=i

Gi−j · dje−ik‖·Ri

=
α

Na2

∑
q‖

E0,q‖(2π)2δ(2)(q‖ − k‖) +
4π2αa2

λ2ε0

∫
1BZ

d2q‖

(2π)2

∑
i,j 6=i

Gi−j · d(q‖)e
iq‖·Rj−ik‖·Ri

=
α

Na2

∑
q‖

E0,q‖(2π)2δ(2)(q‖ − k‖) +
4π2α

λ2ε0N
Na2

∫
1BZ

d2q‖

(2π)2

∑
i,k 6=0

Gk · d(q‖)e
−iq‖·Rk+i(q‖−ik‖)·Ri

=
∑
q‖

αE0,q‖

Na2
(2π)2δ(2)(q‖ − k‖) +

4π2αa2

λ2ε0

∫
1BZ

d2q‖

(2π)2

∑
k 6=0

Gke−iq‖·Rk


︸ ︷︷ ︸

≡ g(q‖)

·d(q‖)

(∑
i

e−i(k‖−iq‖)·Ri

)
︸ ︷︷ ︸
=
(

2π
a

)2
δ(2)(q‖ − k‖)

=
∑
q‖

αE0,q‖

Na2
(2π)2δ(2)(q‖ − k‖) +

4π2α

λ2ε0
g(k‖) · d(k‖) .

where we have used the shorthand notation Gi−j ≡ G(Rij , ω). This leads to the Fourier-space solution

stated in eq. (2.4) of Chapter 2.
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Chapter A Multiple scattering in 2D

1.2 Cooperative radiative response

To obtain the more intuitive expression di =
∑

k‖
d0,k‖eik‖·Ri with d0,k‖ = αe(k‖) · E0,k‖ , we perform

the inverse Fourier transform,

di = Na2

∫
1BZ

d2k‖

(2π)2
d(k‖)e

ik‖·Ri

= Na2

∫
1BZ

d2k‖

(2π)2
eik‖·Ri

 α

Na2

(
1− 4π2α

λ2ε0
g(k‖)

)−1

·
∑
q‖

E0,q‖(2π)2δ(2)(q‖ − k‖)


=

(∫
1BZ

d2k‖e
ik‖·Ri

(
1− 4π2α

λ2ε0
g(k‖)

)−1

δ(2)(q‖ − k‖)

)
·
∑
q‖

αE0,q‖

=
∑
q‖

α

(
1− 4π2α

λ2ε0
g(q‖)

)−1

︸ ︷︷ ︸
≡ αe(q‖)

·E0,q‖eiq‖·Ri .

The formal definition of αe(q‖) can easily be re-arranged into the form in eq. (2.5) of Chapter 2.

1.3 Cooperative linewidth

The starting point for deriving eq. (2.8) of Chapter 2 is the plane wave decomposition [1, 24]

G0(r, ck) =
i

8π2

∫
d2k′‖e

−ik′
‖·r eik′z|z|

k′z
(1.2)

with k′z =
√
k2 − |k′‖|2. From this, we are able to find a more tractable form of gxx(k‖),

gxx(k‖) =
∑
i

Gxx(Ri, ck)e−ik‖·Ri −Gxx(0, ck)

=

∫
d2r‖Gxx(r‖, ck)e−ik‖·r‖

∑
i

δ(2)(r‖ −Ri)−Gxx(0, ck)

=
i

8π2

∫
d2k′‖

1

k′z

(
1− k′2x

k2

)∫
d2r‖e

−i(k‖+k′
‖)·r‖

∑
i

δ(2)(r‖ −Ri)︸ ︷︷ ︸
= ρ(r‖)

−Gxx(0, ck) ,

where we have identified the formal density of lattice points in real space, ρ(r‖) =
∑
i δ

(2)(r‖ −Ri). We

can define the Fourier transform ρ(k‖) using the Poisson resummation formula [84], which allows us to

convert sums over infinite real-space lattices to sums over reciprocal-space lattices, as

ρ(k‖) =

∫
d2r‖e

−ik‖·r‖ρ(r‖) =
(2π)2

a2

∑
G

δ(2)(k−G) ,

where the second sum is over all reciprocal vectors G. Then gxx(k‖) easily simplifies to

gxx(k‖) =
i

2(ka)2

∑
G

∫
d2k′‖

 k2 − k′2x√
k2 − k′2x − k′2y

 δ(2)(k‖ + k′‖ −G)−Gxx(k, 0a)

=
i

2(ka)2

∑
G

k2 − |k‖ −G|2x√
k2 − |k‖ −G|2

−Gxx(k, 0) .

(1.3)

A final simplification can be made if we note that, neglecting the Lamb shift contribution that we have

already taken care of implicitly, Gxx(k, 0) = i/(3λ) [24]. This leads to eq. (2.8) of Chapter 2.
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2 Square array with a single hole

2.1 Fourier-space solution

Starting from the equations for the corrections ci to the ideal solution d0, we Fourier transform to obtain

c(k‖) =
α

N

(∑
i

Ωie
−ik‖·Ri

)
︸ ︷︷ ︸

NΩ(k‖)

+αµ0ω
2a2

∫
d2q‖

(2π)2

∑
i,j 6=i

Gxx(Rij , ω) c(q‖) eiq‖·Rj−ik‖·Ri

= αΩ(k‖) + αµ0ω
2a2

∫
d2q‖

(2π)2
c(q‖)

∑
k 6=0

Gxx(Rk, ω) e−iq‖·Rk


︸ ︷︷ ︸

gxx(q‖)

(∑
i

e−i(k‖−iq‖)·Ri

)
︸ ︷︷ ︸
=
(

2π
a

)2
δ(2)(q‖ − k‖)

= αΩ(k‖) + αµ0ω
2 gxx(k‖) c(k‖)

This can be algebraically solved to obtain c(k‖) = αΩ(k‖)(1 − αµ0ω
2 gxx(k‖))

−1. From the derivation

in the previous section, we recall that α(1− αµ0ω
2 gxx(k‖))

−1 = αe,xx(k‖) so that

c(k‖) ≈ −
3πε0

k3
0

Γ0

Ω(k‖)

∆ + ∆e,xx(k‖) + iΓe,xx(k‖)/2
(2.1)

2.2 Self-consistent driving field

From the self-consistent real-space definition of the driving field, we have

Ω(k‖) =
1

N

∑
i

Ωie
−ik‖·Ri =

1

N
Ωhe−ik‖·Rh .

We can write the non-zero field Ωh in terms of the solution above as

αΩh = −d0 − αµ0ω
2Na2

∑
j 6=h

Gxx(Rhj , ω)

∫
d2q‖

(2π)2
Ω(q‖) c(q‖) eiq‖·Rj

= −d0 − αµ0ω
2a2Ωh

∫
d2q‖

(2π)2

∑
j 6=h

Gxx(Rhj , ω) e−iq‖·Rhj


︸ ︷︷ ︸

gxx(q‖)

c(q‖)

≈ −d0 + αa2Ωh

∫
d2q‖

(2π)2

3λΓ0gxx(q‖)/2

∆ + ∆e,xx(k‖) + iΓe,xx(k‖)/2

where we have used (λ0/λ)3 ≈ 1 as in the previous section. Using ∆ + ∆e,xx(q‖) + iΓe,xx(q‖)/2 =

∆ + iΓ0/2 + 3λΓ0gxx(q‖)/2 and the fact that the 1BZ volume is (2π/a)2, we can solve for Ωh to obtain

Ωh = −d0

α

(
2π

a

)2 [∫
d2q‖

(
1−

3λΓ0gxx(q‖)/2

∆ + iΓ0/2 + 3λΓ0gxx(q‖)/2

)]−1

= −d0

α

(
2π

a

)2 [(
∆ +

iΓ0

2

)∫
d2q‖

1

∆ + ∆e,xx(q‖) + iΓe,xx(q‖)/2

]−1
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Appendix B

Hubbard many-body field theory

In this appendix, we review briefly some relevant basic concepts of many-body QFT (Section 1), in

particular the basic conventions of one-particle Green’s functions (Section 2), and we also provide some

technical detail on the field calculations from Chapter 4 of the main text (Sections 3 and 4). For an

expansion on the ideas outlined in this section, see Ref. [168], whose conventions we mostly follow.

1 QFT for many-body problems

In the context of many-body systems, we are typically interested in two distinct types of quantum

fields: collective bosonic fields, describing collective quasiparticle excitations, and the more conventional

fermionic and bosonic fields with fixed particle number. In both cases, the field operator and its conjugate

play the role of the destruction and creation operators for the particle, with the particle statistics encoded

in the field (anti)commutation relations.

The Schrödinger field operator ψ̂(r) can be written as ψ̂(r) =
∑

k ψ̂ke−ik·x for both collective and

fixed particle number fields. The difference between the two manifests itself in the structure of the Fourier

amplitudes ψ̂k. We can denote by âk mode operators which create a single particle at momentum k.

For a field with fixed particle number, ψ̂k ∼ âk so that ψ̂(r)† creates a particle well-localised in r. The

classical field describing a collective excitation is real, therefore ψ̂(r) must be hermitian in this case, and

hence ψ̂k ∼ âk + â†−k. Physically, this is the statement that the wavepacket of a collective excitation

localised around r involves both the creation and annihilation of quanta.

2 One-particle Green’s functions

For a general quantum field ψ̂(x, t), we define the Green’s function G(x, t) according to

G(x− x′, t− t′) = −i〈G|T ψ̂(x, t)ψ̂†(x′, t′)|G〉 , (2.1)

where |G〉 is the many-body ground state and T is the time-ordering operator. Using the Fourier

decomposition of the real-space fields as ψ̂(x, t) =
∑

k eik·x ψ̂k(t), we define

G(x− x′, t− t′) = −i
∑
k,k′

eik·x−ik′·x′
〈G|T ψ̂k(t)ψ̂†k′(t

′)|G〉︸ ︷︷ ︸
δkk′G(k, t− t′)

= −i
∑
k

eik·(x−x′)G(k, t− t′) ,
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Chapter B Hubbard many-body field theory

where we have not specified the particle statistics and defined G(k, t− t′) = −i〈G|T ψ̂k(t)ψ̂†k′(t′)|G〉 with

the field modes in the Heisenberg / interaction picture. Transforming to the frequency-domain and using

the spacetime translation invariance of the 2-point correlator, we arrive at the propagator

G(k, ω) = −i

∫
dt eiωt〈G|T ψ̂k(t)ψ̂†k(0)|G〉 . (2.2)

2.1 Free fermionic propagator

We denote the free theory propagator as G(0)(k, ω). We consider first a free (spinless) fermionic field

(ψ̂k = ĉk) with generic Hamiltonian H =
∑

kEkĉ
†
kĉk (interaction picture operators ĉk(t) = ĉke−iEkt).

Then,

G(0)(k, t) = −i〈G|T ĉk(t)ĉ†k(0)|G〉 = −ie−iEktΘ(t) . (2.3)

The propagator can be calculated by evaluating the integral (2.2) (inserting a convergence factor δ), as

G(0)(k, ω) = −i

∫ ∞
0

dt ei(ω−Ek+iδ)t =
1

ω − Ek + iδ
. (2.4)

2.2 Free bosonic propagator

We consider now a bosonic field (ψ̂k ∼ b̂k + b̂†−k) with generic free Hamiltonian H =
∑

k Ωkb̂
†
kb̂k

(interaction picture operators b̂k(t) = b̂ke−iΩkt). Since |G〉 is the bosonic vacuum, the bosonic propagator

decomposes as G(0)(k, ω) = D
(0)
1 (k, ω) +D

(0)
2 (k, ω) with two non-vanishing components,

D
(0)
1 (k, ω) = −i〈G|T b̂k(t)b̂†k(0)|G〉 = −ie−iΩktΘ(t)

D
(0)
2 (k, ω) = −i〈G|T b̂†k(t)b̂k(0)|G〉 = −ieiΩktΘ(−t) ,

(2.5)

where we can see that D
(0)
1 (k, ω) and D

(0)
2 (k, ω) correspond with forwards- and backwards-propagation

in time, respectively. Evaluating the integral (2.2) (inserting a convergence factor δ),

D
(0)
1 (k, ω) = −i

∫ ∞
0

dt ei(ω−Ek+iδ)t =
1

ω − Ek + iδ

D
(0)
2 (k, ω) = −i

∫ 0

−∞
dt ei(ω+Ek+iδ)t =

1

ω + Ek + iδ
.

(2.6)

2.3 Spectral function

The free propagators above contain a single pole, associated with the energy needed to create a single

particle from the vacuum. For interacting field theories, the divergence structure of the propagator is

more complicated, and we can write

G(k, ω) =

∫
dω′ A(k, ω′) G(0)(k, ω′) =

∫
dω′

A(k, ω′)

ω − ω′ + iδ
. (2.7)

We call A(k, ω) the spectral function, and according to the above relation,

A(k, ω) = − 1

π
Im G(k, ω − iδ′) (2.8)

where the limit δ′ → 0+ is implied.
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3 Bogoliubov-transformed Hamiltonians

In this section, we fill in the omitted steps of the calculations leading to the reciprocal-space Hamil-

tonian (2.5), as well as the Bogoliubov transformed Hamiltonians (2.7), (3.3), and (3.6) in Chapter 4.

Throughout, we will assume periodic boundary conditions, which implies the operator Fourier transforms

âk =
1√
N

∑
i

e−ik·ri âi

âi =
1√
N

∑
k∈1BZ

eik·ri âk

(3.1)

for generic annihilation operators âi, as well as the equivalent transforms for the creation operators â†i .

3.1 Heisenberg model

3.1.1 Reciprocal-space Hamiltonian

Here we derive the reciprocal-space version of the Heisenberg Hamiltonian in the linear spin-wave for-

malism. We start from the Holstein-Primakoff transformed Hamiltonian

Heff ≈ −
Jb20NS

2z

2
+ Jb20S

∑
i

∑
δ

(
b̂†i b̂i + b̂†i+δ b̂i+δ + b̂ib̂i+δ + b̂†i b̂

†
i+δ

)
.

Substituting the inverse Fourier transform, we obtain the momentum-space form

Heff = −Jb
2
0NS

2z

2
+
Jb20S

N

∑
k,q∈1BZ

∑
i,δ

(
eiri·(q−k)

(
1 + eiδ·(q−k)

)
b̂†kb̂q

+
(

eiri·(q+k)eiδ·qb̂kb̂q + e−iri·(q+k)e−iδ·qb̂†kb̂
†
q

))
= −Jb

2
0NS

2z

2
+ Jb20S

∑
k,q∈1BZ

∑
δ

(
δqk

(
1 + eiδ·(q−k)

)
b̂†kb̂q

+ +δ−qk

(
eiδ·qb̂kb̂q + e−iδ·qb̂†kb̂

†
q

))
= −Jb

2
0NS

2z

2
+ Jb20S

∑
k∈1BZ

∑
δ

(
2b̂†kb̂k +

(
e−iδ·kb̂kb̂−k + eiδ·kb̂†kb̂

†
−k

))
,

where we have used the definition δkq = 1/N
∑
i e±iri·(k−q). Flipping the sign on the dummy momentum

to set k→ −k in the first and second terms, and then using the commutators for the b̂k, we obtain

Heff = −Jb
2
0NS

2z

2
+ Jb20S

∑
k∈1BZ

∑
δ

(
b̂†kb̂k + b̂†−kb̂−k + eiδ·k

(
b̂−kb̂k + b̂†kb̂

†
−k

))
= −Jb

2
0NS

2z

2
+
Jb20Sz

2

∑
k∈1BZ

(
b̂†kb̂k + b̂†−kb̂−k + γk

(
b̂−kb̂k + b̂†kb̂

†
−k

))
= −Jb

2
0NS

2z

2
+
Jb20Sz

2

∑
k∈1BZ

(
b̂†kb̂k + b̂−kb̂

†
−k − 1 + γk

(
b̂−kb̂k + b̂†kb̂

†
−k

))
= −Jb

2
0NS(S + 1)z

2︸ ︷︷ ︸
E0

+
Jb20Sz

2

∑
k∈1BZ

(
b̂†kb̂k + b̂−kb̂

†
−k + γk

(
b̂−kb̂k + b̂†kb̂

†
−k

))
, ,

where we have defined the tight-binding parameter γk = 2z−1
∑

δ eik·δ as in the main text. We re-cast

this Hamiltonian trivially in terms of a matrix multiplication to obtain eq. (2.5) from Chapter 4.
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3.1.2 Diagonalisation by Bogoliubov transformation

We now diagonalise Heff . Under the Bogoliubov transformation defined in eq. (2.6) of Chapter 4,

Heff = E0 +
Jb20Sz

2

∑
k∈1BZ

( β̂†k β̂−k )

 uk vk

vk uk

 1 γk

γk 1

 uk vk

vk uk

 β̂k

β̂†−k


= E0 +

Jb20Sz

2

∑
k∈1BZ

( β̂†k β̂−k )

 u2
k + v2

k + 2ukvkγk (u2
k + v2

k)γk + 2ukvk

(u2
k + v2

k)γk + 2ukvk u2
k + v2

k + 2ukvkγk

 β̂k

β̂†−k

 ,

which is diagonal when u2
k + v2

k + 2ukvkγk = 0. Substituting this,

H = E0 +
Jb20Sz

2

∑
k∈1BZ

(
u2
k + v2

k

) (
1− γ2

k

) (
β̂†kβ̂k + β̂−kβ̂

†
−k

)
= E0 + Jb20Sz

∑
k∈1BZ

(
u2
k + v2

k

) (
1− γ2

k

)(
β̂†kβ̂k +

1

2

)
.

For
√

1− γ2
k ≡ ωk, we can see that choosing u2

k = 1/2 + 1/2ωk and v2
k = −1/2 + 1/2ωk is consistent

with the condition u2
k − v2

k = 1 and leads to the final expression in the main text.

3.2 Hubbard model

3.2.1 Spin sector Bogoliubov transformation for H(1)

Here we re-write the Hubbard Hamiltonian in terms of Bogoliubov transformed operators, starting from

eq. (3.2). Explicitly inserting the inverse Bogoliubov transformation b̂−q = u−qβ̂−q + v−qβ̂
†
q in H(1),

H(1) =
∑

k,q∈1BZ

tb0z√
N

(
g1(k,q)β̂−q + g2(k,q)β̂†q

)
d̂†Q−kd̂Q−k+q

−
∑

k,q∈1BZ

tb0z√
N

(
g2(k,q)β̂−q + g1(k,q)β̂†q

)
êkê
†
k−q

=
∑

k,q∈1BZ

tb0z√
N

(
g2(Q− k,q)d̂†kd̂k+qβ̂

†
q + g1(Q− k− q,−q)d̂†k+qd̂kβ̂q

)
−

∑
k,q∈1BZ

tb0z√
N

(
g2(k,−q)êkê

†
k+qβ̂q + g1(k− q,−q)êk+qê

†
kβ̂
†
q

)
where we have used the fact that we are summing over the entire 1BZ and defined the coefficients

g1(k,q) = γk−qv−q + γku−q

g2(k,q) = γk−qu−q + γkv−q .
(3.2)

Using the spherical symmetry of the Bogoliubov coefficients in momentum-space (i.e. uk = u−k and

vk = v−k), as well as the fact that γk = γ−k and γQ+k = −γk, we can see that

g2(Q− k,q) = γQ−k−qu−q + γQ−kv−q = −(γk+quq + γkvq)

g1(Q− k− q,−q) = γQ−k−��q+qvq + γQ−k−quq = −(γkvq + γk+quq)

g2(k,−q) = γk+quq + γkvq

g1(k + q,q) = γk+��q−qv−q + γk+qu−q = γkvq + γk+quq

which leads to eq. (3.3) in Chapter 4 with m(k,q) = −tb0z(γk+quq + γkvq)/
√
N .
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3.2.2 Charge sector Bogoliubov transformation for H(0)

We now derive the Bogoliubov transformation that diagonalises H(0). According to eq. (3.4) in Chapter 4,

H(0) =
NU

4
+
∑

k∈1BZ

( f̂†k ĝk )

 U
2 (u2

k − v2
k)− 2ukvktb

2
0zγk Uukvk + tb20zγk(u2

k − v2
k)

Uukvk + tb20zγk(u2
k − v2

k) −U2 (u2
k − v2

k) + 2ukvktb
2
0zγk

 f̂k

ĝ†k

 ,

which is diagonal when ukvk = − tb
2
0zγk
U (u2

k − v2
k). Imposing this,

H(0) =
NU

4
+
∑

k∈1BZ

2E2
k

(
u2
k − v2

k

)
U

(
f̂†kf̂k − ĝkĝ

†
k

)
=
NU

4
−
∑

k∈1BZ

Ek︸ ︷︷ ︸
E ′0

+
∑

k∈1BZ

2E2
k

(
u2
k − v2

k

)
U

(
f̂†kf̂k + ĝ†kĝk

)
,

where we have defined Ek =
√
U2/4 + (tb20zγk)2. If we choose uk, vk to satisfy u2

k = 1/2 + U/4Ek and

v2
k = 1/2 − U/4Ek, then ukvk = −tb20zγk/4Ek and we can see that this is indeed consistent with what

we have done above. We therefore arrive at the final Hamiltonian stated in the main text.

3.2.3 Charge sector Bogoliubov transformation for H(1)

In terms of the Bogoliubov transformed operators,

H(1) =
∑

k∈1BZ

( f̂†−k ĝk )

 M21(k,q)β̂†q +M12(k,q)β̂−q M34(k,q)β̂†q +M43(k,q)β̂−q

M43(k,q)β̂†q +M34(k,q)β̂−q −M12(k,q)β̂†q −M21(k,q)β̂−q

 f̂−k+q

ĝ†k−q


where the matrix elements are

M21(k,q) = − tb0z√
N

(g2(k,q)µkµk−q − g1(k,q)νkνk−q)

M12(k,q) = − tb0z√
N

(g1(k,q)µkµk−q − g2(k,q)νkνk−q)

M34(k,q) = − tb0z√
N

(g1(k,q)µk−qνk + g2(k,q)µkνk−q)

M43(k,q) = − tb0z√
N

(g2(k,q)µk−qνk + g1(k,q)µkνk−q) .

(3.3)

Again using the fact that we are summing over the entire 1BZ,

H(1) =
∑

k∈1BZ

(
M21(−k,q)f̂†kf̂k+qβ̂

†
q +M12(−k− q,−q)f̂†k+qf̂kβ̂q

)
−
∑

k∈1BZ

(
M12(k + q,q)ĝk+qĝ

†
kβ̂
†
q +M21(k,−q)ĝkĝ

†
k+qβ̂q

)
+

∑
k,q∈1BZ

(
M43(k,−q)f̂†−kĝ

†
k+qβ̂q +M43(k + q,q)ĝk+qf̂−kβ̂

†
q

)
+

∑
k,q∈1BZ

(
M34(k,−q)f̂†−kĝ

†
k+qβ̂

†
−q +M34(k + q,q)f̂−kĝk+qβ̂−q

)
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Using the property of the Bogoliubov coefficients µk = µ−k and νk = ν−k, as well as

g1,2(−k,q) = g2,1(−k− q,−q)

g1,2(k + q,q) = g2,1(k,−q)

which follows directly from the properties of g1,2(k,q), we obtain the form of H(1) stated in the main

text with coefficients that read, written out explicitly,

M1(k,q) = − tb0z√
N

[(γk+quq + γkvq)µkµk+q − (γk+qvq + γkuq) νkνk+q] = −M2(k,q)

M3(k,q) = − tb0z√
N

[(γk+quq + γkvq) νkµk+q + (γk+qvq + γkuq)µkνk+q]

M4(k,q) = − tb0z√
N

[(γk+quq + γkvq)µkνk+q + (γk+qvq + γkuq) νkµk+q]

(3.4)

4 Born approximation

Here we derive the 1-loop correction to the self-energy for an interacting field theory comprised from a

fermionic field f̂k and a collective bosonic field β̂k, with generic Hamiltonian

H =
∑
k

Ekf̂
†
kf̂k +

∑
k

Ωkβ̂
†
kβ̂k +

∑
k,q

M(k,q)
(
f̂†k+qf̂kβ̂q + h.c.

)
︸ ︷︷ ︸

HI

(4.1)

We define the free theory momentum-space Green’s functions by the Wick contractions

〈. . . f̂k(t)f̂†k(t′) . . . 〉 = iG(0)(k, t− t′) 〈. . . 〉

〈. . . β̂k(t)β̂†k(t′) . . . 〉 = iD
(0)
1 (k, t− t′) 〈. . . 〉

〈. . . β̂†k(t)β̂k(t′) . . . 〉 = iD
(0)
2 (k, t− t′) 〈. . . 〉

(4.2)

4.1 Dyson expansion

The Dyson expansion to 1-loop order gives

G(k, t) = G(0)(k, t)− i
(−i)2

2

∫
dt1

∫
dt2〈HI(t1)HI(t2)f̂k(t)f̂†k(0)〉 , (4.3)

where HI(t) is the interaction picture interaction Hamiltonian. Expanding this out explicitly,

G(k, t) = G(0)(k, t) +
i

2

∑
k1,k2

∑
q1,q2

M(k1,q1)M(k2,q2)

×
∫
dt1

∫
dt2 〈

(
f̂†k1+q1

(t1)f̂k1(t1)β̂q1(t1) + h.c.
)(

f̂†k2+q2
(t2)f̂k2(t2)β̂q2(t2) + h.c.

)
f̂k(t)f̂†k(0)〉

= G(0)(k, t)− 1

2

∑
k1,k2

∑
q

M(k1,q1)M(k2,q2)

×
(∫

dt1

∫
dt2 D

(0)
1 (q, t1 − t2) 〈f̂†k1+q(t1)f̂k1

(t1)f̂†k2
(t2)f̂k2+q(t2)f̂k(t)f̂†k(0)〉

+

∫
dt1

∫
dt2 D

(0)
2 (q, t1 − t2) 〈f̂†k1

(t1)f̂k1+q(t1)f̂†k2+q(t2)f̂k2(t2)f̂k(t)f̂†k(0)〉
)
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4.1.1 Wick contractions

For connected diagrams, the different Wick contractions that we have to consider are now

〈f̂†k1+q(t1)f̂k1(t1)f̂†k2
(t2)f̂k2+q(t2)f̂k(t)f̂†k(0)〉 = +i3δk1k2δk1k−qG

(0)(k, t− t1)G(0)(k1, t1 − t2)G(0)(k, t2)

〈f̂†k1+q(t1)f̂k1
(t1)f̂†k2

(t2)f̂k2+q(t2)f̂k(t)f̂†k(0)〉 = −i3δk1k2
δk1kG

(0)(k1, t2 − t1)G(0)(k, t1)G(0)(k, t− t2)

〈f̂†k1
(t1)f̂k1+q(t1)f̂†k2+q(t2)f̂k2

(t2)f̂k(t)f̂†k(0)〉 = +i3δk1kδk1k2
G(0)(k, t− t1)G(0)(k1, t1 − t2)G(0)(k, t2)

〈f̂†k1
(t1)f̂k1+q(t1)f̂†k2+q(t2)f̂k2

(t2)f̂k(t)f̂†k(0)〉 = −i3δk1k2
δk1k−qG

(0)(k1, t2 − t1)G(0)(k, t1)G(0)(k, t− t2)

where we have accounted for the sign changes associated with the permutation of fermionic operators.

Using this together with the fact that D
(0)
1 (k, t) = D

(0)
2 (k,−t),

G(k, t) = G(0)(k, t)

+ i
∑
q

∫
dt1

∫
dt2 M

2(k− q,q)D
(0)
1 (q, t1 − t2)G(0)(k, t− t1)G(0)(k− q, t1 − t2)G(0)(k, t2)

+ i
∑
q

∫
dt1

∫
dt2 M

2(k,q)D
(0)
1 (q, t1 − t2)G(0)(k, t2 − t1)G(0)(k, t1)G(0)(k, t− t2)

4.1.2 1-loop propagator

We now express the Green’s function in terms of inverse Fourier transforms of the propagators:∫
dt1

∫
dt2 M

2(k− q,q)D
(0)
1 (q, t1 − t2)G(0)(k, t− t1)G(0)(k− q, t1 − t2)G(0)(k, t2)

= M2(k− q,q)

∫
dω

2π
e−iωt

∫
dω′

2π
D

(0)
1 (q, ω − ω′)G(0)(k, ω)G(0)(k− q, ω′)G(0)(k, ω)∫

dt1

∫
dt2 M

2(k,q)D
(0)
1 (q, t1 − t2)G(0)(k, t2 − t1)G(0)(k, t1)G(0)(k, t− t2)

= M2(k,q)

∫
dω

2π
e−iωt

∫
dω′

2π
D

(0)
1 (q, ω′ − ω)G(0)(k, ω′)G(0)(k, ω)G(0)(k, ω)

Recalling that the propagator G(k, ω) can be expressed in terms of the self-energy Σ(k, ω) as

G(k, ω) =
1

ω − Ek + iδ − Σ(k, ω)
= G(0)(k, ω) +G(0)(k, ω)Σ(k, ω)G(0)(k, ω) + . . . (4.4)

we arrive at the final expression for the 1-loop self-energy

Σ(k, ω) =
∑
q

M2(k− q,q)

∫
dω′

2π
D

(0)
1 (q, ω − ω′)G(0)(k− q, ω′)

+
∑
q

M2(k,q)

∫
dω′

2π
D

(0)
1 (q, ω′ − ω)G(0)(k, ω′)
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Chapter B Hubbard many-body field theory

4.2 Contour integration

To calculate the integral in ω′ we note the divergence structure of the two integrals. Firstly,

D
(0)
1 (q, ω − ω′)×G(0)(k− q, ω′) =

−1

ω′ − (ω − Ωq + iδ)
× 1

ω′ − (Ek−q − iδ)

has a pole both above and below the real axis in the complex plane of ω′. On the other hand,

D
(0)
1 (q, ω′ − ω)×G(0)(k, ω′) =

1

ω′ − (ω + Ωq − iδ)
× 1

ω′ − (Ek − iδ)

only has poles below the real axis. Introducing a convergence factor eiω′δ′ which diverges in the lower

half plane and closing the integral in the upper half plane, by Cauchy’s residue theorem

Σ(k, ω) =
∑
q

M2(k− q,q)×G(0)(k− q, ω − Ωq)
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Appendix C

Hydrogen calculations

In this appendix, we recall the structure of the 1s and 2p hydrogen orbitals and derive the results quoted

in the main text for Wannier overlap integrals approximated using the hydrogen wavefunctions.

1 Gross structure wavefunctions

The electronic energy eigenvalue equation for the H atom has separable solutions ψnlm(r) = Rnl(r)Ylm(θ, ϕ),

where n is the principal quantum number, l (l ≤ n− 1) is the angular momentum quantum number, and

m (|m| ≤ l) is the magnetic quantum number. We are interested in the 1s ground state (n = 1, l = 0,

m = 0) and the 2p first excited state (n = 2, l = 1, m = ±1), since transitions from the ground state to

the 2s first excited state (n = 2, l = 0, m = 0) are not dipole-allowed.

The radial dependence of the 1s and 2p wavefunctions is given by [72]

R1,0(r) =
2

a
3/2
0

e−r/a0

R2,1(r) =
r√

3(2a0)5/2
e−r/(2a0)

(1.1)

The angular wavefunctions of the 1s and 2p states are the spherical harmonics [72]

Y0,0(θ, ϕ) =
1√
4π

Y1,0(θ, ϕ) =

√
3

4π
cos θ

Y1,±1(θ, ϕ) = ∓
√

3

4π
sin θ e±iϕ

(1.2)

The angular dependence of these functions is shown in Fig. C.1. Ignoring the coupling between the

electron spin and orbital angular momentum (i.e. in the gross structure regime), the m = ±1 states

are degenerate, therefore any linear combination of ψ21−1(r) and ψ211(r) is also a suitable 2p energy

eigenstate. In particular, we can define states ψpx(r) and ψpy (r), which are rotationally symmetric

about the x-axis and y-axis, respectively. Explicitly,

ψpx(r) = ψ21−1(r)− ψ211(r) =
x

4
√

2πa
5/2
0

e−r/(2a0)

ψpy (r) = −ψ21−1(r)− ψ211(r) =
y

4
√

2πa
5/2
0

e−r/(2a0)
(1.3)

We can see that together with ψpz (r) ≡ ψ210(r), these form a complete set of orbitals with identical

(double-lobe) shape, each rotationally symmetric about one spatial axis.
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Figure C.1 – Angular dependence of spherical harmonics. Figure reproduced from Ref. [72]. The diagrams

show angular plots as a function of θ. The plots a)-c) are symmetric under rotations in ϕ and so are plotted

for arbitrary ϕ, and d) is plotted for ϕ = 0. The plotted functions are a) |Y0,0(θ, ϕ)|2, b) |Y1,0(θ, ϕ)|2, c)

|Y1,±1(θ, ϕ)|2, and d) |Y1,−1(θ, ϕ)− Y1,1(θ, ϕ)|2.

2 Dipole matrix element dµµ′

Consistently with the classical multiple scattering calculation, if we consider a field polarised along the

x-axis the field will only couple to the orbital ψpx(r). The dipole moment between this 2p orbital and

the ground state is

dxsp =
q

4
√

2πa4
0

∫ 2π

0

dϕ cos2 ϕ︸ ︷︷ ︸
=π

∫ π

0

dθ sin3 θ︸ ︷︷ ︸
=4/3

∫ ∞
0

dr r4e−3r/2a0︸ ︷︷ ︸
=256a50/81

=
256

243
√

2
a0q

dysp =
q

4
√

2πa4
0

∫ 2π

0

dϕ cosϕ sinϕ︸ ︷︷ ︸
=0

∫ π

0

dθ sin3 θ︸ ︷︷ ︸
=4/3

∫ ∞
0

dr r4e−3r/2a0︸ ︷︷ ︸
=256a50/81

= 0

dzsp =
q

4
√

2πa4
0

∫ 2π

0

dϕ cosϕ︸ ︷︷ ︸
=0

∫ π

0

dθ sin2 θ cos θ︸ ︷︷ ︸
=0

∫ ∞
0

dr r4e−3r/2a0︸ ︷︷ ︸
=256a50/81

= 0
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3 Hydrogen overlap integrals

3.1 On-site energies T |iiµµ and Up|iiiµµ

We can see that the expressions for the cases where µ′ = s and where µ′ = p are practically equivalent,

with only some different numerical factors. We therefore look at a general integral,

∫
d3x φ∗µ(x)∇2

xφµ′(x) =

∫
d3x
|x| − βa0

αa2
0|x|

φ∗µ(x)φµ′(x)

=

∫
d3x

(
1

αa2
0

− β

αa0|x|

)
φ∗µ(x)φµ′(x)

=
1

αa2
0

∫
d3xφ∗µ(x)φµ′(x)︸ ︷︷ ︸

δµµ′

− β

αa0

∫
d3x

1

|x|
φ∗µ(x)φµ′(x) ,

where α = 1, β = 2 for µ′ = s and α = 4, β = 8 for µ′ = p and we have used the orthonormality of the

hydrogen wavefunctions. We just have to compute

∫
d3x

1

|x|
φ∗µ(x)φµ′(x) =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ

∫ ∞
0

dr rφ∗µ(r, θ, ϕ)φµ′(r, θ, ϕ)

=



1

πa3
0

∫ 2π

0

dϕ︸ ︷︷ ︸
=2π

∫ π

0

dθ sin θ︸ ︷︷ ︸
=2

∫ ∞
0

drre−2r/a0︸ ︷︷ ︸
=a20/4

, µ = µ′ = s

1

4
√

2πa4
0

∫ 2π

0

dϕ cosϕ︸ ︷︷ ︸
=0

∫ π

0

dθ sin2 θ︸ ︷︷ ︸
=π/2

∫ ∞
0

drr2e−3r/2a0︸ ︷︷ ︸
=16a30/27

, µ 6= µ′

1

32πa5
0

∫ 2π

0

dϕ cos2 ϕ︸ ︷︷ ︸
=π

∫ π

0

dθ sin3 θ︸ ︷︷ ︸
=4/3

∫ ∞
0

drr3e−r/a0︸ ︷︷ ︸
=6a40

, µ = µ′ = p

=



1

a0
, µ = µ′ = s

0 , µ 6= µ′

1

4a0
, µ = µ′ = p

.

We recognise this to give us the result in eq. (1.2).

3.2 On-site repulsion U

To calculate U , we use the fact that we can express 1/|x− y| in terms of a sum of spherical harmonics:

denoting x = (r, θ, φ) and y = (r′, θ′, φ′), and defining r< = min(r, r′) and r> = max(r, r′),

1

|x− y|
=

∞∑
l=0

l∑
m=−l

4π

2l + 1

rl<
rl+1
>

Y ∗lm(θ, φ)Ylm(θ′, φ′) .

75



Chapter 6 Hydrogen calculations

Inserting this expansion in the expression for uµ,

uµ =
q2

8πε0

∞∑
l=0

l∑
m=−l

4π

2l + 1

∫
d3x

∫
d3y |φµ(x)|2|φµ(y)|2

rl<
rl+1
>

Y ∗lm(θ, φ)Ylm(θ′, φ′)

=
q2

2ε0

∞∑
l=0

l∑
m=−l

1

2l + 1

∫ ∞
0

drr2|φµ(r)|2
∫ ∞

0

dr′r′2|φµ(r′)|2
rl<
rl+1
>

∫
dΩ Y ∗lm(θ, φ)

∫
dΩ′ Ylm(θ′, φ′)

=

√
πq2

4ε0

∞∑
l=0

l∑
m=−l

1

2l + 1

∫ ∞
0

drr2|φµ(r)|2
∫ ∞

0

dr′r′2|φµ(r′)|2
rl<
rl+1
>

∫
dΩ′ Y00(θ, φ) Y ∗lm(θ, φ)︸ ︷︷ ︸

=δl0δm0

∫
dΩ Ylm(θ′, φ′)

=

√
πq2

ε0

∫ ∞
0

drr2|φµ(r)|2
∫ ∞

0

dr′r′2|φµ(r′)|2 1

r>

∫
dΩ Y00(θ′, φ′)︸ ︷︷ ︸

=2
√
π

=
2πq2

ε0

∫ ∞
0

drr2|φµ(r)|2
∫ ∞

0

dr′r′2|φµ(r′)|2 1

r>
.

For µ = s we can calculate this explicitly:

us =
2πq2

ε0
× 1

π2a6
0

∫ ∞
0

drr2e−2r/a0

∫ ∞
0

dr′r′2e−2r′/a0
1

r>

=
2q2

πε0a6
0

(∫ ∞
0

dr

∫ r

0

dr′ r′2re−2(r+r′)/a0︸ ︷︷ ︸
=5a50/256

+

∫ ∞
r

dr′
∫ ∞

0

dr r2r′e−2(r+r′)/a0︸ ︷︷ ︸
=5a50/256

)
=

5εs
4
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