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Abstract

Quantum computers are able to solve certain problems quicker than a standard clas-
sical computer. This speedup is due to the development of a variety of efficient
quantum algorithms. In this dissertation we provide a detailed review of three of
the major, original quantum algorithms: Shor’s algorithm for factoring, Grover’s
algorithm for search and quantum simulation. We also outline some alternative al-
gorithms which have emerged from more modern research. For each procedure we
discuss their performance, current and potential applications.
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Chapter 1

Introduction

“I think I can safely say that nobody understands quantum mechanics”

- Richard Feynman

1.1 A brief history of quantum computing

The theory of quantum mechanics and all its intricacies has both intrigued and con-
fused generations of physicists for over a century. Early observations and concepts
devised by the likes of Thomas Young (wave nature of light), Max Planck (quanti-
sation of electromagnetic radiation), Niels Bohr (model of the hydrogen atom) and
Albert Einstein (photoelectric effect and the particle nature of light) set the founda-
tions.

The 1920s saw the emergence of the now standard formulation of quantum mechan-
ics [1]. Legendary scientists such as Werner Heisenberg, Max Born, Pascual Jordan,
Erwin Schrodinger, David Hilbert, Paul Dirac and John van Neumann made their im-
print, solidifying the mathematical framework still studied and applied to this day.

Just a decade later, the building blocks for modern computer science were being laid
into place. In 1936, Alan Turing revealed his groundbreaking Turing Machine (TM),
an abstract, idealised computing model [2]. It consists of a tape of infinite length
divided into cells, each one either blank or containing a finite set of symbols (e.g. 0,
1). The control unit controls a head, which moves across the tape, reading and writ-
ing symbols in cells. The particular operation performed by the head is determined
by a set of instructions; these consider the contents of the cell being scanned, as well
as the current ‘internal state’ of the machine.

Although incredibly simple, Turing showed that for any computable problem, a TM
could be constructed to solve it. His noteworthy paper also introduced the concept
of a universal Turing machine; “a single machine which can be used to compute
any computable sequence.” Essentially, a universal Turing machine (UTM) is able
to simulate any other TM. This finding is widely credited for inspiring the birth of
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1.1. A BRIEF HISTORY OF QUANTUM COMPUTING Chapter 1. Introduction

Figure 1.1: A simple 3-state, 3 symbol Turing machine. With the initial state and head
position shown in the diagram, this Turing machine program simply adds 1 to the initial
binary number on the tape. In this case, it will change 01001 to 01010 (9 to 10).

some of the first modern computers [3], most notably the stored-program computer
devised by von Neumann [4]. Turing also showed that the Entscheidungsproblem
(decision problem) was incomputable [2], hence demonstrating the existence of lim-
its of computation. Although purely conceptual machines, these models continue to
play a major role in modern research, in particular computational complexity theory.

The marriage between quantum mechanics and computation was sealed in 1980,
when Paul Benioff constructed the first quantum mechanical model of Turing ma-
chines. The quantum Turing machine (QTM) is conceptually very similar to the
original model; just with the set of internal states replaced by states in a Hilbert
space.

In his 1980 paper [5], Benioff represents the tape with a lattice of quantum spin
systems. Both the symbols and states are in one-to-one correspondence with the
set of possible spin projections of the spin systems. Finally, the simple transition
function from the classical TM is replaced by a set of unitary operators, which are
automorphisms of the Hilbert space. Benioff’s work was significant as he proved
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Chapter 1. Introduction 1.2. CLASSICAL ALGORITHMS

the feasibility of reversible quantum computing (reversibility is required due to the
nature of physical systems), which was the catalyst for the field to really emerge.

Feynman was the next to contribute; in a 1982 lecture [6] he demonstrated that it
is impossible to simulate quantum systems on a classical computer. Feynman made
use of a simple two-photon correlation experiment to show that ‘hidden variables’
could not be used to reproduce quantum mechanical results with a classical device
- essentially a proof of Bell’s theorem [7]. He also theorised a universal quantum
simulator which, after applying some approximations, could simulate any quantum
system.

David Deutsch followed with his breakthrough paper in 1985 [8], in which he pre-
sented the first real universal quantum computer. This was a quantum equivalent to
the UTM; a universal quantum computer can simulate all other quantum computers.
The paper’s significance does not end there; Deutsch also made significant contribu-
tions to the development of quantum complexity theory and quantum algorithms, as
will be explained in the following chapters.

Finally, Peter Shor blew the field of quantum computing open in 1994, with his
invention of a quantum algorithm that could factor large integers rapidly [9]. If a
suitable large-scale quantum computer could be constructed to apply this algorithm,
public-key cryptography systems such as RSA would be under severe threat. This
discovery was the trigger for the explosion of quantum computing, and twenty-seven
years on it is still a burgeoning area of study, with more questions than answers.

1.2 Classical algorithms

Algorithm

A step-by-step procedure for solving a problem or accomplishing some end.

- Merriam-Webster.com Dictionary [10]

From solving a Rubik’s cube to baking cupcakes, following algorithms has become a
natural part of our lives. However, they are most synonymous with computer pro-
grams, and society’s dependence on the internet has made them impossible to avoid
in the 21st century. A computer algorithm starts in some initial state and takes in
input: perhaps a word, sentence, set of numbers or a key. It then executes a finite,
precise series of steps, designed to solve some problem or perform a task, before
producing an output. There are often conditional steps and some loops, but as long
as the program terminates in finite time, it can be considered an algorithm.

Despite following the same basic paradigms, algorithms range in their sophistica-
tion, from the relatively primitive Euclidean algorithm detailed below, to the multi-
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1.3. THE POWER OF QUANTUM Chapter 1. Introduction

layered, complicated and somewhat controversial algorithms used to keep Facebook
feeds tailored to each user’s tastes. Classifying algorithms is another task. We may
choose to classify them by type of problem (e.g. search, sort, graph, numerical),
complexity (see Chapter 3) or even method of approach. Some algorithms rely on
a ‘brute-force’ approach with the aim to test every possible solution; some split the
problem into chunks and solve each subproblem separately, while others rely on re-
cursion to meander towards an outcome.

Algorithm 1 Euclidean algorithm for finding the highest common factor (HCF) of 2
numbers. Named after the great Euclid, who originally described the procedure in
300 BC.

1: procedure EUCLID’S ALGORITHM FOR FINDING THE HCF OF 2 NUMBERS(a,b)
2: while b 6= 0 do
3: if a > b then
4: a← a− b
5: else
6: b← b− a
7: end if
8: end while
9: return a

10: end procedure

1.3 The power of quantum

Quantum algorithms are simply algorithms that run on any realistic model of quan-
tum computation [11]. The most common model is the quantum circuit model,
where each program is carried out via a sequence of quantum gates; see Section 2.1
for a full breakdown. The power of these algorithms comes from the properties of
quantum mechanics which they exploit: superposition, entanglement, interference
and coherence. These key principles give quantum algorithms a speed and capacity
that classical algorithms cannot match for many different tasks.

1.3.1 Superposition and bits vs qubits

Take an ordinary coin sitting on a table. Its ‘state’ is either ‘Heads’ (0) or ‘Tails’
(1). Now imagine spinning this coin so quickly that it becomes a blur of motion:
this is our ‘quantum coin’, which is in a superposition of both states simultaneously.
Similarly, bits, the most fundamental unit of information in classical computing, can
only be in the states 0 or 1. Meanwhile, a quantum bit, or qubit, can be in either of
the basis states |0〉 or |1〉, or a superposition of both states:

|ψ〉 = α |0〉+ β |1〉 . (1.1)
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Chapter 1. Introduction 1.3. THE POWER OF QUANTUM

Here, α and β are complex amplitudes. When a measurement of the qubit is made,
the state collapses into a basis state; either |0〉 with probability α2 or |1〉 with proba-
bility β2. A qubit can take on any superposition state with the condition α2 +β2 = 1.
This extends to multiple qubits: a pair of qubits can exist in a superposition of all
four basis states:

|Ψ〉 = α1 |00〉+ α2 |01〉+ α3 |10〉+ α4 |11〉 , (1.2)

and measurement again collapses the superposition state into one of the basis states.
Qubits can be realized physically as any two-state quantum-mechanical system. Ex-
amples of this are the two polarisations of a photon (horizontal and vertical), two
spins of an electron (spin-up and spin-down), and two electronic levels in an atom
(ground and excited states).

Generalising to n qubits, 2n basis states can be represented simultaneously. With just
500 qubits, we can represent more states in superposition than the estimated number
of atoms in the universe [12]. Hence it is easy to envision the enormous potential
of quantum computing; having several qubits in superposition vastly increases the
capacity for simultaneous calculations.

1.3.2 Quantum entanglement

Quantum entanglement, or as Einstein dubbed it, “spooky action at a distance” is a
startling phenomenon. It occurs when the quantum state of two or more particles
are correlated, no matter the distance between them. For an entangled pair, mea-
suring properties of one particle, e.g. position, momentum or spin, immediately tells
you the corresponding property of the other.

The instantaneity of this process troubled Einstein, who published a paper with
Podolsky and Rosen discussing the ‘EPR paradox’ [13]. They suggested a local hid-
den variable theory as a reason: unknown properties not incorporated into quantum
theory, implying incompleteness within quantum mechanics.

However, this theory was subsequently quashed by John Stewart Bell [7]. He demon-
strated that a hidden variable theory only agrees with quantum physics if these vari-
ables are non-local, i.e. associated with both halves of an entangled pair. Bell’s
theorem has been validated by numerous experiments, proving beyond doubt that
no sort of transmission of information between particles takes place.

It is useful to outline a mathematical framework here. A pure state can be written
as a state vector |ψ〉. For a composite Hilbert space HA ⊗ HB, a separable state can
be written as a tensor product of two pure states:

|ψ〉A ⊗ |ψ〉B . (1.3)

If a 2-qubit state cannot be written in this form, it is an entangled state. The most
famous examples are the maximally entangled Bell states:

5



1.3. THE POWER OF QUANTUM Chapter 1. Introduction

∣∣Φ±〉
AB

=
1√
2

(|0〉A ⊗ |0〉B ± |1〉A ⊗ |1〉B)∣∣Ψ±〉
AB

=
1√
2

(|0〉A ⊗ |1〉B ± |1〉A ⊗ |0〉B).
(1.4)

It is clear to see that a measurement of the 1st qubit provides immediate knowledge
of the value of the 2nd. Moving onto mixed states, we can define a density matrix:

ρ̂ =
∑
i

pi |ψi〉 〈ψi| (1.5)

ρ̂ is Hermitian, has unit trace and is a positive semi-definite operator: 〈φ|ρ̂|φ〉 ≥ 0.
If ρ̂ has a single eigenvalue, it represents a pure state |ψ〉 〈ψ|, else it is a mixed state
with

∑
i pi = 1. A defining condition for a pure state is

ρ̂2 = ρ̂. (1.6)

Analogous to the form for separable pure states, a bipartite system in a mixed state
is separable when it can be written in this form:

ρ̂ =
∑
i

piρ̂A,iρ̂B,i. (1.7)

If the partial transpose of the density matrix ρ̂PT is negative, then the system is
entangled; the level of negativity is a measure of entanglement [14].

1.3.3 Interference, coherence and decoherence

Linked to the properties explained above are the concepts of quantum interference
and coherence. Young’s famous double-slit experiment shows quantum interference
in action. Light passes through the two slits before the waves interfere, producing an
interference pattern with dark and light regions, due to constructive and destructive
interference respectively. Mathematically, the wavefunction of this system can be
written as a superposition of the contributions from each slit:

Ψ(x, t) = ΨA(x, t) + ΨB(x, t) (1.8)

Hence, the probability of a photon being found at position x is given by:

P (x) = |Ψ(x, t)|2 = |ΨA(x, t)|2 + |ΨB(x, t)|2 + Ψ∗A(x, t)ΨB(x, t) + Ψ∗B(x, t)ΨA(x, t)
(1.9)

The final two terms are the quantum interference terms, which could be positive or
negative depending on whether there is constructive or destructive interference.

A system’s state is coherent when it can be described by a distinct set of complex
numbers, one for each of its basis states [15]. It is the property which facilitates
quantum interference; a system remains coherent as long as there is a definite phase
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Chapter 1. Introduction 1.4. OUTLINE OF THE DISSERTATION

relation between states. Maintaining coherence is vital for prolonging the runtime
of quantum computers. When the qubits are not perfectly isolated, they interact and
entangle with the environment, before rapidly falling out of their quantum states.
Decoherence destroys any superposition or entanglement between qubits: quantum
information is lost to the surroundings.

Quantum error correction is a valuable weapon in the fight against decoherence; we
will not discuss it here but Chapter 10 of Nielsen and Chuang’s textbook [12] has a
great introduction to this area.

1.4 Outline of the dissertation

In Chapter 2, we will review several models of quantum computing and some further
preliminaries. Chapter 3 sees the introduction of the subject of Quantum Complexity
Theory, as well as a breakdown of the Deutsch-Jozsa algorithm. In Chapter 4, we
dive into Shor’s algorithm for factoring, which also provides a scheme for solving
the discrete logarithm problem. Chapter 5 includes a review of Grover’s algorithm
and its applications. The different schemes for quantum simulation and its fields of
application are surveyed in Chapter 6. In Chapter 7, we discuss some more modern
algorithms, including quantum walks, the HHL algorithm, adiabatic, and variational
quantum algorithms. This chapter also covers a potential algorithm unification pro-
cedure.

7



Chapter 2

Models of quantum computation

Model of computation

A formal, abstract definition of a computer. Using a model one can more
easily analyze the intrinsic execution time or memory space of an algorithm
while ignoring many implementation issues.

- Paul E. Black [16]

Just as there are for classical computers (e.g. Turing machines, random-access ma-
chines, cellular automation), there are also several models for quantum computa-
tion. Each model has a different way of computing the output of a function from
an input. We have already discussed the quantum Turing machine, but similarly to
its classical counterpart, this model is not physically realisable. Four models which
are in widespread use today are the quantum circuit, one-way quantum computer,
topological quantum computer and adiabatic quantum computer.

2.1 Quantum circuits

2.1.1 Classical circuits

Before diving into quantum circuits, it is useful to know the basics about their clas-
sical equivalents. A key component of classical machines is the silicon chip, or in-
tegrated circuit (IC). Digital ICs are packed with transistors that communicate via
digital, binary electrical signals [15]. These transistors make up logic gates; elec-
tronic devices which implement Boolean functions:

f : {0, 1}n → {0, 1}. (2.1)

Classical circuits are built from a series of these logic gates; the Boolean functions
take in an n-bit input and eject a single binary output. The primitive Boolean oper-
ations are summarised in Table 2.1; note that the NOT gate is a 1-bit gate while the

8



Chapter 2. Models of quantum computation 2.1. QUANTUM CIRCUITS

others operate on 2 inputs to produce 1 output.

Name Symbol Operation

NOT (¬) Inverts the input (0↔ 1)

AND (∧)
Outputs 1 only if both

inputs are 1

OR (∨)
Outputs 1 if either input is

1

NAND (↑) Outputs 0 only if both
inputs are 1

NOR (↓) Outputs 0 if either input is
1

XOR (Y)
Outputs 1 if the two inputs

are different

XNOR (�)
Outputs 0 if the two inputs

are different

Table 2.1: Elementary logic gates

The three most basic gates, AND, OR and NOT, can be used to implement all possible
Boolean functions. It is also possible to combine the AND and NOT gates to produce
the OR function, likewise the OR and NOT gates can create the AND gate. Hence
the sets {AND, NOT} and {OR, NOT} are known as universal gate sets; they form
a complete set of logic. It has also been proven that the single gate sets NAND and
NOR also form universal gate sets.

2.1.2 Reversible computation

Apart from the NOT gate, all the primitive logic gates detailed in Table 2.1 are irre-
versible, i.e. it is impossible to determine the inputs from the output. For example, if

9



2.1. QUANTUM CIRCUITS Chapter 2. Models of quantum computation

Figure 2.1: Toffoli, or Controlled-Controlled-Not gate. This gate flips the third bit only
if the first two bits are 1.

the output of the OR gate is 1, the inputs could be {0,1}, {1,0} or {1,1} - information
has been lost. Hence a reversible gate must be a bijective function:

f : {0, 1}n → {0, 1}n. (2.2)

In 1973, Charles Bennett made the important discovery that classical computation
could be made reversible [17]. This was followed in 1980 by the proposal of the Tof-
foli gate by Tommaso Toffoli (Figure 2.1). This 3-bit reversible gate is also universal,
proving that all classical computing can be done using reversible gates.

2.1.3 Quantum gates

By comparison, quantum gates are always reversible, since the laws of quantum me-
chanics does not allow for energy dissipation [15]. Hence quantum gates are unitary
transformations that map the Hilbert space of n qubits onto itself. In analogy to clas-
sical circuits, these gates are combined to build quantum circuits.

It is also important to note that any reversible classical gate can also be implemented
on a quantum computer. This includes the aforementioned Toffoli gate, and by na-
ture of its universality, all classical computations can be performed on a quantum
machine.

Quantum gates that act on n qubits are represented by a 2n × 2n unitary matrix. As
for classical circuits, the most common gates work on 1 or 2 qubits. Hence any single
qubit gate is a 2 × 2 matrix, and it is useful to note that any 2 × 2 matrix M can be
written as [14]:

M = a01+
∑
i=x,y,z

aiσ̂i, (2.3)

where a0 = 1
2
TrM and ai = 1

2
Tr(Mσ̂i). It is clear to see that any single qubit gate can

be written as a linear superposition of Pauli operators.

2-qubit gates have a control qubit and target qubit; e.g. the Controlled-Not (CNOT)
gate only flips the second (target) qubit if the first (control) qubit is |1〉. Hence the
CNOT gate is the quantum generalisation of the classical XOR gate. Some basic gates
are detailed in Table 2.2, as well as their action on the basis states |0〉 and |1〉.

10



Chapter 2. Models of quantum computation 2.1. QUANTUM CIRCUITS

Name Circuit Matrix Operation
Pauli-X

(Quantum
NOT)

(
0 1
1 0

)
σx|0〉 = |1〉
σx|1〉 = |0〉

Pauli-Y
(

0 −i
i 0

)
σy|0〉 = i|1〉
σy|1〉 = -i|0〉

Pauli-Z
(

1 0
0 −1

)
σz|0〉 = |0〉
σz|1〉 = -|1〉

Hadamard 1√
2

(
1 1
1 −1

) H|0〉 = |0〉+|1〉√
2

(|+〉)
H|1〉 = |0〉−|1〉√

2
(|−〉)

Phase shift
(

1 0
0 eiφ

)
Rφ|0〉 = |0〉

Rφ|1〉 = eiφ |1〉

CNOT


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


UCN |00〉 = |00〉
UCN |01〉 = |01〉
UCN |10〉 = |11〉
UCN |11〉 = |10〉

SWAP


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


SWAP|00〉 = |00〉
SWAP|01〉 = |10〉
SWAP|10〉 = |01〉
SWAP|11〉 = |11〉

Controlled-
phase


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ


UCφ|00〉 = |00〉
UCφ|01〉 = |01〉
UCφ|10〉 = |10〉

UCφ|11〉 = eiφ |11〉

Table 2.2: Elementary quantum gates

Circuit computations are often completed with a measurement. As we touched on
in Section 1.3.1, measurements probabilistically collapse a quantum state into one
of the basis states. This is an irreversible process, hence it is not a quantum gate;
however it can still be represented in quantum circuits as in Figure 2.2.

It is important to note that the quantum circuit is computationally equivalent to the
quantum Turing machine. This means that the former can simulate the latter with
only polynomial overhead (number of qubits and computational steps).

11



2.1. QUANTUM CIRCUITS Chapter 2. Models of quantum computation

Figure 2.2: Representation of measurement in a quantum circuit

2.1.4 Universal quantum gates and the Solovay-Kitaev theorem

In analogy with classical universality, a set of quantum gates is universal if any quan-
tum operation can be executed using a finite sequence of gates from this set. Again,
there are many different universal gate sets; a common example is the ‘Clifford +
T’ set. This includes the CNOT, Hadamard, S and T gates (the latter two are both
phase shift gates with φ = π

2
and π

4
for S and T respectively).

In general, a universal quantum gate can be made by combining arbitrary single-
qubit gates with a CNOT gate, or any other two-qubit controlled gate. The three-
qubit Deutsch gate (Dφ) makes up its own single-gate set of universal quantum gates.
It is conceptually similar to the Toffoli gate:

|a, b, c〉 7→

{
i cos θ |a, b, c〉+ sin θ |a, b, 1⊕ c〉 if a = b = 1
|a, b, c〉 otherwise

(2.4)

In fact, the Toffoli gate is equivalent to D(π/2), another demonstration that all clas-
sical computations can be done on a quantum computer.

There is a caveat which arises from the theoretically infinite number of possible
quantum operations, compared to the countable number of gate sequences achiev-
able from a finite set of gates. This suggests that, by strict definition, a universal
set of quantum gates does not exist. This issue is overcome by requiring a universal
set to have the ability to merely approximate any quantum operation, rather than
simulate it in full.

The Solovay-Kitaev (SK) theorem ensures that this approximation can be done effi-
ciently. This fundamental theorem demonstrates that if a set of single-qubit quan-
tum gates generates a dense subset of SU(2), then this set is guaranteed to fill SU(2)
quickly [18]. In other words, any quantum operation can be approximated using
unexpectedly short sequences of gates from a universal set.

The SK theorem is significant when one is restricted in the gates that can be used in
computations. For example, a requirement for fault-tolerant quantum computation
may restrict you to a small gate set, whereas a more complex algorithm (e.g. Shor’s)
may require a wider variety of gates. This theorem shows that this limited set can be
used to build up all the gates in Shor’s algorithm, maintaining algorithmic efficiency
while meeting conditions for fault tolerance.
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2.2 Other models

2.2.1 Adiabatic quantum computation

Rather than employing a finite set of gate operations, adiabatic quantum comput-
ing (AQC) involves the evolution of an initial Hamiltonian into a final Hamiltonian,
whose ground state encodes the solution. This model relies on the adiabatic theo-
rem, first conjectured by Max Born and Vladimir Fock [19]:

“A physical system remains in its instantaneous eigenstate if a given per-
turbation is acting on it slowly enough and if there is a gap between the
eigenvalue and the rest of the Hamiltonian’s spectrum.”

- Born and Fock, 1928

To perform computations using AQC, 2 Hamiltonians are prepared: a problem Hamil-
tonian HP , whose ground state encodes the solution, and an initial Hamiltonian HB,
specifically chosen so that its ground state is easy to find. Having prepared a set of
qubits in this initial ground state, the system evolves via the Schrodinger equation
with the following Hamiltonian:

H(t) =

(
1− t

T

)
HB +

t

T
HP , (2.5)

where T represents the total evolution time. As long as this Hamiltonian evolves
slowly enough, and there is a nonzero energy gap between the ground and first
excited states at all times, the system remains in the ground state throughout the
evolution. Hence, the adiabatic theorem ensures that the final state holds the solu-
tion. Defining the minimum energy gap during the evolution as gmin, the theorem
dictates that the size of T is governed by g−2

min [20].

With a suitable choice of Hamiltonians, AQC can been shown to be polynomially
equivalent to the quantum circuit model [15].

2.2.2 Quantum annealing

The idealistic nature of AQC makes it difficult to implement physically. For example,
a truly adiabatic computation would run in perfect isolation, with no interference
from the environment. Relaxing the adiabatic condition leads to the quantum an-
nealing (QA) model.

QA is a method for finding the global minimum of an objective function (e.g. a
potential energy function), and it works in a similar way to AQC. Again, there is
an initial and a problem Hamiltonian, and the idea is to evolve the system from
the ground state of the former to the latter. The idea behind QA is to search the
space of potential solutions before driving the system towards the energy minimum.
Compared to classical, or simulated annealing, which relies on thermal fluctuations
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Figure 2.3: Quantum tunneling through barriers provide a more effective way of
traversing the energy landscape compared to thermal jumps [21].

to ‘jump’ over barriers, QA can exploit quantum tunnelling to explore the solution
space more efficiently (see Figure 2.3).

D-Wave systems are considered pioneers in quantum annealing, having produced
several commercial annealers throughout the last decade. An example Hamiltonian
used by the D-Wave system is [22]:

Hising = −A(s)

2

(∑
i

σ̂(i)
x

)
+
B(s)

2

(∑
i

hiσ̂
(i)
z +

∑
i>j

Ji,jσ̂
(i)
z σ̂

(j)
z

)
, (2.6)

hi and Ji,j represent the strength of each qubit’s coupling to the external field and
to each other via entanglement. s = t/T is the normalised anneal fraction, going
from 0 to 1 as the anneal progresses. At t = 0, A(0) � B(0), so the initial ground
state is easily initialisable, with each spin delocalised. Over time, A decreases while
B increases, until the end where B(1) � A(1): at this point, the system resembles
the classical Ising spin system:

Eising =
∑
i

hisi +
∑
i>j

Ji,jsisj. (2.7)

14



Chapter 2. Models of quantum computation 2.2. OTHER MODELS

Unlike AQC, QA is not equivalent to the quantum circuit model. Quantum annealers
cannot perform procedures such as Shor’s algorithm; rather they are limited to com-
binatorial optimisation problems. QA has a major upside over other models since
it can operate in a realistic, energy-dissipative regime. Decoherence does not have
an adverse effect on the performance of QA or AQC, hence quantum annealers have
proven to be much easier to scale.

2.2.3 Measurement based quantum computation

Unlike other quantum computing models, there is no classical analogue of measure-
ment based quantum computation (MBQC). Other models such as quantum circuits
utilise measurement only as a final step in the computation, whereas MBQC also
includes them for intermediate steps. In general, an initial entangled state of qubits
is prepared, and computations are performed by applying certain measurements to
designated qubits in designated bases [23].

There are two main MBQC schemes: teleportation quantum computation and the
one-way quantum computer. The former employs Bell measurements across multi-
ple qubits, with an initial state containing bipartite entangled pairs. Meanwhile the
latter uses single-qubit measurements, and an initial cluster state with many entan-
gled qubits. More details on both schemes can be found in [23]. Again, MBQC is
computationally equivalent to the quantum circuit model.

2.2.4 Topological quantum computing

We have already encountered how noise and decoherence can be a hindrance to
qubit stability in quantum computing. Topological quantum computing aims to ad-
dress this issue by using anyons; two-dimensional quasiparticles with peculiar prop-
erties. Bosons and fermions are characterised by their wavefunctions being symmet-
ric or antisymmetric under identical particle exchange:

|ψ1ψ2〉 = ± |ψ2ψ1〉 . (2.8)

Meanwhile, for anyons, the wavefunction may be neither symmetric nor antisym-
metric after particle exchange:

|ψ1ψ2〉 = e2πθi |ψ2ψ1〉 . (2.9)

This exchange of anyons is called braiding, and these braids form the logic gates
used for computation. These quantum braids are much more resilient than standard
quantum particles. Information is not lost as easily, since small perturbations which
cause qubit decoherence do not affect the topological properties of the braids.

In this model, qubits are initialised as anyons, before braiding is done to perform
quantum gate operations. Finally, the anyons are brought together (fused), and the
fusion outcomes are measured to determine the output of the computation [24].
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Topological quantum computation is also computationally equivalent to the quan-
tum circuit model.
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Chapter 3

Quantum complexity theory

3.1 Church-Turing-Deutsch principle

Another major result to come out of Deutsch’s landmark 1985 paper [8] is the formu-
lation of the Church-Turing-Deutsch principle. This is a stronger form of the original
Church-Turing thesis conjectured by Turing and Alonzo Church in 1936. This is a
statement used to formalise the idea of computability:

Church-Turing thesis

Every ‘function which would naturally be regarded as computable’ can be com-
puted by the universal Turing machine.

Over the years there have been several updates or variations to this original thesis.
In the 1970s, the thesis was strengthened to include the word ‘efficiently’: any al-
gorithm can be simulated by a TM with polynomial overhead. The type of Turing
machine was then specified as ‘probabilistic’, after it was realised that randomised
algorithms could efficiently solve problems inaccessible to a standard deterministic
program.

Deutsch was dissatisfied with all these formulations, as they lacked both the preci-
sion and physical foundation present in principles such as the law of thermodynam-
ics. The physical version of the thesis, now known as the Church-Turing-Deutsch
principle, is as follows:

Church-Turing-Deutsch principle

Every finitely realizable physical system can be perfectly simulated by a uni-
versal model computing machine operating by finite means [8].

This principle, which refers to simulating real physical processes, is strong. So strong
in fact, that Turing machines do not satisfy this principle for classical physics. This
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is because the states of a classical system form a continuum, whereas there are only
countably many ways of preparing a finite input for a TM [8]. However, the uni-
versal quantum computer, based on the principles of quantum mechanics, is able to
simulate any physical system with a finite-dimensional state space.

Proving this principle is satisfied in nature is one of the major open problems within
quantum computing. Until the dynamics of the universe are understood better, it
remains a possibility that a physical theory may emerge that cannot be simulated by
a universal device.

On the other hand, assuming that the Church-Turing-Deutsch principle holds, we can
use it to guide the formulation of new physical theories. This is similar to how prin-
ciples such as the conservation of energy principle have been used: any proposed
new theory which does not satisfy an energy conservation law is usually rejected
immediately.

We will discuss various examples of quantum simulation of physical systems in Chap-
ter 6. As physical implementations of quantum computers continue to scale, our
capacity to prove that particular theories can be simulated will be augmented. Thus,
the hope is that the Church-Turing-Deutsch principle will become corroborated, and
ultimately turned into a key guiding principle within physics research.

3.2 Quantum supremacy

It is illogical to design quantum algorithms without serious thought about their util-
ity and necessity. Until quantum computers become mainstream, we must be se-
lective about the tasks which we choose to tackle with these machines. Classical
algorithms that solve a substantial volume and variety of problems already exist.
Many of these perform so efficiently that searching for an improved algorithm is a
rather pointless task.

What designers must search for are quantum algorithms which offer significant ad-
vantages over their classical counterparts. One of the major milestones that quantum
computing researchers have been working towards is the demonstration of quantum
supremacy. This is the goal of exhibiting a quantum computer’s ability to solve a
problem which no classical machine can solve in a reasonable amount of time. Al-
though the concept of seeking quantum advantage has existed since the dawn of
quantum computing, the term ‘quantum supremacy’ was introduced by John Preskill
in 2012 [25].

Achieving this objective is a difficult task. Not only must a powerful quantum com-
puter be constructed, but a suitable problem must be found, one which a quantum
computer possesses an overwhelming advantage over the most powerful supercom-
puters. Google finally reached this benchmark in 2019 with their 53-qubit Sycamore
quantum processor. Google’s computer performed a random quantum circuit sam-
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pling experiment in 200 seconds; a state-of-the-art supercomputer is estimated to
take 10,000 years to do the same task [26].

There are some caveats with this seemingly groundbreaking discovery. Firstly, IBM
disputed Google’s claim of quantum supremacy, as they believed that their super-
computer ‘Summit’ could actually do the calculation in just 2.5 days rather than
10,000 years. Furthermore, some scientists dispute the real significance of achieving
this goal. The task which Google performed has little-to-no practical use: achieving
quantum supremacy was simply a scientific goal which piqued the interest of the
media and quantum enthusiasts.

There is also the possibility of classical supercomputers and algorithms improving in
the future, suggesting that quantum supremacy may be only a temporary achieve-
ment. Experiments continue to be proposed and carried out to demonstrate quan-
tum supremacy (e.g. [27]); this will prove to be a defining concept in quantum
complexity theory for the foreseeable future.

3.3 Computational complexity

3.3.1 Computational problems

It is important to be able to classify and compare problems based on their difficulty.
A ‘difficult’ problem requires a substantial number of resources (for computational
complexity, time and space/memory) to find its solution.

Each computational problem has an input, known as an instance, and an output,
or solution. For example, a sorting problem may have an instance (8, 4, 6, 3, 7) and
an output of (3, 4, 6, 7, 8). These instances are usually encoded as binary strings, al-
though when dealing with graph problems an adjacency matrix is used instead.

There are several types of problems we could assess while studying computational
complexity theory, but the most commonly used are decision problems - any problem
with a yes or no answer. Essentially, an input string is fed into an algorithm which
either accepts (outputs yes/1) or rejects (outputs no/0) the input. The algorithm is
deciding whether the input is a member of a certain language - e.g. ‘Is this number
a prime?’.

Going further, it is helpful to define promise problems, a central concept in this
subject. These are a generalisation of decision problems, where the input is assumed
to be taken from a subset of all possible inputs. These problems can be written as
a pair A = (Ayes, Ano), where Ayes and Ano represent the set of yes-instances and
no-instances. These sets of strings satisfy Ayes ∩ Ano = ∅ [28].
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3.3.2 Big O notation

Before diving into the details of complexity theory we must introduce some math-
ematical notation. Big O, or asymptotic notation is a tool used to classify functions
or algorithms based on their growth rate as a function of input size. Its formal
definition is as follows:

Big O

Define functions f, g : N→ R.
f(n) = O(g(n)) if ∃ a ∈ R+

∗ , ∃ n0 ∈ R | f(n) ≤ ag(n) ∀ n > n0

In other words, g(n) is an upper bound on f(n) as n becomes very large. This means
that we can make simplifications when analysing functions: only the highest expo-
nent needs to be considered, and any constant factors can be ignored. To illustrate
this, take f(n) = log n + 3n5 + 12n3. The highest exponent is n5, so ignoring other
terms and dropping the constant, we can write f(n) = O(n5). This notation is very
useful when studying worst-case behaviour of algorithms [12].

Notation Name Example problem
O(1) Constant Calculating (−1)n

O(log n) Logarithmic Binary search
O(n) Linear Linear search

O(n log n) Linearithmic Merge sort
O(n2) Quadratic Bubble sort
O(nc) Polynomial AKS primality test

O(cn) Exponential
Traveling salesman problem using dynamic

programming

O(n!) Factorial
Traveling salesman problem using

brute-force search

Table 3.1: Common classes of functions, c is a positive constant.

Big O is actually a member of a family of asymptotic notations called Bachmann-
Landau notations, named after two of their inventors. We summarise this family in
Table 3.2.

3.3.3 Computational complexity classes

Sets of computational problems with similar complexity are grouped into complexity
classes. To define these classes we need three components; a type of problem (e.g.
decision), a model of computation and a computational resource (time or space).
For classical computing the Turing machine is used as the model of computation.
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Name Notation Definition
Description

(Asymptotically)

Big O
f(n) =
O(g(n))

∃ a > 0, ∃ n0 | ∀ n > n0,
f(n) ≤ ag(n)

f is bounded above
by g

Big Omega
f(n) =
Ω(g(n))

∃ a > 0, ∃ n0 | ∀ n > n0,
f(n) ≥ ag(n)

f is bounded below
by g

Big Theta
f(n) =
Θ(g(n))

∃ a, b > 0, ∃ n0 | ∀ n > n0,
ag(n) ≤ f(n) ≤ bg(n)

f is bounded above
and below by g

Small O
f(n) =
o(g(n))

∀ a > 0, ∃ n0 | ∀ n > n0,
f(n) ≤ ag(n)

f is dominated by g

Small Omega
f(n) =
ω(g(n))

∀ a > 0, ∃ n0 | ∀ n > n0,
f(n) ≥ ag(n)

f dominates g

On the order of f(n) ∼ (g(n))
∀ δ > 0, ∃ n0 | ∀ n > n0,∣∣∣f(n)

g(n)
− 1
∣∣∣ < δ

f is equal to g

Table 3.2: Bachmann-Landau notation. The final column describes the asymptotic be-
haviour of f as n→∞

The TM may be deterministic (one possible action at each step), nondeterministic
(several possible actions) or probabilistic (action is determined randomly according
to some probability distribution). We also use an abstract notion of time (number of
steps the TM needs to solve a problem) and space (number of cells used on the TM’s
tape) for ease of comparison. For quantum computing either the QTM or quantum
circuit model may be used, as they are computationally equivalent.

For the latter, time is quantified by circuit depth, which is the number of time steps
required, or equivalently the maximum length of a path from input to output. Mean-
while, space is quantified by width; the maximum number of gates that act in any
one time step [29]. Some important complexity classes for classical and quantum
computation are detailed in Tables 3.3 and 3.4.

The P vs NP problem is one of the seven Millennium Prize problems, a key unre-
solved issue in computer science. Problems in NP can have their solutions quickly
verified (in polynomial time), while a problem in P can be solved quickly: the ques-
tion is whether P = NP.

This is related to the concepts of NP-hardness and NP-completeness. A problem A is
NP-hard if every problem in NP can be reduced to A in polynomial time: this prob-
lem is “at least as hard as the hardest problems in NP”. A caveat appears as NP-hard
problems need not to be in NP; an example of this is the halting problem, which
Turing proved to be undecidable [2]. NP-complete problems, such as the travelling
salesman problem, are both in NP and NP-hard.

Most researchers believe P 6= NP, which implies that it is impossible to find polyno-
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Class Informal definition Formal criteria

P

Problem can be solved by
a deterministic classical
computer in polynomial

time

Problem A for which a polynomial time
deterministic TM accepts/rejects all strings

in Ayes/Ano

NP

Solution can be checked
by a deterministic

classical computer OR
problem can be solved by

a nondeterministic
classical computer in

polynomial time

Problem A for which there exists a
polynomial function p and a polynomial

time deterministic TM M with the
following properties:

• For every string x ∈ Ayes, M accepts
(x, y) for some string y of length p(|x|)

• For every string x ∈ Ano, M rejects
(x, y) for all strings y of length p(|x|)

BPP

Problem can be solved by
a probabilistic classical
computer in polynomial

time

Problem A for which a polynomial time
probabilistic TM accepts all strings in Ayes
with probability at least 2/3, and accepts

all in strings in Ano with probability at
most 1/3

P-
SPACE

Problem can be solved by
a deterministic classical
computer in polynomial

space

Problem A for which a deterministic TM
running in polynomial space

accepts/rejects all strings in Ayes/Ano

Table 3.3: Useful classical complexity classes. All defined based on a promise problem
A = (Ayes, Ano). ‘Polynomial time’ means “in time polynomial in the input size” [30].
Table inspired by [28].

mial time solutions to NP-hard problems. However, if the contrary is proven to be
true, there would be grave consequences in areas such as cryptography, which relies
on certain problems such as 3-SAT being NP-complete.

Turning attention to the quantum complexity classes, BQP can be seen as the quan-
tum analogue to BPP. A decision problem is in BQP if there is a polynomial-time
quantum algorithm which solves it with a probability of at least 2/3. From the
definitions in Tables 3.3 and 3.4, it is clear to see the parallels between the P-NP
relationship in classical complexity, and the BQP-QMA relationship in quantum com-
plexity. There is also a similar notion of completeness for both BQP and QMA. The
k-local Hamiltonian problem (for k ≥ 2) is a notable example of a QMA-complete
problem.

Relationships between complexity classes are still to be resolved, due to unsolved
problems such as the aforementioned P vs NP issue. Since deterministic computers
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Class
Informal
definition

Formal criteria

BQP

Problem can be
solved by a

quantum
computer in

polynomial time

A ∈ BQP(a, b) iff, for functions a, b : N→ [0, 1], there
exists a polynomial-time generated family of quantum

circuits Q = {Qn : n ∈ N}, where each circuit Qn

takes in n input qubits and produces one output qubit,
with the following properties:

• If x ∈ Ayes then Pr[Q accepts x] ≥ a(|x|)

• If x ∈ Ano then Pr[Q accepts x] ≤ b(|x|)

Define BQP = BQP(2/3, 1/3)

QMA

Solution can be
checked by a

quantum
computer in

polynomial time

A ∈ QMAp(a, b) iff, for a polynomial function p and
functions a, b : N→ [0, 1], there exists a

polynomial-time generated family of quantum circuits
Q = {Qn : n ∈ N}, where each circuit Qn takes in

n+ p(n) input qubits and produces one output qubit,
with the following properties:

• For all x ∈ Ayes, there exists a p(|x|)-qubit quan-
tum state ρ such that Pr[Q accepts (x, ρ)]≥ a(|x|)

• For all x ∈ Ano and all p(|x|)-qubit quantum
states ρ it holds that Pr[Q accepts (x, ρ)] ≤ b(|x|)

Define QMA = ∪pQMAp(2/3, 1/3)

Table 3.4: BQP and QMA quantum complexity classes, defined based on a promise
problem A = (Ayes, Ano). Usually defined as BQP(2/3, 1/3) and QMA (2/3 ‘Polynomial
time’ means “in time polynomial in the input siz” [30]. Table inspired by [28].

are a special type of probabilistic machine, and quantum circuits are able to simulate
all classical circuits [12], we can say:

P ⊆ BPP ⊆ BQP. (3.1)

As we will see later, certain NP problems, such as integer factorisation can be solved
by quantum algorithms. Hence these problems are in BQP, though the relationship
between NP and BQP is still to be confirmed. Figure 3.1 visualises the suspected
relationship between selected classes with the current assumption that P 6= NP. Just
as P ⊆ NP, BQP ⊆ QMA; in fact, all problems in P, NP and BQP lie within QMA.

I cannot give full justice to this extremely rich subject in such a short report; the
reader is guided to [28, 31] for more details and mathematical proofs of the rela-
tionships between complexity classes.
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Figure 3.1: Euler diagram for P, NP, NP-complete, NP-hard and BQP problems.

3.4 Query complexity

The majority of known quantum algorithms are suitable for analysis using the query
model. For these query algorithms, the input is no longer encoded as an initial binary
string. Instead, the input is encoded in a black box which computes some function
f , and each application of the black box is known as a query. A black box can only
be analysed by its inputs and outputs; we have no knowledge of its inner workings.
The query complexity of an algorithm is simply the number of queries made to the
black box (also called oracle) to solve the problem.

The same big O notation used for computational complexity is used here, describing
query complexity as a function of N = 2n, where n is the number of input qubits.
For example, the hidden shift problem can be solved by a quantum algorithm using
O(logN) queries, compared to O

√
N for the best classical algorithm.

Quantum circuits incorporate these quantum oracles as unitary transformations. For
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Uf
x x

y y ⊕ f(x)

Figure 3.2: Quantum oracle where f : {0, 1}2 → {0, 1}. All quantum circuits in this
report were drawn using [33].

instance, for a function f : {0, 1}n → {0, 1}, the oracle maps |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉
(for all x ∈ {0, 1}n and y ∈ {0, 1}) [32]. This means that the query complexity pro-
vides a lower bound on the overall time complexity, as the latter takes into account
all gate operations, not just the black box. Note that quantum algorithms can ap-
ply the oracle to a superposition of basis states, a key property exploited by David
Deutsch and Richard Jozsa in their primitive algorithm.

3.5 Deutsch-Jozsa algorithm

Despite having little practical use, the Deutsch-Jozsa (D-J) algorithm retains signif-
icance in quantum computational complexity. It is one of the first examples of a
quantum algorithm solving a problem exponentially faster than the best determin-
istic classical algorithm. However, the problem at hand is a black-box problem, so
it makes more sense to look at the query complexity. In the worst case. a classical
algorithm requires exponentially more queries to the oracle than the D-J algorithm,
which solves the problem with just one query.

The D-J problem involves an oracle which computes a function f : {0, 1}n → {0, 1},
with the promise that f is either constant (outputs either 0 for all inputs or 1 for all
inputs), or balanced (outputs 0 for exactly half the possible inputs). The task is to
use the oracle to work out f ’s state.

3.5.1 Classical solution

A classical deterministic algorithm may get lucky; in the best case only two queries
to the oracle are needed. For example, for n = 3 there are 23 = 8 possible inputs:
{(0, 0, 0), (0, 0, 1), . . . , (1, 1, 1)} (0-7 in binary), which each need to be tested in suc-
cession. If the first two queries determine that f(0, 0, 0) = 1 and f(0, 0, 1) = 0, then
we know for certain that f is balanced.

In the worst case, f needs to be evaluated five times (or 2n−1 + 1 for general n) to be
certain whether it is constant or balanced. If we checked the first four possible inputs
and f output 1 each time, there is still a slight possibility that the fifth input may
return a 0, meaning f is balanced, not constant. If 100% certainty is not required,
less queries are needed. A classical randomised algorithm can determine f ’s state
with error probability ε using only O(log 1

ε
) queries [11].
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n|0〉 H⊗n

Uf

H⊗n

|1〉 H

x x

y y ⊕ f(x)

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

Figure 3.3: Quantum circuit for the Deutsch-Jozsa algorithm.

3.5.2 Quantum solution

The circuit used for the quantum solution is illustrated in Figure 3.3, and the corre-
sponding steps for the D-J algorithm are summarised in Algorithm 2. Initially, two
quantum registers are prepared: an n-qubit ‘query’ register initialised to |0〉, and a
one-qubit ‘answer’ register set to |1〉. Hadamard gates are then applied to all n + 1
qubits; for the query register, n Hadamard gates are applied in parallel (H⊗n), pro-
ducing the state 1√

2n

∑
x |x〉. Using just n gates, a superposition of 2n states is created.

Next the oracle is applied; as before it maps |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉, where ⊕ is
addition modulo 2. Knowing that f(x) is either 0 or 1, it is straightforward to see
that

|x〉 (|f(x)〉 − |1⊕ f(x)〉) = (−1)f(x) |x〉 (|0〉 − |1〉), (3.2)

which explains step 3 of the algorithm. Hadamard gates are then applied again to
the n-qubit query register. By explicit calculation for x = 0 and x = 1, we can see
that H |x〉 =

∑
y(−1)xy |y〉 /

√
2. Generalising to n qubits:

H⊗n |x〉 =

∑
y(−1)x.y |y〉
√

2n
, (3.3)

with x · y = x0y0 ⊕ x1y1 ⊕ . . . ⊕ xn−1yn−1 representing the bitwise inner product
(modulo 2). Finally, a measurement is made on the query register. Note that the
probability of measuring the state |0〉⊗n is

∣∣ 1
2n

∑
x(−1)f(x)

∣∣2. If f is constant, this
probability is equal to 1 (the amplitude would be +1 for constant value 0 and -1
for constant value 1). If f is balanced, the positive and negative contributions to
the amplitude cancel (destructive interference). Hence, the probability of measur-
ing |0〉⊗n is 0.

Therefore, with just one query to the oracle, we can determine whether f is constant
or balanced.

3.5.3 Related algorithms

The D-J algorithm has been built to create algorithms to solve more complex prob-
lems. This includes the Bernstein-Vazirani (B-V) algorithm [31], which again solves
a promise problem; this time f(x) = x · s, and the task is to find this hidden string s.
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Algorithm 2 Deutsch-Jozsa algorithm for determining whether a function is constant
or balanced. First proposed in 1992, later improved so that only a single query of f
is required.

1: |ψ1〉 = |0〉⊗n |1〉 . Initialise (n+ 1)-qubit state
2: |ψ2〉 =

∑2n−1
x=0

|x〉√
2n

[ |0〉−|1〉√
2

] . Create superposition state using Hadamard gates

3: |ψ3〉 =
∑2n−1

x=0
|x〉√
2n

[ |f(x)〉−|1⊕f(x)〉√
2

] . Apply oracle to evaluate f

=
∑2n−1

x=0
(−1)f(x)|x〉√

2n
[ |0〉−|1〉√

2
]

4: |ψ4〉 =
∑2n−1

y=0

∑2n−1
x=0

(−1)f(x)+x.y |y〉
2n

[ |0〉−|1〉√
2

] . Apply Hadamard gate to first n qubits
5: Measure |z〉 . Determine if f is constant or balanced

This algorithm solves the problem with 1 query, compared to n queries for a classical
solution.

The problems solved by the D-J and B-V algorithms are not classically difficult
enough to really prove an oracle separation between BQP and BPP [29]. B-V’s al-
gorithm only demonstrates a linear discrepancy between these two classes, and we
showed earlier that D-J’s problem is relatively easy to solve on a probabilistic clas-
sical machine. D-J’s algorithm instead proves a separation between EQP, the class
of problems that can be solved exactly on a quantum computer in polynomial time,
and P.

This issue was addressed in 1993 by Dan Simon [34], who found a problem which
yields an exponential oracle separation between BQP and BPP. The problem is as
follows:

Simon’s problem

Given a black box Uf implementing |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 for a function
f : {0, 1}n → {0, 1}n, with the promise that f(x) = f(y) iff x⊕ y ∈ K = {0n, s}
for some s ∈ {0, 1}n, find s.

Alternatively, the task is to discern whether f is one-to-one (s = 0n, a string of ze-
ros), or two-to-one (s 6= 0n, f(x) = f(x⊕ s)).

This is a hard problem to solve classically: again, we could get lucky and stumble
upon a solution to f(x) = f(y) in the first two queries. In general, we’d have to
do an exponential number of queries before the probability of finding a solution is
reasonable; the best known classical algorithm has a lower bound of Ω(2n/2).

Meanwhile, using a succession of Hadamard gates, black box queries and measure-
ments, Simon’s algorithm solves the problem (with small error probability) with
O(n) queries. A good description of the full algorithm can be found in [11].
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Like the other black-box algorithms discussed in this section, there are no realistic
applications for Simon’s algorithm. However, many of the ideas from Simon’s pro-
cedure were replicated by Shor in his groundbreaking algorithm for factoring. This
discovery signalled a shift towards the development of quantum algorithms with
real-life, practical applications.
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Chapter 4

Factoring, discrete logarithms and the
abelian hidden subgroup problem

Naturally accompanying the growth of modern computing and the Internet has been
the desire for secure communication protocols. Research into cryptography became
popular in the 1970s, with the 1977 formulation of RSA a major early breakthrough
in cryptosystem development. RSA belongs to a family of public-key cryptosystems;
these systems use a pair of keys (public and private) to enable messages to be en-
crypted, sent and decrypted by the intended receiver.

The security of each public key algorithm is dependent on certain problems being
computationally difficult (not in P). For RSA, this problem is integer factorisation.
Any intruder would require the ability to factor a large number in order to recover
the private key and break the decryption. For a large semiprime (product of two
large primes), this is a daunting task for classical computers.

However, the creation of Shor’s algorithm and development of quantum computers
presents a real threat to RSA and similar cryptosystems. This is such a concern that
post-quantum cryptography is a major active field of research: see [35] for a good
introduction to this area.

4.1 Integer factorisation

Integer factorisation problem

Given an integer N , output positive integers p1, p2, . . . , pn, q1, q2, . . . , qn where
the pi are distinct primes and N = pq11 p

q2
2 ...p

qn
n .
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4.1.1 Classical algorithms

While we have yet to prove that such an algorithm cannot exist, there are no polynomial-
time classical algorithms for the factorisation of a large integerN . Several algorithms
do exist that are sufficiently rapid for smaller integers. A school student tasked with
factoring a 2 or 3-digit number would probably employ some sort of brute force
approach. This algorithm is formally known as trial division, and simply entails
checking if N is divisible by each prime up to

√
N .

More complicated methods such as the quadratic sieve are based on finding numbers
satisfying a congruence of squares. This is a weakened version of the famous equality
for odd integers:

N = x2 − y2. (4.1)

If an integer N can be written in this form, it is decomposible as (x+ y)(x− y). The
weaker congruence of squares condition is as follows:

x2 (mod N) ≡ y2, (4.2)

and this implies

(x+ y)(x− y) = 0 (mod N). (4.3)

Thus the factors are finally retrieved using the Euclidean algorithm, as

HCF (x+ y,N) ·HCF (x− y,N) = N. (4.4)

The quadratic sieve is an optimised method for finding these congruences. In short,
it entails finding integers ai such that

√
N < ai < N and bi = a2

i (mod N) is B-
smooth. By B-smooth, we mean that bi’s prime factors pi ≤ B, where B is a selected
smoothness bound.

A subset of the set bi is then found whose product is a square b2. By multiplying the
corresponding ai together (mod N) to find a, we have a pair of numbers satisfying
(4.2). Hence using (4.4), we obtain a factor decomposition of N .
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Example: Factorise N= 1649

To illustrate this algorithm, take N = 1649, with B = 5 (so the factor base is
{2, 3, 5}). Hence

√
1649 ≈ 40.6 < ai < 1649. Looking at 3 values of ai, we have

412 ≡ 32, 422 ≡ 115 and 432 ≡ 200 (all mod 1649), but we ignore 115 ∈ bi
since 115 is not 5-smooth (115 = 5 · 23).

We now have a subset of bi {32, 200} whose product is a square (32 · 200 =
802). Hence, after multiplying the corresponding ai: 41 · 43 (mod 1649) = 114,
we have the congruence 1142 (mod 1649) = 802. So we can factor 1649 =
HCF ((114 + 80), 1649) ·HCF ((114− 80), 1649) = 97 · 17.

The precise algorithm actually operates on integers decomposed as a product of
prime factors, written as exponent vectors (e.g. 6615 = 20 · 33 · 51 · 72 = (0, 3, 1, 2))
[36]. The quadratic sieve is more efficient than other similar methods (e.g. Dixon’s
method [37]), as it selects values of ai close to

√
N . This ensures that the values

bi are small, and hence more likely to be B-smooth. This algorithm is the second
fastest known method for factorisation; indeed it is the fastest for integers with less
than 100 digits.

The crown for most efficient classical algorithm for factorisation of large integers
goes to the general number field sieve (GNFS). This 1993 algorithm has a heuristic
runtime for factoring an integer N of the form

exp

((
3

√
64

9
+ o(1))(logN)

)1/3

(log logN)2/3

 (4.5)

.
This is a complicated algorithm which we will not discuss in full here; see [38] for a
detailed overview and example. Instead, we will outline the rational sieve; a simpler,
special case of the GNFS which introduces some key ideas used in the full algorithm.

Algorithm 3 Rational sieve for factorisation of integer N

1: Choose bound B, identify factor base P
2: Search for integers z such that both z and z +N are B-smooth

. I.e. z =
∏

pi∈P p
ai
i , z +N =

∏
pi∈P p

bi
i

3: Each z gives a relation:
∏

pi∈P p
ai
i ≡

∏
pi∈P p

bi
i (mod N)

4: Combine relations so that the exponents of the primes are all even
. This gives a congruence of squares (4.2)

5: Use (4.4) to factorise
. If factors are trivial, repeat step 4 with a different combination of relations

The inefficiency of the rational sieve comes in step 2: finding B-smooth numbers
is increasingly difficult for larger numbers. While the rational sieve searches for
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smooth numbers ∼ N , the GNFS looks for smooth numbers subexponential in N
(i.e. O(N1/d) for some small integer d). This efficiency has allowed the number
field sieve to set records for integer factorisation: a group of researchers factored
17 numbers of the form 2n − 1, with n between 1000 and 2000, at the cost of 7500
CPU-years [39].

4.1.2 Useful quantum subroutines

Shor’s algorithm incorporates quantum subroutines which help generate the expo-
nential speedup compared to classical algorithms. These procedures, which may
be considered algorithms in their own right, also prove to be useful within other
algorithms, so it makes sense to introduce them here.

Quantum Fourier Transform

The Quantum Fourier Transform (FT) is simply the quantum analogue of the classi-
cal, discrete FT. The latter acts on a N -dimensional vector (x0, x1, . . . , xN−1), trans-
forming it to the vector (y0, y1, . . . , yN−1), where

yq =
1√
N

N−1∑
p=0

xpe
2πipq/N . (4.6)

Meanwhile, the quantum FT performs the same transformation on a set of orthonor-
mal basis states |0〉 , |1〉 , . . . , |N − 1〉:

QFT |q〉 =
1√
N

N−1∑
p=0

e2πipq/N |p〉 . (4.7)

This transform can also be viewed as a mapping

|x〉 =
N−1∑
p=0

xp |p〉 7→ |y〉 =
N−1∑
q=0

yq |q〉 , (4.8)

where the amplitudes are transformed as per (4.6). The inverse quantum FT can be
simply written as

|p〉 =
1√
N

N−1∑
q=0

e−2πipq/NQFT |q〉 . (4.9)

The quantum FT is a unitary operation, hence it can be represented as a unitary
matrix:

QFT =
1√
N


1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

... . . . ...
1 ωN−1 ω2(N−1) . . . ω(N−1)2

 , (4.10)
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. . .

. . .

...
...

...
...

...

. . .

. . .

|x1〉 H R2 Rn−1 Rn

|x2〉 H Rn−2 Rn−1

|xn−1〉 H R2

|xn〉 H

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉

Figure 4.1: Quantum circuit for the quantum Fourier transform.

where ω = e2πi/N , the N th root of unity. Noting that for n qubits, N = 2n, so the
quantum FT on a single qubit (QFT2) is simply the Hadamard gate. This can be
checked by calculating QFT |0〉 and QFT |1〉 using (4.7) with N = 2.

It is useful to write the quantum FT as a product representation. For this we must
write our basis states using binary notation: |x〉 = |x1, x2, . . . , xn〉, i.e. our input is a
tensor product of n qubits. Making use of fractional binary notation:

0.xlxl+1 . . . xm =
m∑
k=l

xk2
−k, (4.11)

we can rewrite the quantum FT (4.7) as

|x1, x2, . . . , xn〉 7→
1√
N

(|0〉+e2πi0.xn |1〉)(|0〉+e2πi0.xn−1xn |1〉) . . . (|0〉+e2πi0.x1x2...xn |1〉),

(4.12)
noting that the tensor product between each qubit is implied.

Using this product representation, we can derive the quantum circuit for a general
n-qubit quantum FT. This transform can be realised using a series of Hadamard gates
and controlled-phase gates (controlled-Rk), where

Rk =

(
1 0

0 e2πi/2k .

)
(4.13)

The full circuit for quantum FT is shown in Figure 4.1, and the corresponding algo-
rithm is displayed in Algorithm 4.

This circuit is built from unitary quantum gates, cementing the fact that the whole
operation is unitary. This means that to implement the inverse quantum FT, the cir-
cuit simply needs to be reversed, replacing each gate with their inverse (QFT−1 =
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Algorithm 4 Quantum Fourier transform

1: |ψ1〉 = |x1, x2, . . . , xn〉 . Input n-qubit state
2: |ψ2〉 = 1√

2
(|0〉+ e2πi0.x1 |1〉) |x2, . . . , xn〉 . Apply Hadamard to 1st qubit

3: |ψ3〉 = 1√
2
(|0〉+ e2πi0.x1x2 |1〉) |x2, . . . , xn〉

. Apply controlled-R2 gate to 1st qubit
4: |ψ4〉 = 1√

2
(|0〉+ e2πi0.x1x2...xn |1〉) |x2, . . . , xn〉

. Apply all n controlled-Rn gates to 1st qubit
5: |ψ5〉 = 1√

N
(|0〉+ e2πi0.x1x2...xn |1〉)(|0〉+ e2πi0.x2...xn |1〉) . . . (|0〉+ e2πi0.xn |1〉)

. Apply a similar sequence of gates for qubits 2 . . . n
6: Apply SWAP gates to reverse order of qubits to obtain state as in (4.12)

QFT †).

This transform on n qubits is implemented with just Θ(n2) gates, exponentially less
operations than the most efficient classical algorithms for calculating the discrete FT.
For example, the Fast Fourier Transform requires Θ(n2n) gates. Optimised quantum
FTs require even less gates; researchers in 2000 created an algorithm which com-
pletes the operation with only O(n log n) gates [40].

However, amongst other issues, differences in setup (classical FTs act on vectors
while quantum FTs transform quantum states) makes the speedup of the quantum
procedure difficult to realise in practice. Unless the input has been pre-encoded
into a quantum state (or can be encoded in O(logN) steps), exponential speedup
is not feasible [15]. Therefore, we cannot simply substitute the classical FT for the
quantum FT to speedup every task; we must be more subtle to discover the real
utility of this subroutine.

Quantum Phase Estimation

A key application of the quantum FT is within the phase (or eigenvalue) estimation
algorithm, formalised by Alexei Kitaev [41]. The problem is simple:

Quantum phase estimation

Given a unitary operator U with an eigenvector |u〉 and eigenvalue e2πiφ, esti-
mate φ.

The circuit for this algorithm is displayed in Figure 4.2, with the corresponding
procedure in Algorithm 5. Two registers are used for this procedure. The number
of qubits (a) in the first register determines the accuracy of the estimate, as well as
the probability for the algorithm to succeed [12]. The second register simply has
enough qubits to store the state |u〉.
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. . .

...
...

. . .

. . .

. . .

|0〉 H

QFT †a

...

|0〉 H

|0〉 H

|u〉 U20 U21 U2a−1

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

Figure 4.2: Quantum circuit for quantum phase estimation.

Algorithm 5 Quantum phase estimation. Note that here A = 2a

1: |ψ1〉 = |0〉⊗a |u〉 . Initialise qubits
2: |ψ2〉 = 1√

A
(|0〉+ |1〉)⊗a |u〉 . Create superposition using Hadamard gates

3: |ψ3〉 = 1√
A

(|0〉+ e2πi2a−1φ |1〉) . . . (|0〉+ e2πi21φ |1〉)(|0〉+ e2πi20φ |1〉) |u〉
= 1√

A

∑2a−1
j=0 e2πijφ |j〉 |u〉 . Apply controlled-U gates on 2nd register

4: |ψ4〉 =
∣∣∣φ̃〉 |u〉 . Apply inverse quantum FT

5: Measure first register to obtain estimate (φ̃)

As per usual, the controlled-U gate only acts on the target if the control qubit is |1〉.
Step 3 of the algorithm can be understood by noting that

U2j |u〉 = U2j−1

U |u〉 = U2j−1

e2πiφ |u〉 = . . . = e2πi2jφ |u〉 , (4.14)

for non-negative integers j, and applying the relation

|0〉 |u〉+ |1〉 e2πi2jφ |u〉 = (|0〉+ e2πi2jφ |1〉) |u〉 . (4.15)

This step can alternatively be seen as a singular black-box implementing a controlled-
U j operation, mapping the state

1√
A

2a−1∑
j=0

|j〉 |u〉 7→ 1√
A

2a−1∑
j=0

|j〉U j |u〉 . (4.16)

In the special case where φ = 0.φ1φ2 . . . φa, the inverse quantum FT produces the
state |φ1 . . . φa〉 |u〉, and a measurement of the first register produces φ exactly. Out-
side of this ideal case, applying the inverse quantum FT to |ψ3〉 produces the state
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1

A

2a−1∑
x=0

2a−1∑
j=0

e2πijφe
−2πijx

2a |x〉 =
1

A

2a−1∑
x=0

2a−1∑
j=0

e
−2πij
2a

(x−2aφ) |x〉 , (4.17)

now ignoring the 2nd register, which remains as |u〉 throughout, for brevity.

Now take an integer c ∈ [0..2a − 1] such that c
2a

= 0.c1 . . . ca is the best a-bit estimate
of φ. This means that φ = c

2a
+ δ, where 0 < |δ| ≤ 1

2a+1 [42]. Substituting into (4.17)
gives the state:

1

A

2a−1∑
x=0

2a−1∑
j=0

e
2πi(c−x)j

2a e2πiδj |x〉 , (4.18)

The amplitude of the best-estimate state |c〉 = |c1 . . . ca〉 can be written as a geometric
series:

1

A

2a−1∑
j=0

(e2πiδ)j =
1

A

(
1− (e2πiδ)2a

1− e2πiδ

)
(4.19)

Squaring this amplitude gives the probability of obtaining the desired state |c〉, and
hence obtaining a good estimate of φ after measurement. Note that if δ = 0 as for
the exact case, this probability is 100% and the approximation is precise as before.
With some mathematical intuition (see [42]), we can show

Probability of obtaining |c〉 ≥ 4

π2
. (4.20)

I mentioned previously that increasing the number of qubits in the first register im-
proves the effectiveness of this algorithm. More precisely, one can obtain φ correct
to q bits with success probability ≥ 1 − ε by choosing a = q + O(log(1/ε)). Hence
with O(a2) gate operations and one call to the controlled-U j oracle, an q-bit estimate
φ̃ can be acquired.

4.1.3 Shor’s algorithm

We now have the tools to construct Shor’s algorithm for integer factorisation [9].
Part of this algorithm is actually classical, but the quantum speedup comes purely
within the order-finding process, which incorporates the quantum FT. So the algo-
rithm involves two parts: a classical reduction from factoring to order-finding, and
a quantum subroutine for solving the latter problem. The general procedure is out-
lined in Algorithm 6.

Order-finding

The principles of Shor’s algorithm are comparable to other factoring procedures al-
ready discussed. The idea is: for a particular N , find a random number x with an
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Algorithm 6 Shor’s algorithm for factorisation of a composite number

1: procedure FIND A NON-TRIVIAL FACTOR OF A COMPOSITE NUMBER(N)
2: if N | 2 then
3: return 2
4: else if N = f g for f, g ∈ Z, f ≥ 1, g ≥ 2 then
5: return f
6: else
7: Pick a random number x, 1 < x < N
8: Compute H = HCF (x,N) . Use Euclidean algorithm
9: if H > 1 then

10: return H
11: else
12: Use order-finding subroutine to find order r of x (mod N)
13: if r - 2 or xr/2 = −1(modN) then
14: Go back to step 6 . I.e. pick a new x
15: else
16: Calculate F1 = HCF (xr/2 − 1, N) & F2 = HCF (xr/2 + 1, N)
17: Return non-trivial factors . Either F1, F2 or F1 & F2

18: end if
19: end if
20: end if
21: end procedure

order r such that b = xr/2 is a square root of 1 (mod N), but b 6= ±1 (mod N). By
order, we mean the smallest positive integer r such that

xr = 1 (mod N). (4.21)

so by definition, the positive condition is satisfied (else the order would be r/2). As
for the negative condition, a theorem states that [12]

p(r is even and b 6= −1 (mod N)) ≥ 1

2
. (4.22)

Hence, it should not take many runs of the order-finder for step 13 of the algorithm
to be bypassed. If these conditions are met, one can show b2 − 1 = mN for some
integer m, so step 16 of the algorithm retrieves at least one non-trivial factor of N .

But how exactly does the order-finding procedure work? No polynomial-time clas-
sical algorithm exists for this problem. However, using the phase estimation algo-
rithm (which incorporates the quantum FT), an efficient quantum algorithm can be
described.

The order-finding algorithm is simply an application of the phase estimation algo-
rithm, with some additional subtleties. This time, the unitary operator U has the
following action:
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. . .

...
...

. . .

. . .

. . .n

|0〉 H

QFT−1
a

...

|0〉 H

|0〉 H

|1〉 U20 U21 U2a−1

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

Figure 4.3: Quantum circuit for phase estimation adapted for the quantum order-finding
algorithm.

U |y〉 = |xy (mod N)〉 . (4.23)

Here, x is again our random number, N is our n-bit integer to be factorised and
y ∈ {0, 1}Q. The periodicity of this operation is straightforward to see with an exam-
ple:

Setting x = 7 and N = 15, it is clear that the period r = 4. If we begin with the
initial state |y〉 = |1〉, we can show (using integers instead of binary for clarity):

U4 |1〉 = U3 |7〉 = U2 |4〉 = U |13〉 = |1〉
∴ in general, U r |y〉 = |y〉 .

(4.24)

Therefore, using a superposition of states in this cycle gives you an eigenstate of U ,
for example:

|y〉 =
1

2
(|1〉+ |7〉+ |4〉+ |13〉) 7→ U |y〉 =

1

2
(|7〉+ |4〉+ |13〉+ |1〉) = |y〉 (4.25)

This state can be generalised by adding a r-dependant phase factor. Hence the most
general eigenstates of U are defined as:

|ut〉 =
1√
r

r−1∑
k=0

e
−2πikt

r

∣∣xk (mod N)
〉
, (4.26)

where 0 ≤ t ≤ r − 1. Using a similar example to before, we can prove

U |ut〉 = e
2πit
r |ut〉 . (4.27)
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So we have an eigenvalue that can be retrieved by the phase estimation algorithm.

The controlled-U j operation on the second register has a different form in this case:

1√
A

2a−1∑
j=0

|j〉 |y〉 7→ 1√
A

2a−1∑
j=0

|j〉U j |y〉

=
1√
A

2a−1∑
j=0

|j〉
∣∣xjy (mod N)

〉
.

(4.28)

Essentially, the oracle has the effect of scaling the contents of the second register
by xj (mod N), a quantity known as the modular exponential. We can compute this
by borrowing techniques from classical computing, which use repeated squaring to
calculate the exponential.

Returning to our eigenstates, it is important to note that (again can be shown via
example)

1√
r

r−1∑
t=0

|ut〉 = |1〉 . (4.29)

This means that we can prepare the second register in the trivial |1〉 state rather than
the complicated |ut〉 state (as shown in Figure 4.3). Phase estimation then retrieves
an estimate φ ≈ t/r, where t is a random number 0 ≤ t ≤ r−1, with high probability.
The accuracy of this estimate is again determined by the number of qubits in the first
register (a).

We almost have our period r; to obtain it we use the continued fractions algorithm
to decompose our estimate φ. A continued fraction is an expression of the form:

z = a0 +
1

a1 + 1
a2+ 1

...+ 1
ap

. (4.30)

where a0, . . . , ap are integers, all but a0 constrained to be positive. A simplified
notation for this expansion is z = [a0; a1, . . . , ap], and we can truncate by defining
the P th convergent to z as [a0; . . . , aP ]. As an example, the 4th convergent of 1√

2
:

1√
2
≈ 1

1 + 1
2+ 1

2+1
2

≡ [0; 1, 2, 2, 2] =
12

17
, (4.31)

an approximation within 0.2% of the exact number.

So we can use the continued fractions algorithm on φ to produce a fraction t′/r′.
r′ should be the order r we are looking for (this can be checked by subbing into
(4.21)), but in the (unlikely) case that t and r are not coprime, r′ is instead a fac-
tor of r. Hence, several repetitions of the phase estimation algorithm with different
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(randomly-chosen) t may be required before the period is found [12].

The order-finding procedure is summarised in Algorithm 7.

Algorithm 7 Quantum order-finding. Again A = 2a

1: |ψ1〉 = |0〉⊗a |1〉 . Initialise qubits
2: |ψ2〉 = 1√

N

∑2a−1
j=0 |j〉 |1〉 . Create superposition

= 1√
rN

∑2a−1
t=0

∑2a−1
j=0 |j〉 |ut〉

3: |ψ3〉 = 1√
rN

∑2a−1
t=0

∑2a−1
j=0 e

2πitj
r |j〉 |ut〉 . Apply controlled-U j operation

4: |ψ4〉 = 1√
r

∑2a−1
t=0

∣∣∣t̃/r〉 |ut〉 . Apply inverse quantum FT

5: Measure first register to obtain estimate (t̃/r)
6: Use continued fractions algorithm to find r′

7: if r′ doesn’t satisfy (4.21) then
8: go back to step 1
9: else

10: return r′(= r)
11: end if

Complexity and implementation

The modular exponentiation used while applying the controlled-U j oracle is signifi-
cantly slower than the other parts of the order-finding algorithm. This sets an upper
bound of O(n3) gate operations for this procedure, where N = 2n.

Combining everything, Shor’s algorithm factors an integer N in time polynomial in
n = logN . The runtime has an upper bound:

O((logN)2(log logN)(log log logN)), (4.32)

so the exponential speedup compared to (4.5) is clear.

Utilising this speedup is a different matter; the fault-tolerant, million-qubit quantum
computers required to exploit this algorithm’s power are still a while away from re-
ality. It was originally estimated that a machine with one billion qubits is required
to implement Shor’s algorithm to factorise a 2048-bit RSA number.

However, researchers in 2019 cut this requirement to 20 million qubits, via an opti-
misation of the modular exponentiation process [43]. Their model takes just 8 hours
to factorise these huge numbers; a clear threat to RSA encryption if such machines
became physically feasible.
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Quantum factoring records

Several research groups in the last twenty years have implemented Shor’s algorithm
to factor small integers on various realisations of a quantum computer. At the time
of writing, the record for largest number factored by Shor’s algorithm remains at 21.
This was accomplished via an alteration to the standard quantum circuit, where the
first register is replaced with a single qubit that is recycled throughout [44]. This
significantly lowered the resource requirement hindering other implementations of
the algorithm.

However, quantum devices have been demonstrated to factor much larger numbers
using alternative approaches. Notably, in 2012, Nanyang Xu et al. created an adi-
abatic quantum computing procedure for factorisation, by converting the factoring
problem into an optimisation problem.

Other adiabatic schemes already existed, but this group improved the algorithm by
simplifying the equations used to shape the Hamiltonians. This helped reduce the
number of qubits needed for factorisation, making larger numbers more accessible
than before [45]. They applied their algorithm to factor 143 on an NMR quantum
processor, the first 3-digit number factored on a quantum device.

It was discovered two years later that this same experiment had actually factored an
entire class of much larger integers (up to 56,153). New heights were hit in 2016,
when 200,009 was factored on a D-Wave 2X processor [46] using a quantum an-
nealing procedure optimised using ideas from computational algebraic geometry.

The current record for factorisation by a quantum computer was set in 2019 by a
quantum computing startup Zapata, who in conjunction with IBM found

1, 099, 551, 473, 989 = 1, 048, 589× 1, 048, 601. (4.33)

They achieved this feat through an application of the variational quantum factor-
ing algorithm [47]. This reduces the factoring problem to an optimisation problem
solvable by the quantum approximate optimisation algorithm (see Section 7.4). This
experiment demonstrates the utility of hybrid quantum-classical algorithms for mak-
ing progress within quantum computing, at least in the near-term.

Even with these improvements, the factoring capabilities of quantum computers still
pale in comparison to classical computers implementing the number field sieve. Sig-
nificant hardware improvements are required before quantum computing fulfills its
potential within this particular problem.
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4.2 Related problems

4.2.1 Period finding

It is important to note that order-finding is simply a generalisation of the period-
finding problem: finding the smallest integer r such that

f(x+ r) = f(x). (4.34)

In the case of order-finding, the period function f(j) = xj (mod N). A virtually
identical circuit to Figure 4.3 solves this problem; the only difference is the action of
the oracle:

U |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 (4.35)

4.2.2 Discrete logarithms

A byproduct of Shor’s algorithm for factoring was the solving of the discrete loga-
rithm problem. More specifically:

The discrete logarithm problem

Consider a group G with order r and generator a ∈ G such that ar (mod N) =
1. Given b = as, where s ∈ Zr, find s.

This problem is again computationally challenging: the fastest classical algorithm,
a variant of the number field sieve still runs in time exponential with p. As with
integer factorisation, the difficulty of solving discrete logarithms makes them key in
several cryptosystems including DSA.

Shor simply tackled this problem with an adaptation of his factoring algorithm [9],
this time using two a-qubit registers rather than one. He defined a periodic function

f : Zr × Zr → G : f(x, y) = axby, (4.36)

and made use of an oracle U with the following transform:

U |x1〉 |x2〉 |y〉 = |x1〉 |x2〉 |y ⊕ f(x1, x2)〉 . (4.37)

The procedure then follows the same pattern as the order-finding algorithm: Hadamard
gates, unitary operator, inverse quantum FT, measurement and (generalised) contin-
ued fractions algorithm to find s.

42



Chapter 4. Factoring, discrete logs & abelian HSP 4.3. ABELIAN HSP

4.3 Abelian hidden subgroup problem

Several problems, including all the ones discussed in this chapter, can be rehashed as
a special case of the abelian hidden subgroup problem (HSP). This goes as follows:

The abelian hidden subgroup problem

Let f : G → X be a function mapping an abelian group G to a finite set X,
such that there exists some subgroup H such that f is constant on the cosets
of H and distinct on each coset.

I.e. for all g1, g2 ∈ G, f(g1) = f(g2) iff g1 +H = g2 +H.

Given a quantum oracle for performing the unitary transform U |g〉 |x〉 =
|g〉 |x⊕ f(g)〉 for g ∈ G, x ∈ X, and ⊕ an appropriate binary operation on
X, find a generating set for H [11, 12].

To illustrate this, consider D-J’s algorithm where f : {0, 1}n → {0, 1}. In this case,
G = {0, 1}n, or equivalently Zn2 , X = {0, 1} and our hidden subgroup H = {0} or
{0, 1}, depending on whether f is constant or balanced.

Further examples of problems that can be viewed as HSPs are listed in Table 4.1.
Abelian HSPs can all be solved using O(log |G|) operations by a quantum algorithm
using similar principles to the ones discussed in this chapter. This again showcases
an exponential speedup over classical approaches, which require Ω(

√
|G/H|).

Polynomial-time algorithms are still yet to be found for HSPs for non-abelian groups;
if this was to change, there would be significant consequences for both mathematics
and cryptography. In particular, if we could solve the HSP for the dihedral group,
shortest vector problems in lattices could be tackled, leaving cryptosystems such as
NTRU and Ajtai-Dwork vulnerable to attack [30]. More information about the HSP
and potential generalisations to non-abelian groups can be found in [11].
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Name of problem G X H

Deutsch-Jozsa {0, 1}n {0, 1} {0} or {0, 1}
Simon {0, 1}n {0, 1}n {0, s}, s ∈ {0, 1}n

Order-finding Z
{ax}, j ∈
Zr, a

r = 1
rZ

Period-finding Z Any set rZ
Discrete logarithm Zr × Zr Any group {k,−1}, k ∈ Zr

Hidden linear
functions [48]

Z× Z ZN {−a, 1}, a ∈ ZN
Abelian stabliser

problem [41]
Any abelian

group
Any finite set

g ∈ G | g(x) =
x,∀x ∈ X

Table 4.1: A selection of hidden subgroup problems.
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Quantum search and amplitude
amplification

Suppose that we have a list of N = 2n elements and one of them is marked as our
target. A classical computer would search through each item one-by-one until the
target is found: in the worst case all N items would have to be checked to find the
solution.

It is more useful to view the situation as a black-box problem:

The unstructured search problem

Suppose there is a function f : {0, 1}n → {0, 1}, which is evaluated by a black
box: Uw |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉. f(x) = 0 ∀x ∈ {0, 1}n except for w, which
satisfies f(w) = 1. Find w.

Lee Grover devised an algorithm [49] to solve this problem with just O(
√
N) queries

to the oracle, and this was shortly proven to be an optimal solution [50]. Hence
for this class of problems we can only achieve a quadratic, rather than exponential
speedup. This is not as impressive as Shor’s algorithm, but at large N this speedup
becomes considerable, again highlighting the need for large-scale quantum comput-
ers to come to fruition.

The use of an oracle ensures that Grover’s algorithm does not rely on the search
problem in question possessing any particular structure. Hence, this algorithm can
be applied to a variety of problems where the lack of structure makes exhaustive
search the only option classically.

5.1 Grover’s algorithm

Consider the action of the oracle when the second qubit is in the state |0〉−|1〉|√2〉 = |−〉:
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f(x) = 0 : Uw |x〉 |−〉 7→ |x〉 |−〉
f(x) = 1 : Uw |x〉 |−〉 7→ − |x〉 |−〉

(5.1)

It turns out that the second qubit does not change state. Therefore the operation of
the black box can be written as:

Uw |x〉 = (−1)f(x) |x〉 , (5.2)

a unitary operator equivalently described as a diagonal matrix
diag

(
(−1)f(0), (−1)f(1)...(−1)f(2n−1)

)
.

The idea of the algorithm is to iteratively increase the amplitude of the target state
|w〉. This is done via the repeated application of two unitary operators:

UG = UsUw, (5.3)

Uw is the oracle (5.2), which flips the phase of the target state. Us is defined as

Us = 2 |s〉 〈s| − 1, (5.4)

with |s〉 representing the uniform superposition of states created by a Hadamard
transform H⊗n.

It is insightful to apply Us to a general state |Ψ〉 =
∑

i ψi |i〉. Expressing each ψi in
terms of its deviation δψi from the averaged amplitude ψ, i.e. ψi = ψ + δψi, we can
show:

Us |Ψ〉 =
∑
i

(2ψ − ψi) |i〉 =
∑
i

(ψ − δψi) |i〉 . (5.5)

Hence it is clear to see why Us is said to induce an inversion with respect to the
mean. Note that since the oracle Uw makes the amplitude of the target state nega-
tive, δψw < 0 (and has a large magnitude). Therefore, the action of Us increases the
amplitude of |w〉 significantly. By applying UG ∼

√
N times, 〈s|w〉 → 1.

Alternatively, the two unitary operations can each be viewed as reflections, so com-
bining them produces a rotation towards the target state (Figure 5.1).

The quantum circuit for this algorithm is depicted in Figure 5.2, noting that our sec-
ond unitary operation is implemented on the circuit as Us = H⊗n(2 |0〉 〈0| − 1)H⊗n.
The corresponding algorithm is summarised in Algorithm 5.2.

5.2 Extensions and applications of Grover’s algorithm

5.2.1 Multiple solutions

We can also use Grover’s algorithm to search for multiple marked items, i.e. f(wi) =
1 for i = (1, 2, . . . , r). In this case the target state is a superposition of all the solutions
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Figure 5.1: The action of the Grover iteration UG displayed on the 2D plane spanned by
the perpendicular vectors |w〉 and

∣∣w⊥〉. 1: The oracle reflect the initial superposition
state |s〉 around

∣∣w⊥〉, then 2: Us reflects the resultant state around |s〉. The total action
is a 2θ rotation towards |w〉. Schematic adapted from [12].

to the search problem:

|w〉 =
1√
r

r∑
i=1

|wi〉 , (5.6)

and the state perpendicular to this is:

∣∣w⊥〉 =
1√
N − r

N−r−1∑
x=0

|x〉 . (5.7)

The overlap of the target state with the initial superposition increases due to the
expanded solution space:

〈w|s〉 =

√
r

N
, (5.8)
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UG, repeat O(
√
N) times

. . .n|0〉 H⊗n Uw H⊗n 2 |0〉 〈0| − 1 H⊗n

|ψ1〉 |ψ2〉 |ψ3〉

Figure 5.2: Quantum circuit for Grover’s algorithm.

Algorithm 8 Grover’s algorithm for quantum search

1: |ψ1〉 = |0〉⊗n . Initialise qubits
2: |ψ2〉 = 1√

N

∑2n−1
j=0 |j〉 . Create superposition

= |s〉
3: |ψ3〉 = U

√
N

G |s〉 . Apply Grover iteration ∼
√
N times

≈ |w〉
4: Measure n qubits to obtain w

compared to just 1√
N

with one solution. Naturally, O(
√
N/M) queries to UG are

needed to acquire a solution with high probability.

5.2.2 Amplitude amplification

A generalisation of Grover’s procedure was provided by Brassard and Høyer in 1997
[51]. The same ideas from Grover’s original algorithm apply here: we want to boost
the amplitude of a certain subspace of a Hilbert space which contains our solutions.

Their algorithm makes use of a Boolean function χ : Z→ {0, 1}which splits a Hilbert
space H into two orthogonal subspaces. The good subspace H1 contains all the basis
states |x〉 ∈ H for which χ(x) = 1, and the states where χ(x) = 0 reside in the bad
subspace H0.

Every state |ψ〉 ∈ H can be decomposed as

|ψ〉 = |ψ1〉+ |ψ0〉 , (5.9)

where |ψi〉 represents the projection onto Hi.

Again, the repeated application of a unitary operator is key to the procedure:

Q(A, χ) = −AS0A−1Sχ. (5.10)

Sχ corresponds to the Grover oracle UW : Sχ |x〉 = (−1)χ(x) |x〉.

A and its inverse are the analogue of the Hadamard transform: it creates a superpo-
sition state |ψ〉 = A |0〉. Together with S0, which only flips the sign of the amplitude
of the zero state, these three operations make up the equivalent of Us:

Sψ = −AS0A−1 = 1− 2 |ψ〉 〈ψ| (5.11)

48



Chapter 5. Search & amplitude amplification 5.2. EXTENSIONS & APPLICATIONS

Therefore, after creating a superposition |ψ〉, applying the operator Q numerous
times, then measuring the outcome, a good state is found with high probability. It
can be shown that O(1/

√
a) queries are required to find a solution, a denoting the

probability that measuring |ψ〉 produces a good state. In the case that a is known,
the algorithm can be adapted so that O(1/

√
a) queries provide a good solution with

certainty [52].

Heuristic search problem

Amplitude amplification can provide quantum speedup for a wide variety of search
problems, including ones where classical heuristics exist that speed up classical
search. A heuristics in this context is a polynomial-time probabilistic algorithm which
outputs a good solution with nonzero probability. More formally:

The heuristic search problem

Suppose there is a family of functions f ∈ F such that f : X → {0, 1}, and a
heuristic G : F ×R→ X, where R is a finite set. G uses a random seed r ∈ R
to generate a guess for an x ∈ X such that f(x) = 1.

Using the function and heuristic, find w such that f(w) = 1.

Solving this problem simply involves an embedding of the heuristic into the ampli-
tude amplification algorithm [52], which we will denote as AA(A, χ). The Boolean
function is now defined as χ(r) = f(x), where x = G(f,AA(A, χ)). Using the
heuristic, we can find a solution f(x) = 1 more efficiently than a simple unstruc-
tured search.

It is useful to define these quantities; for every function f ∈ F :

tf = |{x ∈ X | f(x) = 1}| −number of good inputs
hf = |{r ∈ R | f(G(f, r)) = 1}| −number of good seeds

(5.12)

We can now specify the runtime as O
(√
|R|/hf

)
, and the quadratic speedup over

classical methods is maintained.

As a sidenote, a heuristic is labelled as efficient for a particular f if using G with a
random seed generates good solutions with a higher probability than directly guess-
ing with f , i.e.

hf
|R|

>
tf
|X|

. (5.13)
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Amplitude estimation and quantum counting

There may be the situation where we are not interested in individual solutions to an
N -item search problem, but rather how many solutions exist (M):

The counting problem

Given a Boolean function f : {0, 1}n → {0, 1}, estimate
M = |{x ∈ {0, 1}n | f(x) = 1}|

Going back to the state decomposition (5.9), the probability that measuring |ψ〉 pro-
duces a good state is a = 〈ψ1|ψ1〉. Therefore by using amplitude estimation, a, and
hence, M can be determined.

It can also be shown that the amplitudes of |ψ1〉 and |ψ0〉, after repeated applica-
tion of the operator Q(A, χ) to |ψ〉, are both sinusoidal functions of period π/θa. A
period-finding subroutine can estimate this period (or equivalently, the eigenvalues
can be written in exponential form, and phase estimation used to determine θa).
Since a = sin2 θa, an estimate for M can be acquired, again with quadratic speedup.

A full breakdown of this problem including proofs is provided in [52].

5.2.3 Speedup of NP-complete problems

NP-complete problems are typically characterised by their large solution space, which
usually have no structure. This means that exhaustive search is a common subrou-
tine used within algorithms for these problems. Therefore, Grover’s algorithm and
related procedures can be used to speed up problems in NP.

It is unfortunate that Grover’s algorithm, which is optimal, is limited to quadratic
speedup. An N -item space can only be searched using O(

√
N) queries, rather than

the O(logN) query complexity required for exponential speedup. Hence, it is likely
that NP-complete problems cannot be solved in polynomial time, so NP 6⊆ BQP .
This is not a definitive statement, however: some hidden structure may be found
within these problems in the future, moving them into BQP [12].

However, this quadratic speedup is still useful for tackling a plethora of NP-complete
problems. For example, let us consider the Boolean satisfiability problem, a well-
surveyed problem in computational research. The task is self explanatory: take a
Boolean formula and determine whether it is satisfiable. In other words, work out if
there is an assignment of variables (each either TRUE/1 or FALSE/0) such that the
whole formula evaluates to TRUE.

Certain versions of this problem, including the 3-SAT, use a Boolean formula Φ in
conjunctive normal form. In other words, the formula is a conjunction of clauses
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(logical AND), with each clause a disjunction (logical OR) of literals. For example,
consider a simple formula with 4 clauses:

Φ(a1, a2, a3) = (¬a1∨¬a2∨¬a3) ∧ (a1∨¬a2∨a3) ∧ (a1∨a2∨¬a3) ∧ (a1∨¬a2∨¬a3)
(5.14)

(All k-SAT problems have k literals in each clause). It can be quickly checked that
(a1, a2, a3) = (1, 0, 1) is one of the satisfying solutions to this problem.

It is not a stretch to see how this generalises to a search problem:

3-SAT as a search problem

Take a function fφ : x → {0, 1} where x = x1x2 . . . xn ∈ {0, 1}n. f(x) = 1
if the assignment of literals ai = xi, i = 1, 2, . . . , n satisfies Φ(ai), else f(x) = 0.

Hence, the task is to find x such that f(x) = 1 [11].

Therefore we can use our quantum search algorithms to speed up the search for
satisfying solutions to 3-SAT. Other NP-complete problems that benefit from this
quadratic speedup include the Hamiltonian cycle problem; determining whether a
graph contains a cycle that visits each node exactly once.

Boolean satisfiability problems are part of a family of constraint satisfaction prob-
lems (CSPs), many of which are usually solved using a search algorithm. These are
not just restricted to abstract mathematical problems; logic puzzles such as Sudoku
and crosswords, as well as large-scale issues such as resource allocation can all be
restructured as a CSP. Thus, the utility of the techniques explored in this chapter can
be seen in real-life, commercial and recreational applications.
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Quantum simulation

Simulation of physical systems has been a key practical application of computers for
decades. We probe systems that evolve according to differential equations such as
Laplace’s equation and the diffusion equation.

However, Feynman noted in his 1982 paper [6] that simulating multi-particle quan-
tum systems on a classical computer is impossible. This is because both the number
of variables describing quantum states and the number of operations required for
simulation grow exponentially with system size.

Quantum devices can use the quantum mechanical properties discussed in Chapter
1 to help avoid this exponential explosion. To illustrate this, a system of N = 40
spin-1/2 particles requires 240 ∼ 1012 numbers, or 1013 bits to represent it, compared
to just 40 qubits for a quantum machine. In 1996, Seth Lloyd proved Feynman’s
conjecture that a quantum computer can act as a universal quantum simulator [53].

The development of quantum simulation algorithms, and the experimental realisa-
tion of these on a variety of systems, remains an extremely active area of research
to this day. One reason for this is that quantum simulations are generally not as
restricted by limitations in current quantum technology (decoherence and other
noise), compared to other algorithms such as Shor’s. Even with a modest quantum
device containing just a few dozen qubits, insightful simulations can be completed.

The quantum simulation problem

Let |ψ〉 be the state of the quantum system to be simulated. This evolves as
|ψ(t)〉 = U |ψ(0)〉, where U = e−i~Ht.

The task is to prepare the initial state |ψ(0)〉, evolve it via the unitary transform
for some time t before measuring the final state |ψ(t)〉 to find the value of some
relevant physical quantity.
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6.1 Digital and analog quantum simulation

6.1.1 Digital quantum simulation

Digital quantum simulation (DQS) is the more direct approach to quantum simula-
tion. The idea is to encode the system’s state and implement the unitary evolution
operator directly onto a circuit-based quantum computer. For example, a spin-1/2
particle in the spin-up state |↑〉 can be encoded as a |1〉, while spin-down |↓〉 is |0〉.
Meanwhile the unitary evolution U is approximated using a series of quantum gates
[54].

The first step of DQS is to prepare the initial state |ψ(0)〉; often not a trivial task.
Several algorithms exist in the literature for the purpose of efficient state preparation
for different cases. For example, Abrams and Lloyd described a quantum procedure
for initialising a quantum register into an antisymmetrised superposition of states,
useful for simulating fermionic systems [55].

The next step is the unitary evolution U = e−i~Ht. For efficient (polynomial-time)
simulation, it is useful to write the Hamiltonian as a sum over local interaction terms:

H =
M∑
l=1

Hl (6.1)

Each term usually represents either a one or two-body interaction, which are the
dominant interactions in any physical system. The Ising model Hamiltonian is an
example of this:

HI = −Bx

∑
i

σxi +
∑
i<j

Jijσ
z
i σ

z
j , (6.2)

where Bx is the external magnetic field and Jij represent the spin-spin coupling co-
efficients.

The unitary operator with local terms Ul = e−i~Hlt is much more straightforward to
approximate using quantum gates. The problem is that in general [Hl, Hl′ ] 6= 0, so
e−i~Ht 6=

∏
l e
−i~Hlt. However, decomposing U into small time steps ∆t, then using

the first-order Trotter formula [12], we can approximate:

U(∆t) ≈
∏
l

e−i~Hl∆t. (6.3)

Hence, by constructing an appropriate quantum circuit to implement U(∆t), then
iteratively applying it:

|ψi+1〉 = U(∆t) |ψi〉 , (6.4)

where i = {0, 1, . . . , tf/∆t}, the final state |ψ(tf )〉 can be approximated.
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|a〉 〈2σa+〉

V U

Figure 6.1: Quantum circuit for the measurement of 〈U †V 〉. Ancilla qubit |a〉 is ini-
tialised as |+〉, and 2σa+ = σax + iσay .

e−i∆tσz

Figure 6.2: Quantum circuit for the simulation of (6.5) for N = 3.

The final step is to make a measurement of the final state to extract the value of a
particular observable. The procedure varies depending on the quantity in question.
For example, suppose we want to determine correlations CAB(t) = 〈A(t)B(0)〉 =
〈eiHtAe−iHtB〉.

The operators can be decomposed into smaller, unitary operators A =
∑

iAi and
B =

∑
j Bj, then we can denote U = eiHtA†ie

−iHt and V = Bj. These two unitary
operators can be implemented on a quantum circuit (Figure 6.1), and 〈U †V 〉 is ob-
tained by measuring the expectation value of the ancilla qubit. Summing over these
expectation values gives us our desired quantity CAB [56].

As an example of DQS in action, consider the N -body Hamiltonian

H = σz,1 ⊗ σz,2 ⊗ . . .⊗ σz,N , (6.5)

where σz,i acts on the ith qubit. This Hamiltonian is not a sum over local terms, nev-
ertheless it can still be simulated efficiently using a circuit implementing U(∆t) ≈
e−i~H∆t (Figure 6.2).

In fact, any Hamiltonian of the form

H =
N⊗
i=1

σα,i (6.6)

where α = {x, y, z} can be simulated on a similar quantum circuit.
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Figure 6.3: Schematic of the AQS procedure. By evolving the controllable quantum
simulator using U ′, we can model the evolution of the system due to U . Recreated from
[54].

6.1.2 Analog quantum simulation

The approach taken with analog quantum simulation (AQS) is summarised in Figure
6.3. The idea is to mimic the evolution of a complex system with a quantum sim-
ulator; a controllable model which can reproduce the system’s dynamics accurately.
This requires a mapping to exist between the system and simulator, e.g.

Hsim = pHsysp
−1. (6.7)

Here p is an operator that maps the initial state of the system to the correspond-
ing state in the simulator: |φ(0)〉 = p |ψ(0)〉. The state is evolved on the simulator:
|φ(t)〉 = e−i~Hsimt |φ(0)〉, before it is mapped back to the system to obtain the final
state of the system: |ψ(t)〉 = p−1 |φ(t)〉.

As an example mapping between a quantum system and a simulator, consider the
Dirac equation for a spin-1/2 particle with rest mass m in (1 + 1) dimensions:

i~
∂ψ

∂t
= HDψ = (cp̂σx +mc2σz)ψ, (6.8)

where c denotes the speed of light, p̂ is the momentum operator and σx, σz are the
Pauli matrices. Gerritsma et al. demonstrated that this system could be simulated
using a single trapped ion interacting with a bichromatic light field [57], with Hamil-
tonian:
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HI = 2η∆Ω̃σxp̂+ ~Ωσz. (6.9)

Here, η is the Lamb-Dicke parameter and Ω̃ is a parameter controlled by the inten-
sity of the bichromatic light field. ∆ =

√
~/2m̃ωax is the size of the ground-state

wave function, with m̃ representing the trapped ion mass and ωax the axial trapping
frequency.

By identifying c = 2ηΩ̃∆ and mc2 = ~Ω, it is clear to see that HD and HI have the
same form. Hence the relativistic spin-1/2 system can be studied by simulating the
non-relativistic trapped ion, which is a more controllable system. In this way, pecu-
liar quantum effects such as Zitterbewegung can be investigated [57].

The system and simulator must be sufficiently similar for AQS to be successful.
Therefore, the devices used for AQS are specialised to narrow classes of quantum
systems, unlike the universal, all-purpose machines envisioned to be used for DQS
in the future. Hence, AQS has the advantage over DQS in terms of near-term practi-
cal implementations.

6.2 Applications

The established and potential applications of quantum simulation span the fields
of physics and chemistry. The physical implementation of quantum computers has
provided a means of probing systems which were intractable on classical computers.
We will discuss a selection of these applications here; for more examples see [54].

6.2.1 Condensed matter physics

Quantum many-body systems are notoriously difficult to study via classical compu-
tation, but quantum simulation can help provide insight into these systems. This
could assist with the tackling of several unresolved problems within condensed mat-
ter physics, surrounding quantum phase transitions and high temperature supercon-
ductivity.

Simulations in this area are usually based around adaptations of fundamental mod-
els such as the Ising model (6.2) or the Bose-Hubbard:

HBH = −J
∑
i,j

b̂†i b̂j +
1

2
U
∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i (6.10)

Here, J denotes the hopping amplitude, U is the atom-atom interaction strength, b̂†i
and b̂j are the bosonic creation and annihilation operators, n̂i = b̂†i b̂i is the number of
atoms on the ith lattice site, and µ is the chemical potential. A similar Hamiltonian
exists for the Fermi-Hubbard model; these are the simplest models for interacting
particles on a lattice.
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Other important models are the spin models for spin systems:

HXY Z =
∑

α=x,y,z

N∑
i=1

Jασ
α
i σ

α
i+1. (6.11)

The AQS or DQS of all these models have been either proposed (e.g. [58]) or ex-
perimentally realised (e.g. [59, 60]) on numerous occasions. In terms of insightful
implementations, the quantum phase transition from a superfluid to a Mott insula-
tor, which had been predicted thirteen years prior, was finally probed through an
AQS simulation of the Bose-Hubbard model [61]. In addition, the transition from
paramagnet to ferromagnet has been emulated via a simulation of a spin system de-
scribed by the quantum Ising model [62].

Other areas of condensed matter research where quantum simulation may prove
to be invaluable include spin glasses [63] and high temperature superconductivity
[64].

6.2.2 High energy physics

We have already discussed the simulation of the Dirac equation in 1 + 1 dimensions.
A proposal to expand the simulation space to 3 + 1 dimensions has also been pre-
sented [65], again using a single trapped ion with a Hamiltonian akin to (6.9).

As well as the aforementioned Zitterbewegung (rapid oscillatory motion of Dirac
particles), another peculiar quantum effect that physicists desire to probe is the Klein
paradox. This is an effect seen when scattering electrons from a potential barrier:
this barrier is virtually transparent when

V ∼ mc2, (6.12)

i.e. the barrier’s potential is a similar magnitude to the electron mass. Using quan-
tum simulation, we have the capability to investigate this phenomenon [66] and
solve problems beyond the capabilities of classical computing.

In terms of applications to gauge theories, vital in the scientific quest to tackle in-
tractable aspects of QCD, see [67] for a comprehensive report of recent proposals
for simulation implementations. This report also includes a review of the first proof-
of-principle simulations of the Schwinger model.

6.2.3 Other fields

Other research areas that could benefit from quantum simulation implementations
include:
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Cosmology

Liu and Li generalised an algorithm for simulating quantum field theories, for the
purpose of simulating cosmic inflation [68]. A recent article discusses the challenges
of overcoming nonlinearities within cosmological simulations, problematic as quan-
tum gates are linear. Using variational quantum computing (see Section 7.4), these
challenges can be overcome, subsequently opening up a pathway towards dark mat-
ter simulations [69].

Nuclear physics

Nuclear physics is another scientific field which involves the solving of complex N -
body problems. A recent workshop, entitled Intersections between Nuclear Physics and
Quantum Information welcomed 116 experts to explore collaboration opportunities
between the two fields. This produced a white paper [70], which includes a discus-
sion of the contrasting approaches of AQS and DQS, within the context of nuclear
physics.

Quantum chemistry

Several polynomial-time quantum algorithms have been proposed that can speed up
calculations and simulations within quantum chemistry. These include DQS-based
approaches for calculating the thermal rate constant [71] and the energy spectrum
of the hydrogen atom [72]. A good review of the applications of quantum simulation
within chemistry can be found in [73].
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Other quantum algorithms

Covering more than a minute fraction of the quantum algorithms developed to date
is impossible in a report of this length. At the time of writing, Stephen Jordan’s
comprehensive ‘Quantum Algorithm Zoo’ cites 430 different papers on the subject
[74]. This chapter will outline some of the more impactful algorithms from the past
twenty-five years.

7.1 Quantum walks

7.1.1 Random, discrete and continuous walks

Classical random walks have proven to be significant mathematical tools for de-
scribing the behaviour of processes in a variety of fields, ranging from science and
engineering to economics and sociology. Applications include estimating the size of
search engines [75], modelling stock market prices [76] and predicting human re-
sponse times during perceptual classification tasks [77].

Random walks are stochastic processes, where the action at each time step is deter-
mined by some probability distribution. A walk is often viewed as a graph G, with
vertices V denoting the states and edges E representing the allowed transitions. The
simplest example is the one-dimensional random walk on the integer line.

The ‘walker’ begins at 0, and at each step walks right (+1) with probability p or left
(-1) with probability q = 1 − p; each action decided by a toss of a biased coin. In
this case, the probability of the walker being at position X after N steps follows a
binomial distribution [78]:

PN(X) =

(
N

N+X
2

)
p
N+X

2 q
N−X

2 (7.1)

The quantum analogue to this example is the discrete quantum walk on a line
(DQWL). These are defined using a walker and coin, each of which are quantum
systems living in their own Hilbert spaces, Hp and Hc respectively. Our total Hilbert
space is then:

59



7.1. QUANTUM WALKS Chapter 7. Other algorithms

H = Hc ⊗Hp, (7.2)

therefore, the walk is defined by a product of two unitary operators. The coin oper-
ator puts the coin state into a superposition, so the Hadamard gate is often chosen
for this. Meanwhile the conditional shift operator acts to shift the walker right if the
coin state is |0〉, and left if it is |1〉:

S = |0〉c 〈0| ⊗
∑
i

|i+ 1〉p 〈i|+ |1〉c 〈1| ⊗
∑
i

|i− 1〉p 〈i| (7.3)

Hence, the complete unitary operator applied to determine each step of the walk is

U = S · (H ⊗ 1p) (7.4)

The randomness in this process is introduced by repeatedly operating with U , only
taking a measurement after several iterations. After k steps the total state of the
system is succinctly given by

|ψ〉 = Uk |ψ0〉 (7.5)

After these iterations, states of different phases interfere constructively and destruc-
tively. Measurement of the position states produces an antisymmetric probability
distribution skewing left or right if the initial coin state is |1〉 or |0〉 respectively.

This contrasts to the symmetric distribution produced by a classical walk beginning
at 0, with equal probability of going left or right (Figure 7.1).

The continuous version of quantum walks was formulated by Farhi and Gutmann
[80]. It is defined as follows (following [81]):

Take a graph G = (V,E) where |V | = v. The random walk can be defined by the
v × v infinitesimal generator matrix M , where

Mab =


−β a 6= b, a & b connected by an edge
0 a 6= b, a & b not connected
kβ a = b, k is the valence of vertex a

(7.6)

We can define a Hamiltonian Hcw in a Hilbert space H with matrix elements Mab =
〈a|Hcw|b〉. Using this we can construct the following Schrodinger equation for a state
|ψ〉 ∈ H:

i
d 〈a|ψ(t)〉

dt
=
∑
b

Mab 〈b|ψ(t)〉 (7.7)

Hence, we can say that the unitary evolution operator U = e−i~Hcwt defines the con-
tinuous quantum walk on graph G.
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Figure 7.1: Probability distribution from one-dimensional discrete classical (blue) and
quantum (orange) random walks after 50 time steps [79].

The advantage that quantum walks possess over random walks is two-fold. Algo-
rithms based on quantum walks generally have a lower hitting time (time taken to
find a particular target vertex) or lower mixing time (time taken for the walk to
converge to its limiting distribution). The latter quantum speedup can be quadratic
while the former can be exponential; both are useful in helping quantum walks out-
perform their classical counterparts.

7.1.2 Applications

One key computational problem where quantum walks have been implemented to
achieve quantum speedup is the element distinctness problem. The problem is self-
explanatory: given a black box implementing a function f acting on a set of inputs
M = {x1, . . . , xN}, determine inputs xi and xj such that f(xi) = f(xj).

Ambainis solved the problem by reducing it to finding a marked vertex vs on a graph,
then used a continuous quantum walk procedure to search the graph for a marked
vertex [82]. If vs exists, then we know that xi = xj for some i, j ∈ S ⊆ N .

This form of procedure has subsequently been generalised to general search proce-
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dures [83]; in fact, Grover’s algorithm can be seen as a special type of quantum walk.

Another interesting application is the efficient evaluation of Boolean formulae. In
particular, it was proven that any AND-OR Boolean formula ϕ on N binary inputs
can be evaluated using O(N1/2+O(1/

√
logN)) operations [84]. To achieve this result,

they used a discrete quantum walk on the tree representation of the formula, before
applying a quantum phase estimation procedure to evaluate ϕ.

This algorithm displays a polynomial speedup over the best classical algorithm
(O(N0.753)). This problem is particularly interesting, as evaluating AND-OR trees
can help with determining the winner of some two-player games.

The applications of quantum walks are becoming as varied as their classical coun-
terparts. One exciting emerging area of quantum computing in general is quantum
machine learning (QML). A recent study demonstrated how discrete quantum walks
can be applied to speed up a deep learning process to predict how proteins fold in
3D, an extremely important problem within biochemical research today [85].

Therefore, quantum walks may prove to be one of the most powerful tools within
the field. [86] provides a comprehensive review of this extremely exciting area of
research, which has plenty of open challenges.

7.2 Solving linear systems

Solving linear equations is a fundamental task in almost all areas of science and en-
gineering. Therefore, the demonstration by Harrow, Hassidim and Lloyd [87] that
quantum computers can provide an exponential speedup in solving linear systems
is extremely significant. It can be argued that the HHL algorithm has the greatest
potential for widespread applicability.

The problem is simple: given a Hermitian N ×N matrix A, and a unit vector b, find
x such that Ax = b.

Since A is Hermitian, we can define its decomposition in terms of its eigenvalues
and eigenvectors:

A =
N−1∑
j=0

λj |uj〉 〈uj| . (7.8)

The vector |b〉 can be decomposed using the same basis:

|b〉 =
N−1∑
j=0

bj |uj〉 , (7.9)

so the aim of the HHL algorithm is to produce the state
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QPE QPE†

c

n

|0〉
S

R |1〉

|0〉
C H⊗c QFT †c QFTc H⊗c |0〉

|b〉
I

U U † |x〉

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

Figure 7.2: Quantum circuit for the simulation of (6.5) for N = 3.

|x〉 = A−1 |b〉 =
N−1∑
j=0

λ−1
j bj |uj〉 (7.10)

7.2.1 HHL algorithm

The quantum circuit for this procedure is displayed in Figure 7.2. This algorithm
uses three quantum registers: a c-qubit clock register C, an n-qubit input register I
(N = 2n), where the vector |b〉 is loaded, and an extra ancilla register S.

Algorithm 9 HHL algorithm for solving linear systems

1: |ψ1〉 = |0〉 |0〉⊗n |b〉 . Prepare initial state
2: |ψ2〉 =

∑N−1
j=0 bj |0〉S |λj〉C |uj〉I . Perform QPE on C and I

3: |ψ3〉 =
∑N−1

j=0

(√
1− C2

λ2j
|0〉+ C

λj
|1〉
)
S
bj |0〉⊗cC |uj〉I
. Apply controlled rotation to ancilla qubit

4: |ψ4〉 =
∑N−1

j=0

(√
1− C2

λ2j
|0〉+ C

λj
|1〉
)
S
bj |0〉⊗cC |uj〉I

. Apply inverse QPE to uncompute C
5: Measure ancilla qubit
6: if Output is |1〉 then
7: Return |x〉 (which is stored in I)
8: else
9: Go back to step 1

10: end if

The procedure can roughly be divided into three stages. The first step is to apply the
quantum phase estimation (QPE) algorithm using the unitary operator

U = eiAt =
N−1∑
j=0

eiλjt |uj〉 〈uj| (7.11)

As explained in Algorithm 5, QPE performs the mapping
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|0〉⊗cC |b〉I →
∣∣∣λ̃j〉

C
|b〉I , (7.12)

where
∣∣∣λ̃j〉 is the c-bit representation of the estimation of λj, and the subscripts

denote which register each qubit belongs to. In the eigenbasis of A the state after
QPE can be rewritten as (now assuming the estimation is perfect for simplicity):

N−1∑
j=0

bj |0〉S |λj〉C |uj〉I . (7.13)

The next step is to apply a controlled rotation operator on an ancilla qubit, controlled
by |λj〉, resulting in the state:

N−1∑
j=0

(√
1− C2

λ2
j

|0〉+
C

λj
|1〉

)
S

bj |λj〉C |uj〉I (7.14)

where C is a normalising constant.

The final step is to apply the inverse QPE to reset the clock register, leaving the state
as

N−1∑
j=0

(√
1− C2

λ2
j

|0〉+
C

λj
|1〉

)
S

bj |0〉⊗cC |uj〉I (7.15)

We now make a measurement of the ancilla qubit; if |1〉 is measured the remaining
state is (ignoring the clock register):√

1∑N−1
j=0 C2|bj|2/|λj|2

N−1∑
j=0

bj
C

λj
|uj〉I , (7.16)

This has the same form as (7.10) up to a normalisation factor, which can be worked
out from the probability of obtaining |1〉.

If |1〉 is not obtained, the desired matrix inversion has not taken place, and the whole
algorithm must be repeated. The expected number of repetitions is O(κ), where κ
is the condition number of A: the ratio between A’s largest and smallest eigenvalues.

This algorithm produces the quantum state |x〉 rather than the vector x. Instead of
retrieving all the components of the vector (which requires at least N repetitions),
we instead seek to extract some property of x. This is done by mapping a linear op-
erator M to a quantum-mechanical operator, then measuring the expectation value
〈x|M |x〉.

The HHL algorithm has a time complexity of O(log(N)κ2s2/ε), where s is the sparsity
of A and ε is the total error in the procedure. Therefore, an exponential speedup is
achieved over the best classical algorithm; the conjugative gradient method [88],
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which runs with O(Nsκ log(1/ε)).

7.2.2 Applications

Following the first proof-of-concept implementations in 2013 [89, 90, 91], the HHL
algorithm has proven to be an invaluable tool within several practical problems. For
example, Dominic Berry extended this procedure to describe an efficient algorithm
for solving inhomogeneous, sparse, linear differential equations, which describe a
variety of physical systems [92].

Clader, Jacobs and Sprouse generalised the HHL algorithm to compute the electro-
magnetic scattering cross section of an arbitrary target [93]. One important aspect
of their method was the use of a preconditioner, which removes the HHL algorithm’s
running time’s dependence on κ. This significantly expands the range of problems
that can be solved using this procedure.

The cross section was calculated using the Finite Element Method (FEM), a widely-
used method within engineering and mathematics for solving boundary value prob-
lems. This involves dividing the problem domain into small volume elements, before
applying boundary conditions at neighbouring elements. This creates a large system
of linear equations to solve, hence the HHL algorithm’s utility is justified.

Similar to quantum walks, the HHL algorithm also finds applications within quantum
machine learning. HHL-based QML algorithms have been created for data classifica-
tion tasks, including the quantum support vector machine (QSVM) [94]. The quan-
tum version of this well-established machine learning approach involves expressing
the SVM as an approximate least-squares problem, which can be solved via matrix
inversion using the HHL algorithm.

Another example of a QML application is linear regression. Wiebe, Braun and Lloyd
showed how the optimal fit parameters for the fit function can be obtained using an
algorithm that employs a HHL-based subroutine [95]. A further HHL-inspired pro-
cedure has shown the potential to be commercially useful within recommendation
systems [96] used to generate user-tailored playlists on services such as Spotify and
Netflix.

7.3 Adiabatic algorithms

We have already touched on the AQC model earlier in this dissertation, but it is use-
ful to outline an example of its use to solve a problem. The adiabatic algorithm is
applicable to almost any CSP, many of which are NP-complete, including the afore-
mentioned 3-SAT problem.
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Consider a n-bit instance of 3-SAT: a Boolean formula with clauses containing 3 bits:
each bit zi, i = {1, 2, . . . , n} taking the value 0 or 1 [20]. Considering each clause C,
we can define an energy function

hC(ziC , zjC , zkC ) =

{
0, if (ziC , zjC , zkC ) satisfies C
1, if (ziC , zjC , zkC ) violates C.

. (7.17)

Hence the total energy h =
∑

C hc = 0 if and only if (z1, . . . , zn) satisfy all the clauses.

Turning from the classical to the quantum viewpoint, the bits are replaced by qubits
|zi〉, again either |0〉 or |1〉. We now have an operator for each clause

HP,C(|z1〉 |z2〉 . . . |zn〉) = hC(ziC , zjC , zkC ) |z1〉 |z2〉 . . . |zn〉 , (7.18)

from which we define our problem Hamiltonian

HP =
∑
C

HP,C . (7.19)

Hp |ψ〉 = 0 if and only if |ψ〉 is a superposition of the form |z1〉 |z2〉 . . . |zn〉, where zi
satisfy all the clauses as before.

Therefore, solving the 3-SAT problem can be reduced to finding the ground state
of HP . As explained previously, we must also describe an initial Hamiltonian HB

whose ground state is simpler to find. The 1-bit Hamiltonian acting on the ith qubit
is defined as

H
(i)
B =

1

2
(1− σx), (7.20)

Note that in this case, it is actually independent of i. This has an eigenvalue equation
H

(i)
B |xi = x〉 = x |xi = x〉, with eigenstates

|xi = 0〉 =
1√
2

(
1
1

)
, |xi = 1〉 =

1√
2

(
1
−1

)
(7.21)

Taking HB,C = H
(ic)
B +H

(jc)
B +H

(kc)
B , our initial Hamiltonian is

HB =
∑
C

HB,C , (7.22)

with ground state

|x1 = 0〉 |x2 = 0〉 . . . |xn = 0〉 =
1√
N

∑
z1

∑
z2

. . .
∑
zn

|z1〉 |z2〉 . . . |zn〉 , (7.23)

the latter expression written in the basis of HP as a superposition over all N = 2n

basis states.
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Hence, we have all the ingredients for AQC. After preparing the qubits in the ground
state of HB, the system evolves according to the Schrodinger equation with Hamil-
tonian (2.5). For large enough T , the final state should hold the solution to the
satisfiability problem. In the case that there is no satisfying assignment, the number
of violated clauses is minimised instead.

As well as the satisfiability problem and other CSPs, several fundamental algorithms
already discussed can be reshaped into the AQC format. Grover’s, D-J and B-V algo-
rithms have all been implemented adiabatically; see [97] for full details and some
more examples. Even the factoring problem can be tackled by the adiabatic algo-
rithm: this involves converting factoring into an optimisation problem, before incor-
porating the cost function into the problem Hamiltonian [98].

One open challenge concerning the adiabatic algorithm is the lack of rigorous upper
bounds on its runtime [30]. This can be calculated for specific problem instances,
but to date the time complexity has not been determined in general. Finding a
standard procedure to determine the required T to solve an arbitrary problem would
be invaluable for this purpose.

7.4 Variational quantum algorithms

The current age of quantum technology has been dubbed the Noisy Intermediate-
Scale Quantum (NISQ) era [99]. This is characterised by the absence of fully scal-
able, fault-tolerant quantum computers. Current state-of-the-art quantum processors
have around 50-100 qubits and limited error correction, hence they are prone to de-
coherence and other quantum noise.

This is not to say that quantum devices of this size are not useful. We have already
seen how NISQ computers can outperform the fastest supercomputers for certain
tasks [26, 27]. A key challenge for researchers today is to discover algorithms that
can achieve quantum advantage on NISQ devices, despite their obvious limitations.

Variational quantum algorithms (VQAs) could form the solution to this problem.
These are typified by their hybrid quantum/classical approach: a classical optimiser
is employed to optimise a parameterised quantum circuit. This is a general frame-
work, hence VQAs can be easily adapted to solve a wide variety of problems. In fact,
VQAs have been proposed for almost all the applications that have been envisioned
for quantum computing [100]. This makes them possibly the most significant cate-
gory of algorithms for near-term research.

The main inputs for a standard VQA are an objective function, which encodes the
problem’s solution, and an ansatz: a parameterised unitary operation, trained itera-
tively to optimise the objective function. Each loop consists of the quantum computer
using the inputs to estimate the cost, before the classical computer uses this informa-
tion to update the ansatz parameters. This is repeated until a satisfactory solution is
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found.

To illustrate this, we will now detail one of the most prominent VQAs within research
today.

7.4.1 Quantum approximate optimisation algorithm

This famous algorithm, introduced by Farhi, Goldstone and Gutmann in 2014 [101],
can be used to find approximate solutions for a variety of combinatorial optimisation
problems. This study described its application to the NP-hard Max-Cut problem:

Max-Cut

The problem is simple: given a graph G, find a maximum cut.

By maximum cut, we mean a partition of the nodes of a graph into two sets,
such that the number of edges between the two sets is as large as possible.

Consider a four-node, square graph, with each vertex either red or blue. With
four nodes and two sets, there are 24 = 16 possible assignments for the nodes;
three of these are given below.

The first two assignments require a cut across two edges to divide the nodes by
colour, whereas the third assignment requires all four edges to be cut. Hence
this final assignment is the solution: denoting red as 0 and blue as 1, the
bitstrings 0101 and 1010 represent the optimal solutions.

Figure 7.3: Three of the sixteen possible assignments for the Max-Cut problem
for a 4-node graph.

More formally, for a graph with n vertices and a set of edges 〈jk〉, the goal is to find
a string z to maximise the objective function

C =
∑
〈jk〉

C〈jk〉 (7.24)
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which is a sum of local terms

C〈jk〉 =
1

2
(−σzjσzk + 1) (7.25)

Mirroring the procedure for AQC, we define the objective function as our problem
Hamiltonian: C = HP . This comes with a unitary operator

U(HP , γ) = e−iγHP =
∏
〈jk〉

e−iγC〈jk〉 , (7.26)

where γ is an angle between 0 and 2π.

The initial, or mixing Hamiltonian is defined as:

HB =
n∑
j=1

σxj (7.27)

and the corresponding unitary operator, with β running from 0 to π:

U(HB, β) = e−iβHB =
n∏
j=1

e−iβσ
x
j . (7.28)

The ground state of HB, which is the initial state of the QAOA procedure, is simply
the superposition state |s〉 = 1

2n

∑
z |z〉.

Having prepared this initial state, the two unitary operators U(HP , γ) and U(HB, β)
are applied p times in alternating fashion, producing the state:

|γ,β〉 = U(HB, βp)U(HP , γp) . . . U(HB, β1)U(HP , γ1)) |s〉 (7.29)

Here, γ ≡ γ1 . . . γp, and similar for β. p is chosen as any integer ≥ 1; a larger p
improves the quality of the approximation, with the downside of increasing the al-
gorithm’s complexity.

Finally, a measurement in the standard computational basis obtains a string z, hence
the objective function C(z) can be evaluated.

The classical optimisation for this particular problem is actually completed prior to
this quantum procedure, rather than iteratively after every run. The idea is to choose
angles (γ,β) to maximise the expectation value of HP :

Fp(γ,β) = 〈γ,β|HP |γ,β〉 (7.30)

This quantity is useful, as maximising Fp is equivalent to maximising C(z). Several
classical optimisers do exist, but finding an effective method to consistently generate
these optimal angles is an open challenge.
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QP

. . .n|0〉 H⊗n U(HP , γ1) U(HB, β1) U(HP , γp) U(HB, γp)

Figure 7.4: Top: High-level quantum circuit for the quantum part of the QAOA algo-
rithm. Bottom: Simple flow diagram showing the iteration process.

Once the optimiser has found the optimal values of (γ,β), the quantum procedure
can be done several times to find many sample strings z. The string that produces
the highest value of C(z) is taken as the solution.

A schematic of the QAOA algorithm for a general problem is shown in Figure 7.4.

7.4.2 Other variational quantum algorithms and applications

Aside from the QAOA, another well-known VQA is the variational quantum eigen-
solver (VQE) [102]. This algorithm seeks to find the ground state energy EG of a
Hamiltonian by minimising its expectation value over a trial state. In other words,
the cost function is

C(θ) = 〈ψ(θ)|H|ψ(θ)〉, (7.31)

where |ψ(θ)〉 = U(θ) |ψ0〉. Hence the ansatz in this case is U(θ), and |ψ0〉 is the initial
state. The Rayleigh-Ritz variational principle constrains

C(θ) ≥ EG (7.32)
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and this is an equality if |ψ(θ)〉 is the ground state of H. The VQE incorporates a
similar prepare-measure-optimise-recompute procedure as the QAOA.

Other efficient VQAs have recently been proposed for various mathematical tasks,
including problems already discussed; solving linear systems of equations [103] and
factoring [47]. A variational approach to quantum simulation has also been pro-
posed: instead of implementing the unitary evolution, the state |ψ(θ)〉 is evolved by
iteratively updating the parameters θ [104].

The iterative, optimisation-based approach of VQAs fits perfectly with the QML
framework, hence there is no surprise we find applications in this area. VQAs can be
helpful in tasks such as supervised learning. The quantum variational classification
process [105] includes applying a parameterised ansatz W (θ), where the parame-
ters are again optimised during the training of the classifier. The cost function to be
minimised is simply the error probability of assigning the wrong label.

A fantastic survey of VQAs can be found in [100]: this report references 261 papers,
most of which were released within the last two years. This is a telling indicator of
the current high activity within VQA research and development.

7.5 Algorithm unification

In recent years some researchers have been working on a framework for unifying
some of the major algorithms. At surface level, the schemes for factoring, search and
simulation share little resemblance. However, a quantum singular value transforma-
tion (QSVT) approach has been developed [106] and expanded [107] to formulate
algorithms for all three of these problems.

QSVT is built on a technique called quantum signal processing (QSP). This is a
method involving the alternating application of two rotation operators. The first
is a signal rotation operator

W (a) =

(
a i

√
1− a2

i
√

1− a2 a

)
, (7.33)

where a = cos θ/2 and θ is the fixed angle of rotation around the x-axis of the Bloch
sphere. The second is a variable angle, signal processing rotation operator

S(φ) = eiφZ , (7.34)

where φ = (φ0, φ1, . . . , φd) ∈ Rd+1. By applying the QSP sequence

Uφ = S(φ0)
d∏

k=1

W (a)S(φk), (7.35)

a matrix is produced with each term a polynomial function of a (P (a), Q(a)):
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Uφ =

(
P (a) iQ(a)

√
1− a2

iQ∗(a)
√

1− a2 P ∗(a)

)
(7.36)

Hence the action of QSP is to apply a polynomial transformation to each component
of W (a).

QSVT generalises this method by using the QSP sequence to polynomially transform
all the singular values of a block-encoded matrix. Specifically, take the singular value
decomposition (SVD) of an arbitrary matrix A:

A = MΣN †. (7.37)

M and N are unitary matrices while Σ is a diagonal matrix containing the singular
values of A : {σk}. The columns of M(|mk〉) and N(|nk〉) are known as the left
and right-singular vectors respectively. Hence the SVD of A can be rewritten as an
eigenvalue decomposition:

A =
r∑

k=1

σk |mk〉 〈nk| , (7.38)

where r is the rank of A - the number of nonzero singular values.

Therefore, after block encoding A into a unitary matrix

U =

(
A ·
· ·

)
(7.39)

we can apply a QSP operation of a similar style to (7.35), with projector controlled
phase shift operations Πφ and Π̃φ replacing S(φ). This produces a similar matrix to
(7.36):

Uφ =

(
Poly(SV )(A) ·

· ·

)
, (7.40)

where Poly(SV )(A) differs slightly if d is even or odd:

Poly(SV )(A) =

{∑
k Poly(σk) |wk〉 〈vk| d odd∑
k Poly(σk) |vk〉 〈vk| d even

(7.41)

The flexibility of the QSVT process comes from the parameterisation of the poly-
nomial transformation. The QSP phase angles φ = (φ0, φ1, . . . , φd) completely de-
termine the form of the transform, so the action of QSVT can be controlled and
manipulated easily.

This controllability allows us to realise a variety of different algorithms using the
same model. Each algorithm simply involves intertwining quantum gates and mea-
surements with QSVT, which is applied using a quantum oracle.
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Since the three major algorithms form the basis of the majority of quantum algo-
rithms, a QSVT subroutine can be used to construct nearly all known quantum al-
gorithms. In that sense, a grand unification of quantum algorithms may be possible:
see [107] for a complete discussion of this.
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Chapter 8

Conclusion

In this review, we discussed the origins of quantum computing, from Turing to
Feynman, before breaking down the key quantum mechanical concepts that pro-
vide quantum advantage. Surveys of quantum computation models and quantum
complexity theory followed; a solid knowledge base in these areas allowed us to
tackle the main focus of this dissertation with more precision.

We then broke down the three major ‘primordial’ algorithms in detail: Shor’s algo-
rithm for factoring, Grover’s quantum search algorithm and the quantum simulation
algorithm. For each we discussed the procedure, the origin of the quantum speedup
over classical schemes, related algorithms and relevant applications.

Finally, we explored an array of more modern algorithms and their applications,
including areas where research is currently being conducted. Again, the reader is
guided to peruse the various reviews referenced throughout this report to fill in any
gaps.

The field of quantum algorithms is relatively new compared to traditional research
areas within the quantum community. The number of publications released during
such a short period speaks volumes about the activity within this area, and the vast
potential for these algorithms to make an impact, both academically and commer-
cially across numerous industries.

We have already discussed the limitations of current quantum machines due to de-
coherence and other forms of noise. While NISQs provide an adequate architecture
for near-term applications, the development of fault-tolerant devices will take the
field of quantum algorithms to new heights.

Another challenge researchers are currently tackling is the problem of loading and
storing data on quantum computers. The quantum analogue of RAM is qRAM (quan-
tum random access memory), and just like its classical counterpart, qRAM will be
essential for large-scale quantum computers. There are current concerns about the
susceptibility of QRAM implementations to noise, as well as large overhead. See
[108] for a recent study of these issues.
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Chapter 8. Conclusion

Fighting these practical issues, developing algorithms and finding new applications
for these procedures are the three main keys to unlocking this field’s true potential.
If we can continue the current rate of innovation, practical quantum computers may
become a staple within academic and industrial research within the next decade or
two.
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