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Abstract

This project focuses on Causal Set Theory as an approach to Quantum Gravity that replaces the idea
of continuum spacetime with a discrete collection of events ordered by causality. As a consequence,
the road to quantization is taken through a Sum-over-Histories framework, abandoning the canonical
way.
After investigating some properties of the free decoherence functional, I deal with interactions, for-
mulating an expression for the interacting k-point function in φ4 theory on a fixed background causal
set. Expanding perturbatively, I focus on the two-point function: I evaluate all the contributions for
2 points in the interaction region and up to third order for 3 interaction vertices, in terms of retarded
and Feynman propagators. Then, I develop a diagrammatic method to represent the perturbation ex-
pansion for all orders and arbitrary number of interaction points, assigning a mathematical expression
to each element of the pictorial representation. To conclude, I propose rules to construct the allowed
diagrams, estimating all terms at any order without doing any calculation.
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Chapter 1

Introduction

But you have correctly grasped the drawback that the continuum brings. If the molec-
ular view of matter is the correct (appropriate) one, i.e., if a part of the universe is to be
represented by a finite number of moving points, then the continuum of the present theory
contains too great a manifold of possibilities. I also believe that this too great is responsible
for the fact that our present means of description miscarry with the quantum theory. The
problem seems to me how one can formulate statements about a discontinuum without
calling upon a continuum (space-time) as an aid; the latter should be banned from the
theory as a supplementary construction not justified by the essence of the problem, which
corresponds to nothing “real”. But we still lack the mathematical structure unfortunately.
How much have I already plagued myself in this way!
- Albert Einstein [Ein16]

In 20th century physics, the two established theories were general relativity and quantum mechanics,
which had been supported by experimental evidences and observations. While general relativity ac-
counts for gravity and deals with phenomena involving large scale objects such as orbiting planets
and colliding galaxies, quantum mechanics describes particles and interactions between them, i.e. the
microscopic behaviour of matter. However, the key features of the two theories seem to diverge from
a common line: quantum theory demands for non-continuity, non causality and non-locality whereas
relativity is based upon continuity, strict causality and locality. Then, the challenge arises to under-
stand how these two pillars are related, leading theoretical physicists to work towards a still unknown
unified theory, called quantum gravity.

1.1 Problems with the continuum

In our discussion, we can summarize the main inconsistencies of the current theories in physics, de-
scribing three infinities which point towards a discrete rather than a continuum spacetime [Sor97a].
The first one is expressed by the equation Z = ∞ in quantum field theory. This problematic con-
tribution was approached via renormalization in the 1940 and 50s. This method suggests that the
theoretical description deals with physical quantities, e.g. mass and charge, which are different from
the ones measured in experiments. For instance, the discrepancy in the measured mass and charge is
explained by the persistent particle self-interactions. Then, recasting the theory in terms of measured
parameters gives finite results. However, the bare quantities become infinite as their values are renor-
malised in order to obtain the measured values. Arising due to spacetime continuity at very small
length-scales, these divergences become problematic in many approaches to gravity quantization.
In classical general relativity, the gravitation equations of motion can break down, no longer providing
a valid answer and leading to the second infinity. In physically realistic conditions, the spacetime
geometry has a singularity where physical quantities diverge, such as Rabcd = ∞ at the singularities,
meaning that the curvature blows up there. Although there are still doubts on whether the singularities
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are a mathematical artifact or they actually happen, spacetime at a singularity can not be reliably
described by general relativity.
The third infinity arises in quantum gravity, when evaluating the black hole entropy counting the
degrees of freedom of the horizon, i.e. SBH = ∞, [LBS86]. Consequently, Planck scale discreteness
is required to recover the Area-Entropy law for black holes using statistical mechanics of a quantum
theory.
In addition to physical arguments, conceptual problems with the continuum have been developed.
Firstly, in a continuum spacetime, every region has the same number of points. Indeed, it is not
possible to find the volume of a region of spacetime, since such counting leads to infinity. A contin-
uum spacetime volume is defined through a volume measure, assigning a real number to a region to
evaluate its volume. Despite mathematically well-defined, some measures result in physical absurdity.
The Banach-Tarski paradox is a notorious example: a sphere is divided in pieces which are recombined
obtaining twice the volume of the initial sphere.
Another conceptual complication relies on the non-uniqueness of mathematical definition of the con-
tinuum. For instance, the equivalence classes of Cauchy sequences of rational numbers construct the
real numbers R from integers. However, a different equivalence relation would lead to, for example,
non-standard analysis, allowing for infinitesimally small and infinitely great quantities. Then, the
continuum we deal with seems the consequence of an historical accident. The physical appearance of
continuity of space played an important role for the formulation of the continuum. On the other hand,
the mathematical choices for its definition are not always physically motivated, leading to inconsisten-
cies when describing the spacetime in our universe.

1.2 Discretness

There are numerous hints from our present theories of physics suggesting a discrete framework. Fol-
lowing the idea of quantum mechanics, where matter is treated as made of small building blocks, i.e.
quanta, some approaches to quantum gravity take into account discrete spacetime [Ori06]. In this
project, we deal with causal set theory, which is one of them.
The most common choice for the discreetness scale from the entropy of black holes [Sor97a] is evalu-
ated starting from three important physical constants: G, Newton’s constant, c, the speed of light in
vacuum and ~ the (reduced) Planck’s constant. The Planck scale is then defined as

lP =

√
8πG~
c3

= 1.6162 · 10−35 m (1.1)

and the fundamental unit of volume Vf = νl4P where ν still needs to be determined and is a number of
order one. Supposing there is just one spacetime event per Vf then the number of events in 1 s m3 is
around 4.4 · 10147.
Discretness has been considered fundamental with its twin principle of causality in various attempts
to quantum gravity. In 1873 [Rie73], Bernhard Riemann arises the question on how geometry encap-
sulates both the notion of space and constructions in space. In particular, he focuses on the structure
of space that allows to define measurable quantities, requiring a discrete formalism in contrast with
the continuum framework. In 1959 [Coi59], Coish realizes that a new physical geometry is needed
to account for the elementary particles, suggesting a finite geometry. This idea is later expanded by
Shapiro [Sha60], focusing on weak interactions.
In 1978 [Myr78], Myrheim shows that the causal ordering of events and the four-dimensional volume
element completely describe the structure of general relativistic spacetimes. Assuming spacetime to
be discrete, coordinates and metric are derived as statistical concepts. His reformulation of Einstein’s
equations for the gravitational field in empty space allows for a statistical interpretation. However, his
treatment is only valid for large enough regions so that a statistically significant number of points are
contained by their volumes. The statistical framework is a key idea that causal set theory takes into
account [LBS87], as the continuum spacetime emerges via a random Poisson sprinkling, see 2.4.
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The year after, ’t Hooft assumes spacetime to be discrete as a lattice, publishing [tH79]. Chronological
ordering becomes manifestation of general invariance, giving structure to the lattice. Implicitly taking
the ordering as locally finite, timelike and spacelike distances in the lattice are discussed. To conclude,
a non-local action is formulated to describe the dynamics.
In 1988, Hemion [Hem88] focuses on the theory of action at a distance to model classical electrodynam-
ics on a discrete spacetime. It is central in his discussion the notion of position in a partially ordered
set.
Starting from these developments toward discreteness, causal set theory has been formulated [LBS87].

1.3 Overview

This project approaches quantum gravity through causal set theory, developing an interacting for-
malism. After setting the mathematical background in Chapter 2, we choose the sum over histories
formalism over canonical quantisation to deal with free quantum field theory on a fixed causal set
background. In Chapter 3, preparing the ground with some preliminary calculations, we introduce the
interaction terms. Then, we evaluate the two point function in Chapter 4, leading to propose rules
associated with our diagrammatic representation of the interactions in Chapter 5. The aim of this
project is to present a set of modified Feynman rules to implement a diagrammatic expansion for the
history based formalism of interacting causal set theory, in order to merge the useful characteristics of
this framework with the efficiency of the graphical representation.

1.4 A taste of phenomenology

Before diving in, I want to emphasise the most important phenomenological result from causal set
theory: the successful prediction of the cosmological constant Λ [Sor91]. From the classical unimodular
theory, Λ enters into the action for general relativity in the term −ΛV so that the 4-volume is conjugate
to the cosmological constant. In causal set, the uncertainty on the volume is related to the number N of
elements contained into V, undergoing a Poisson distribution as illustrated by section 2.4. Accordingly,
Λ should fluctuate about its "target value", which is zero.
The smallness of Λ is regarded as the statistical significance due to the large number of spacetime
elements constituting the universe, following the relation

Λ ∼
1√
N
, (1.2)

where N is the number of ancestors at a given cosmological epoch. As the number of spacetime el-
ements in the observable universe today is 10240, Λ has fluctuations of order 10−120 in the present
epoch. This prediction has been subsequently confirmed by observation.
It would be interesting to expand the discussion about the cosmological constant in a complete “quan-
tum caual set dynamics”. Moreover, given its initial success, the next step would be to develop a model
taking into account not only the instantaneous magnitude of the fluctuations but also their relations
throughout their evolution.
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Chapter 2

Causal set theory: background and
definitions

The noun ‘dividation’ means an unrestricted and generalized totality of acts of seeing
things as separate. As has been indicated earlier, di-vidation implies a division in the
attention-calling function of the word, in the sense that di-vidation is seen to be different
from vidation. [...] Rather, their very forms indicate that dividation is a kind of vidation,
indeed a special case of the latter. So ultimately, wholeness is primary, in the sense that
these meanings and functions pass into each other to merge and interpenetrate. Division
is thus seen to be a convenient means of giving a more articulated and detailed description
to this whole, rather than a fragmentation of ‘what is’. The movement from division to
oneness of perception is through the action of ordering. For example, a ruler may be divided
into inches, but this set of divisions is introduced into our thinking only as a convenient
means of expressing a simple sequential order, which we can communicate and understand
something that has bearing on some whole object, which is measured with the aid of such a
ruler. [...] But, of course, more complex orders are possible, and these have to be expressed
in terms of more subtle divisions and categories of thought, which are significant for more
subtle forms of movement. [...] Beyond all these orders is that of the movement of attention.
This movement has to have an order that fits the order in that which is to be observed, or
else we will miss seeing what is to be seen.
- David Bohm [Boh80]

2.1 Causality and spacetime

In 1905, bringing a paradigm change, Albert Einstein merged the separate concepts of space and time
into spacetime, a new arena where phenomena take place. The theory of special relativity replaced
Newtonian mechanics with relativistic mechanics, abolishing the notion of absolute time and space.
Following with general relativity, the curvature of spacetime has been related to gravitational effects.
Henceforth, the model of spacetime has not changed, becoming the background framework for the elab-
oration of new theories, such as quantum mechanics. Those developments brought light on unexpected
relations between quantum theory and gravity. Therefore, it is interesting to review how spacetime is
modelled by general relativity, in particular focusing on the concept of relativistic causality.
In general relativity, a four-dimensional Lorentzian manifold (M, g) defines spacetime, where g is a
symmetric non-degenerate tensor on M of signature (−,+,+,+). A collection of spacetime events
is represented by points in M in the limit of the event happening in smaller and smaller regions of
spacetime.
The tangent vectors X ∈ TpM, ∀ p ∈ M follow the classification in timelike, null or spacelike, given
g(X,X) is positive, zero or negative respectively. Furthermore, given timelike X,Y ∈ TpM , we ar-
bitrarily label Y as future directed if g(X,Y ) > 0 and past-directed if g(X,Y ) < 0, choosing −X
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instead of X would have reversed the definition. Then, if everywhere in the manifold the choice of
future-directed and past-directed timelike or null vectors is continuous and consistent, the Lorentzian
manifold is time-orientable.
Accordingly, smooth curves in M are categorized from the properties of their tangent vectors as:

• Chronological (or timelike) : the tangent vector is always timelike,

• Null : the tangent vector is always null,

• Spacelike : the tangent vector is always spacelike,

• Causal (or non-spacelike) : the tangent vector is always timelike or null.

Now, we are ready to build the causal structure on a manifold M , starting from its smooth curves.
Given two points u, v ∈M , if and only if there exists a future-directed timelike curve from u to v, then
u chronologically precedes v, i.e u� v, while if and only if there exists a future-directed causal curve
from u to v, then u causally precedes v, i.e. u � v. A Lorentzian manifold is causal if @ u, v ∈M such
that u � v and v � u, meaning that there are no closed causal curves.
The chronological relation on a causal Lorentzian manifold has the following properties:

• ∀ u ∈M,u 6� u, irreflexive,

• ∀ u, v, t ∈M,u� v � t⇒ u� t, transitive,

while the causal relation is:

• ∀ u ∈M,u � u, reflexive,

• ∀ u, v ∈M,u � v � u⇒ u = v, antisymmetric,

• ∀ u, v, t ∈M,u � v � t⇒ u � t, transitive.

Hence, we introduce two key theorems involving the causal structures of different Lorentzian manifolds.
Firstly, let us define a chronological isomorphism for two Lorentzian manifolds (M, g) and (M ′, g′) as
a bijection f : M →M ′, such that ∀ u, v ∈M , u� v ⇐⇒ f(u)� f(v), preserving the chronological
structure. Analogously, if ∀ u, v ∈ M , u � v ⇐⇒ f(u) � f(v), then the bijection in a causal
isomorphism, as it preserves the causal relations.
Malament’s Theorem Suppose that (M, g) and (M ′, g′) are two distinguishing Lorentzian manifolds
and f : M →M ′ is a chronological isomorphism, then f is a smooth conformal isometry. This means
f is a smooth map and that f∗g = Ω2g′ where Ω is a conformal factor: M ′ → R [Mal77].
Levichev’s Theorem Suppose that (M, g) and (M ′, g′) are two distinguishing Lorentzian manifolds
and f : M →M ′ is a causal isomorphism then f is a smooth conformal isometry [Lev87].
To conclude, we notice that the causal structure of a Lorentzian manifold determines its conformal
geometry. For instance, one of the 10 independent components of the metric of a four-dimensional
Lorentzian manifold is fixed by the conformal factor, determing det(g), while the other 9 are given by
the causal structure.
A more detailed discussion on relativity and causality is illustrated by Penrose [Pen72], Hawking and
Ellis [SH73].

2.2 Causal set theory

Causal set theory establishes a discrete framework with an order relation that reflects the causal
structure of a continuum spacetime. A causal set (or causet) is defined as a locally finite partially
ordered set (poset). Precisely, it is described by a pair (C,�) where C is a set with a partial order
relation � which satisfies:
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• Reflexivity ∀ a ∈ C, a � a

• Acyclicity ∀ a, b ∈ C, a � b � a⇒ a = b

• Transitivity ∀ a, b, c ∈ C, a � b � c⇒ a � c

• Locally finiteness ∀ a, c ∈ C, | [a, c] | < ∞, where the set [a, c] := {b ∈ C| a � b � c} is a causal
interval and |X| is the cardinality of a set X .

Then, the set of spacetime events is represented by the set C and the causal dependence between pairs
of events is given by the partial order �. For instance, for a � b, "a precedes b" means that a is in
the causal past of b.
The first three requirements are in agreement with the conditions of causal relations on causal Lorentzian
spacetimes. However, spacetime discretness enters in the the fourth requirement, since in a continuum
spacetime any causal interval contains an uncountably infinite number of spacetime events. Hence, it
is possible to define the notion of volume for a subset of C, as the number of spacetime events in the
spacetime region, giving always a finite result. Due to local finiteness, there is no distinction between
volume and number: "Number = Volume", in contrast with the continuum case where the volume
measure is derived from a metric, requiring extra structure. Then, a causal set has an ordering relation
and an implicit notion of volume, motivating the claim that the large-scale structure of spacetime can
be specified by just these two complementary information : "Order + Number = Geometry". The
most naive starting point is, to consider as spacetime, a single large causal set: it approximates a
Lorentzian manifold thanks to its "manifold-like" causal structure and the high number of events it
contains. This initial claim could be a motivation for why Lorentzian manifolds frameworks have been
found to work reasonably well in describing physics on large scales. With more insight, a classical
collection of causets or a large quantum superposition of many different of them could be regarded as
spacetimes.
My work focuses on spacetime as a single fixed causal set, elaborating how quantum field interactions
work on it.

2.3 Embeddings

The definition of embedding is useful to relate causal sets to continuum Lorentzian manifolds. An
embedding of a causal set (C,�) into a Lorentzian manifold (M, g) is a map f : C →M , such that if

u � v ∈ C ⇐⇒ f(u) � f(v) ∈M,

preserving the causal structure.
An embedding of a causal set (C,�) into a Lorentzian manifold (M, g) is faithful if the images of
elements in the causal set follow a uniform distribution in M in agreement with the volume measure
on M . Moreover, we restrict to the case where the scale over which the variation of the manifold
geometry happens is larger than the embedding scale.

Conjecture 2.3.1. Hauptvermutung If a causal set can be faithfully embedded into two Lorentzian
manifolds (M, g) and (M ′, g′), then the two manifolds are similar on large scales, where large means
> 10−15 cm.

It is important to notice that we did not use the term "identical" since the structure of the manifold
at scales smaller than the discreteness scale can not be described by a faithful embedding. The limiting
case of the conjecture where the density of causet points in a unit volume tends to infinity is proven
by [BM89], however more steps are needed for a general proof.
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2.4 Sprinkling

We posed the question about the relation between a given causal set and a spacetime, and vice versa.
However, it is difficult to determine if a given Lorentzian manifold is a faithful embedding of a causal set.
It is possible to construct causal sets which automatically faithfully embed into Lorentzian manifolds
through sprinkling. This method consists in a random process for generating a causal set selecting
points from a causal Lorentzian manifold. Placing points according to a Poisson distribution, the
probability that a randomly chosen C has n points in a volume V is

P (|C ∩ V | = n) =
(ρV )ne−ρV

n!
, (2.1)

where ρ is the sprinkling density which estimate the number of points placed in a unit volume. Then,
in a volume V, the expected number of points is evaluated by ρV . Hence, a causal set is generated:

Figure 2.1: Given a 2-dimensional Minkowski spacetime, this is a possible distribution of 1000 points
sprinkled into a causal interval. [Ric21]

the elements are chosen through sprinkling and the causal relation is induced by the order relations
among the selected elements within the continuum spacetime. An example of a resulting distribution
in 1+1 dimensional spacetime is shown in 2.1 for 1000 points. To avoid that causal relations violate
antisymmetry, we exclude manifolds with closed causal curves, restricting to causal Lorentzian mani-
folds. To summarize, if a causal set C is originated by sprinkling into a spacetime M , then it can be
faithfully embedded into the causal Lorentzian manifold.

2.4.1 Motivation - Lorentz invariance

The justification of the choice of a Poisson distribution is related to local Lorentz invariance. Infact, we
want to avoid generating a causal set which selects a particular direction in spacetime. For instance,
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performing a Lorentz transformation on all the sprinkled points in a fixed frame will change their
coordinates but not their distribution. They will be statistically identical, still following a Poisson
distribution. The reason is that the sprinkling process depends only on spacetime volumes which are
Lorentz-invariant quantities. Specifically, before and after performing the Lorentz transformation, the
expected number of points in a region of volume V is given by ρV . On the other hand, if we perform a
Lorentz transformation on points arranged on a regular lattice, the resulting distribution of points will
be statistically different from the original one. Applying a boost will give irregularly distributed points,
breaking Lorentz invariance. Given such a discrete structure as fundamental, highly boosted frames
would not be described as manifolds. Therefore, our choice of sprinkling through a random Poisson
process guarantees "statistical Lorentz invariance" so that in all frames the statistical distribution of
points stays unchanged. Among the possible approaches to discretisations of Lorentzian manifolds, one
of the main features which distinguish causal set theory is its local Lorentz invariance. However, the
problem of sprinklings into infinite Minkowski spacetime is that the number of "nearest neighbours" of
each causal set element is infinite, in contrast with a hyper-cubic lattice, for which it is finite. This first
infinity is one of the criticisms against causal set theory [Moo88], indicating that the theory supports
the idea that every point is affected by an infinity of neighbours arbitrarily far back in time. However,
this obstacle has no relevance in this work since we are considering only finite causal sets.

2.5 Coarse graining

Given a spacetime (M, g), it is possible to define the causal set (C,�) for different ρ. Starting with
a causal set (C,�), which may or may not faithfully embed into (M, g) with ρc, a smaller subcausal
set C′ ⊂ C which faithfully embeds into (M, g) at ρ′c < ρc can be obtained following a process called
coarse-graining [Sor02]. The most common example is a random selection of n′ points in C such that
n′ = (ρ′c\ρc) n for every n elements of C.
Hence, removing some points from the causal set C, we look for a faithfully embeddable subset. For
instance, analysing quantum regimes, the causets representing the microscopic states can not faithfully
embed into a manifold on the large scales. However, we expect them to have a common coarse
graining from which a manifold can be recovered. Being itself a random process, causet theory allows
to define coarse graining in agreement with the inverse procedures of continuum approximation and
discretisation.
Futhermore, this method guarantees the notion of scale dependent topology to be realised in causal set
theory. In many quantum gravity approaches, the topology of spacetime at scales close to the Planck
scale is described by wormholes or other nontrivial excitations [Ori06]. However, it is difficult to find
a continuum correspondence of such a structure. Instead, in causal set theory, coarse graining may
generate various causets resulting in continuum approximations with different topologies.

2.6 Definitions

It is useful to state some definitions which will be frequently recalled in this project.

• Given a � b and a 6= b, we write a ≺ b, where a ≺ b is an irreflexive relation known as strict
causal relation. If a � b and b � a, a, b are unrelated, writing a||b.

• Given the pair (Q,�′) and (P,�), if Q is a subset of P and the order relation �′ is equivalent to
� when imposed to just elements in Q, then (Q,�′) is a sub-poset of a poset (P,�).

• An Alexandrov set is defined as the set [a, c] := {b ∈ C, a � b � c} given a ≺ c. This definition
includes the end points of the interval, then a, c ∈ [a, c].

• An integer is assigned to the elements of C by labelling, such as ax for x = 1, . . . , |C|. The natural
labelling is defined as ax � ay ⇒ x ≤ y
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• A partial order in which there are no unrelated elements is called total order. A subset of a causal
set (C,�) which is totally ordered when considered as a sub-poset of (C,�) is called a chain; a
chain with repeated elements is a multichain. A set with elements which are mutually unrelated
is an antichain

• A relation a ≺ c so that @ b ∈ C with a ≺ b ≺ c, is a link, expressed as a ≺ ∗b, where a and b are
called nearest neighbours.

• A subset P ⊂ C is a path if it is a maximal (or saturated) chain, i.e. @ b ∈ C − P such that
a ≺ b ≺ c for some a, c ∈ P

• A total order (C,≤) which is consistent with the partial order of a causal set (C,�) is called
linear extension, i.e. a � b⇒ a ≤ b ∀ a, b ∈ C.

2.6.1 Dimensions

Assuming the relation between causal set and causal Lorentzian manifold holds, it is interesting to
study how geometrical information can be extracted from an order relation. We focus on the most
fundamental feature of a manifold’s topology: its dimension. The effective continuum dimensions of
a causal set can be evaluated following different approaches. We present three of them [Sor02], which
assign a dimension to an interval I in a causet C, where I ≈ L and L is a double light cone interval in
Minkowski space Md.
Myrheim-Meyer dimension [Mey88] We label with N the number of elements in I and R the number of

relations in I, evaluating the number of pairs x, y such that x ≺ y. Let us define f(d) = 3
2

(
3d\2
d

)−1

.

Then, f−1(R/

(
N
2

)
) gives an estimate of d for N � (27\16)d

Midpoint scaling dimension Given I = interval(a, b), m ∈ I is called the “midpoint” if it maximizes
N ′ = min{|interval(a,m)|, |interval(m, b)|}. Then, we can calculate the dimension as d = log2(N\N ′)
A third method The dimensions are determined by d = lnN

ln lnK where K is the total number of chains
in I. A good accuracy is assured for exponentially large N due to the logarithmic relation.

2.7 Causal Sets representation

There are multiple ways of representing causal sets. Let us introduce an example to illustrate the most
common ones:

C = {a1, a2, a3, a4, a5}

a1 � a1, a1 � a2, a1 � a3, a1 � a4, a1 � a5,

a2 � a2, a2 � a4, a2 � a5,

a3 � a3, a3 � a5,

a4 � a4, a4 � a5,

a5 � a5,

It is clear that (C,�) satisfies the four requirements for a causal set.

2.7.1 Hesse Diagrams

The elements of the causal set are represented as dots and if ax ≺ ∗ ay so that they are linked, then
ax is drawn lower than ay connected by a line, as shown by 2.2

14



a3

a5

a4

a2

a1

Figure 2.2: The Hesse Diagram of the example causal set

a3

a5

a4

a2

a1

Figure 2.3: The directed graph of the example causal set

2.7.2 Directed Graphs

The elements are again given by points but here all relations are highlighted with lines connecting the
involved elements, as represented in 2.3

2.7.3 Adjacency matrices

Given a causal set C with p elements labelled as a1, . . . , ap, C can be represented with two different p
× p matrices.
The causal matrix given by

Cij :=

{
1 if ai ≺ aj
0 otherwise

(2.2)

and the link matrix defined as

Lij :=

{
1 if ai ≺ ∗ aj
0 otherwise

(2.3)

We can notice that both matrices are zero on the main diagonal and if natural labelling is chosen, L
and C are strictly upper triangular matrices. In the example, the resulting matrices are

C =


0 1 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

 L =


0 1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

 (2.4)
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2.8 Free Scalar Field theory on a causal set in operator form

At a fundamental level quantum field theory is the best theory to describe matter. Combining quantum
mechanics with special relativity, the most successful result is the Standard Model which accounts for
the electromagnetic, weak and strong forces. However, the theory is not mathematically well-defined
due to the presence of divergences typically related to integrals. In 1940, renormalization has been
introduced to deal with such complications, leading to admit our ignorance about the behavior at very
small length scales. Alternatively, considering discrete spacetime, a model for matter is formulated to
try to avoid the divergences from the beginning.

2.8.1 Propagators in the continuum

Firstly, we start with a brief review of the continuum case. Consider a gaussian free real bosonic scalar
field φ in flat spacetime Md. The theory consists of

1. Equations of motion for all the operators φ(x), ie. Klein-Gordon equation (�+m2)φ(x) = 0

2. Equal time canonical commutation relations, such as [φ(x), ∂φ(y)/∂t] = iδd−1(x − y) where
x = (x0, xi) with i = 1, . . . , d−1 , m is the mass of the field and� = ∂2

xi−∂
2
x0 is the d’Alembertian.

3. Creation and annihilation operators (a†x, ax) which act on a Fock space F, including a Poincarè
invariant vacuum state |0〉 for which ax|0〉 = 0.

As the commutation relations are invariant under the time-evolution generated by the field equations,
the fundamental consistency between the two expressions is ensured in our theory. Therefore, we decide
to express the commutation relation in Peierls form from which Lorentz invariance is evident [Pei52].
Let GR(x, y) to be the retarded Green function, which vanishes unless y is in the past light cone of x,
i.e. y ≺ x, satisfying (� + m2)GR(x, y) = δd(x − y). Then, the difference between the retarded and
advanced Green functions defines the Pauli-Jordan function as

∆(x, y) = GR(x, y)−GR(y, x) = GR(x, y)−GA(x, y). (2.5)

This expression holds because the advanced Green function can be evaluated as the "transpose" of the
retarded one in any globally hyperbolic spacetime. Hence, the commutation relations in Peierls form
are given by

[φ(x), φ(y)] = i∆(x, y), (2.6)

vanishing if the wave operator (�+m2) acts on them. In addition, the Feynman propagator is evaluated
as

GF (x, y) = i〈0|T φ(x)φ(y)|0〉, (2.7)

representing the vacuum expectation value of the time-ordered product of two field operators. The time
ordering sets the time increasing from right to left. From this last expression without time ordering,
the two-point function (or Wightman function) is defined as

W (x, y) = 〈0|φ(x)φ(y)|0〉. (2.8)

To summarize, the steps to define a real scalar free theory in continuum spacetime are:
wave operator → GR → [φ, φ].
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2.8.2 Propagators on a causal set

Now, as we deal with causal set, we immediately realize that there is no such thing as an equation of
motion for the field operator. Therefore, the approach starts from the retarded Green function. Take a
finite causal set (C,�) with p elements c1, . . . , cp which is obtained by a sprinkling with density ρ into
a finite interval of Md. To define the propagator in this framework, we need to choose the appropriate
trajectories to which assign an amplitude. Then, the obvious options are all chains or paths between
two elements. Due to local finiteness, there are only a finite number of such relations. As shown in
[Joh08], the retarded propagator KR is given by a p × p matrix of the form
if d=2

K
(2)
R := aC(I − abC)−1, (2.9)

where a = 1
2 , b = −m2

ρ , I is the identity matrix, C is the causal matrix 2.2 and m is the mass of the
field,
or if d=4

K
(4)
R := aL(I − abL)−1, (2.10)

where a =
√
ρ

2π
√

6
, b = −m2

ρ and L is the link matrix 2.3. Then, deriving the advanced propagator as
KA = KT

R , it is possible to define the analogue of the Pauli Jordan function as the real matrix

∆ := KR −KA. (2.11)

The matrix i∆ results as skew-symmetric (i∆T = −i∆) and Hermitian (i∆† = i∆). These two features
guarantee this matrix to have even rank, namely 2s, and real positive and negative pairs of non-zero
eigenvalues, as shown in [Per58]. We can identify its eigenvalues and normalised eigenvectors as

i∆ui = λiui i∆vi = −λivi i∆wk = 0, (2.12)

where λi > 0, i = 1,. . . , s ; k = 1,. . . , p − 2s.
Hence, it is possible to write the Pauli-Jordan function as

i∆ =
s∑
i=1

λiuiu
†
i −

s∑
i=1

λiviv
†
i , (2.13)

where we can distinguish its Hermitian, positive semi-definite part as

W =

s∑
i=1

λiuiu
†
i ≥ 0, (2.14)

so that

i∆ = W −W T = W −W ∗. (2.15)

These operators have orthogonal support so that

W W ∗ = W ∗ W = 0. (2.16)

In addition, we express

W =
1

2
(
√

(i∆)2 + i∆), (2.17)

leading to recognise its real and imaginary part as

R[W ] =

√
(i∆)2

2
I[W ] =

∆

2
(2.18)
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Now, we define a free real bosonic scalar field on a causal set by considering an algebra of operators
φx = φ†x such that [Joh08]

1. [φx, φy] = i∆xy, analogue of 2.6 in the continuum

2. i∆w = 0 ⇒
∑p

x′=1wx′φx′ = 0, meaning that any linear combination of field operators that
commutes with all the field operators vanish. This is equivalent to imposing the wave equation
on operators as shown in [Joh10].

3. φx =
∑s

i=1

√
λi(ui)xai +

√
λi(vi)xa

†
i where ai and a†i are annihilation and creation operators

acting on a Fock space in which a Fock vacuum state vector |0〉 satisfies the conditions ai|0〉 =
0 ∀ i = 1, . . . , s

From the last point, it is straightforward to derive the Wightman function as

〈0|φ(x)φ(y)|0〉 =
s∑
i=1

s∑
j=1

√
λiλj(ui)x(vj)y〈0|aia†j |0〉 =

s∑
i=1

s∑
j=1

√
λiλj(ui)x(vj)yδij = Wxy. (2.19)

Again, equivalently to the continuum, we can estimate the Feynman propagator, after fixing a linear
extension (C,≤) with causal matrix Ā as

GxyF = i〈0|T φ(x)φ(y)|0〉 :=

{
iWyx if cx ≤ cy
iWxy if cy ≤ cx

= i(ĀxyWyx + ĀyxWxy + δxyWxy), (2.20)

where δxy is the Kronecker delta. Generally, an arbitrary order can be assigned to pairs of unrelated
elements by different linear extensions without ambiguity on GF since the field operators commute for
pairs of unrelated elements. Noticing that Āxy(i∆xy) = (iKR)xy and using 2.15, we get ĀxyWyx =
Āxy(Wxy − i∆xy) = ĀxyWxy − i(KR)xy. As this result is substituted in the second expression for GF
in 2.20 and using Āxy + Āyx + δxy = 1 ∀ x, y = 1, . . . , p, we get

GF = KR + iW, (2.21)

which clearly shows the real and imaginary part to be

R[GF ] = KR −
∆

2
=
KR +KA

2
I[GF ] = R[W ]. (2.22)

Therefore, the new path has been traced as KR → ∆→W to find propagators in causal set, avoiding
to consider the wave equation.
It is important to notice that 2.14, 2.15 and 2.16 can be considered as "ground-state condition" imposed
on W beyond what follows from its definition as the two-point function of a selfadjoint operator φx.
Then, the Sorkin-Johnston (SJ) vacuum is defined through its Wightman function satisfying the three
conditions above [NA12]. Then, from now we consider the expectation values to be taken with respect
to Ψ, denoting the SJ vacuum state.
As in the classical analogue, we are dealing with a gaussian theory, however, it is necessary to specify
its meaning in the causal set context. Since there is no Schrödinger representation, any vacuum wave
function will not have an exponential form that satisfies the definition of a gaussian. On the contrary,
given the SJ vacuum, Wick’s theorem can be applied as usual since the Wightman function is known
and the φxs are linear combinations of raising and lowering operators. Then, we characterize the
possibility of applying Wick’s pattern as a manifest feature of gaussian distributions. For instance,
considering Φ as a superposition of φx, we can show that [Sor11]

〈exp
{

Φ
}
〉 =

∑
n

〈Φn〉
n!

=
∑
n

〈Φ2n〉
2n!

=
∑
n

(2n− 1)!!〈ΦΦ〉n

2n!
=
∑
n

1

n!

〈ΦΦ〉n

2n
= exp

{
〈ΦΦ

2
〉
}
, (2.23)

which is a consequence of Wick’s theorem we will require, showing explicitly a gaussian form.
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2.9 A history-based framework

In general relativity, the notions of "event" and "4-D spacetime history" are fundamental while the
idea of a "3-D state" of the whole world frozen in time has no relevance. In quantum theory, the path
integral gives an approach to quantum foundations that takes into account the concepts of event and
history that are primary in general relativity [FD20].
The canonical approach is the most standard route to quantisation, which starts with the phase space
of a classical system and then construct Hilbert spaces and self adjoint operators. The spacetime
has a split as M = Σ × R, where Σ is a Cauchy hypersurface, which is necessary to define the
canonical phase space variables capturing the intrinsic and extrinsic geometry of Σ. However, a Cauchy
hypersurface cannot be meaningfully defined in the continuum approximation of causal set. To show
our last statement, we recall some terminology. An antichain is a set of unrelated elements in C, and
an inextendible antichain is an antichain P ⊂ C so that every element u ∈ C\P is related to an element
of P. Therefore, the discrete counterpart of a Cauchy hypersurface is an inextendible antichain P,
dividing C into its future and past such that C = Fut(P )tPast(P )tP , where t denotes the disjoint
union. However, it is possible to trace a link from an element in Past(P ) to an element in Fut(P ),
"ignoring" P. Since P is not a summary of its past, canonical quantization through the definition of
Cauchy hypersurfaces can not be applied [Sur19].
Hence, dynamics can not be based on the idea of Hamiltonian evolution since a continuous time variable
is not present in causal set theory, abandoning the canonical approach and demanding a histories-
based formalism for quantization. A histories-based formulation of a field theory works directly with
field configurations φ, or "histories", avoiding to introduce field operators or state-vectors, except as
technical tools [Sor07b]. Then, the path-integral is recasted from its role as a mere mathematical device
to compute propagators or S-matrix elements; it becomes the fundamental dynamical object of the
theory [Sor10]. It is important to specify that with this approach we are not dealing with the quantum
theory of causal sets themselves but the quantum theory of a field on a fixed spacetime background,
whether continuous (Lorentzian manifold) or discrete (causal set), with no back reaction.
The starting point is a sample space Ω of possible histories which is related to a physical, quantum
system. Ω is the space over which the integration of the path integral takes place. In a scalar field
theory, a history ξ is associated to a real or complex function on spacetime and gives a complete
classical description of physical reality within the theory.
While in the continuum the histories are field configurations on a fixed Lorentzian manifold of general
relativity, in causal set scalar QFT, the background is a fixed causal set or locally finite partial order
to which the manifold is only an approximation.
Following the sum-over-histories formalism, we assign an amplitude to each process which is simply
the sum of the amplitudes for all the ways the process can occur, computing physically meaningful
probabilities instead of a transition amplitude. In the continuum this sum diverges, while if it was
evaluated on a causal set, we would expect a finite summation because the number of diagrams to
represent propagation that could be squeezed onto a finite causal set is finite [Joh10].
The amplitudes are assigned to pair of histories in contrast with the familiar path-integral formulation
which considers individual histories. Such a pair of histories is known as “Schwinger history” from the
Schwinger-Keldysh treatment of the path integral, or in-in formalism.

2.9.1 Event algebra

Given a sample space, any subset of Ω which gives a proposition about physical reality is called event.
A non-empty collection, U, of subsets of Ω such that

1. ∀ α ∈ U, Ω\α ∈ U ;

2. ∀ α, β ∈ U, α ∪ β ∈ U

defines an event algebra on a sample space Ω. Given this algebra of sets, it is straightforward that
∅ ∈ U, Ω ∈ U where ∅ is the empty set and U satisfies the closure property under finite unions and
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intersections. In addition, the event algebra is a Boolean algebra under union (logical ‘or’), intersection
(‘and’) and complement (‘not’) with unit element Ω and zero element ∅. It is also a unital ring with

1. identity element Ω

2. α · β := α ∩ β multiplication as intersection,

3. α+ β := (α\β) ∪ (β\α) addition as symmetric difference

This ring is Boolean since α · α = α and is also an algebra over Z2. More details on the event algebra
are elucidated in [Sor07a].

2.9.2 Decoherence functional

A decoherence functional on an event algebra U is a map D : U × U → C satisfying the following
properties [FD10]:

1. Hermiticity, ∀ α, β ∈ U, D(α, β) = D(β, α)∗;

2. Linearity, ∀ α, β, γ ∈ U with β ∩ γ = ∅, D(α, β ∪ γ) = D(α, β) +D(α, γ);

3. Normalization, D(Ω,Ω) = 1;

4. Strong positivity, the N × N matrix D(αi, αj) is positive semidefinite where αi ∈ U is any finite
collection of events with i = 1, . . . , N .

We also define a quantal measure on an event algebra U as a map µ : U→ R, fulfilling the requirements
of:

1. positivity, ∀ α ∈ U, µ(α) ≥ 0;

2. quantal sum rule, for mutually disjoint α, β, γ ∈ U, µ(α ∪ β ∪ γ)− µ(α ∪ β)− µ(β ∪ γ)− µ(α ∪
γ) + µ(α) + µ(β) + µ(γ) = 0;

3. normalization, µ(Ω) = 1.

The second condition captures the "quadratic nature" of µ, which is a feature mathematically distin-
guishing quantum physics from classical physics.1 Let the decoherence functional be D : U × U → C,
then a quantal measure is given by the map µ : U→ R such that µ(α) := D(α, α).
A quantum measure system is represented by (Ω, U, D): the sample space expresses the kinematics,
while the dynamics is defined by the event algebra and decoherence functional. It is important to
highlight the lack of the bridge between this formal structure and its physical meaning, although many
attemps have been made [Sor07b][Sor97b].

2.9.3 Free Decoherence functional in causal set

Given a causet (C,�) of cardinality N, the decoherence functional is expressed by

D(ξ, ξ̄|Ψ) = 〈δ(φ1 − ξ̄1)δ(φ2 − ξ̄2)...δ(φN − ξ̄N )δ(φN − ξN )...δ(φ2 − ξ2)δ(φ1 − ξ1)〉Ψ, (2.24)

where φi = φ(xi), ξ
i = ξ(xi), and i = 1 . . . N is any natural labeling of all the elements x ∈ C, i.e

xj ≺ xk ⇒ j < k. Furthermore, all the φs are field operators and ξ and ξ̄ are two independent histories.

1The squares of sums of amplitudes are the probabilities, alternatively to just sums of elementary probabilities. This
corresponds physically to the phenomenon of interference.
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Each history is a list of real numbers, one for each element of the causet.
Expressed differently with the δ-functions as integrals, 2.9.3 becomes

D(ξ, ξ̄|Ψ) =

∫ ∞
−∞

dλ1

2π

dλ2

2π
. . .

dλ̄1

2π

dλ̄2

2π
〈e−iλ̄1ξ̄1−iλ̄2ξ̄2···−iλ2ξ2−iλ1ξ1〈eiλ̄1φ1eiλ̄2φ2 . . . eiλ2φ2eiλ1φ1〉Ψ, (2.25)

where the real numbers λi and λ̄i are independent parameters of the Fourier transform. This form
is known as the "non-commutative characteristic function", playing the same role as its homonym
in ordinary probability theory. It is important we recall that we are assuming the expectation
value is taken in some fixed Gaussian state Ψ i.e. we are assuming we know W xy := 〈φxφy〉Ψ (=
〈Ψ|φxφy|Ψ〉 if the state is pure). The subscript Ψ denotes the SJ state defined through the conditions
in 2.8.2, which is the closest analogue on the causal set to the Minkowski vacuum in the continuum
[NA12].
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Chapter 3

Discussion

3.1 Preliminary calculations

Before proceeding to deal with interactions, let us work through the free theory. Firstly, we want to
make sure that the normalization condition is satisfied, i.e.∫

dξ1δ(φ1 − ξ1) = 1 etc. and so∫
dN ξ̄ δ(φ1 − ξ̄1)δ(φ2 − ξ̄2) . . . δ(φN − ξ̄N ) = 1,∫
dNξ δ(φN − ξN ) . . . δ(φ2 − ξ2)δ(φ1 − ξ1) = 1 ,

leading to
∫
dN ξ̄

∫
dNξ D(ξ, ξ̄|Ψ) = 1,

(3.1)

where 1 is the identity operator. Then, we integrate all the ξ̄ and ξ variables except for one ξx so that
we evaluate the marginal probability density for φx. With the aid of 2.23, we get∫

dα

2π
exp{−iαξx}〈exp{iαφx}〉 =

∫
dα

2π
exp{−wα

2

2
− iαξx} =

1√
2πw

exp{−(ξx)2

2w
}, (3.2)

where w = 〈φxφx〉 giving a gaussian, as expected for a free field.
We introduce the following notation to highlight the opposite order of the causet elements in the two
halves of the Schwinger history:

−→
W xy :=


W xy if x ≤y

W yx if y ≤ x

←−
W xy :=


W xy if y ≤ x

W yx if x ≤ y
= −iGxyF , (3.3)

where GxyF is the Feynman Green function and noting that
←−
W and

−→
W are complex conjugates of each

other. In addition, define �F := i
←−
W−1.

Let us say x ≺ y. Then∫
dN ξ̄ D(ξ, ξ̄|Ψ)ξxξy = 〈δ(φN − ξN ) . . . ξyδ(φy − ξy) . . . ξxδ(φx − ξx) . . . δ(φ1 − ξ1)〉Ψ

= 〈δ(φN − ξN ) . . . φyδ(φy − ξy) . . . φxδ(φx − ξx) . . . δ(φ1 − ξ1)〉Ψ (3.4)

and so ∫
dNξ

∫
dN ξ̄ D(ξ, ξ̄|Ψ)ξxξy = 〈φyφx〉Ψ

= 〈T [φxφy]〉Ψ . (3.5)
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where T is time ordered product, ordering the factors from later to earlier from left to right.
Let y ≺ x, then

∫
dN ξ̄ D(ξ, ξ̄|Ψ)ξxξy = 〈δ(φN − ξN ) . . . ξxδ(φx − ξx) . . . ξyδ(φy − ξy) . . . δ(φ1 − ξ1)〉Ψ

= 〈δ(φN − ξN ) . . . φxδ(φx − ξx) . . . φyδ(φy − ξy) . . . δ(φ1 − ξ1)〉Ψ (3.6)

and so

∫
dNξ

∫
dN ξ̄ D(ξ, ξ̄|Ψ)ξxξy = 〈φxφy〉Ψ

= 〈T [φxφy]〉Ψ
=
←−
W xy . (3.7)

This is an operator argument which can be confirmed from firstly integrating all but two of the field
values in the decoherence functional. For y ≺ x, it results as

∫
dα

2π

dβ

2π
exp{−iαξx − iβξy}〈exp{iαφx}exp{iβφy}〉

=
1

4π2

∫
d2α exp{−i~α · ~ξ} exp{−1

2
αT
←−
W~α}

=
1

4π2

∫
d2α exp{i~α · (−~ξ)} exp{ i

2
αT (i
←−
W )~α}

=
1

4π2

√
4π2

det
←−
W

exp{ i
2
ξT (i
←−
W−1)~ξ}

=
1

2π

√
1

det
←−
W

exp{ i
2
ξT�F ~ξ},

(3.8)

where ~ξ =

(
ξx

ξy

)
and ~α =

(
α
β

)
. The following identity was used in the integration:

∫
dnv exp{ i

2
vTA~v + i ~J · ~v} =

√
(2πi)n

detA
exp{− i

2
JTA−1 ~J}. (3.9)
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If we integrate 3.8 over ξx and ξy, we get
√

1

det
←−
W

√
−1

det(�F ) , giving the identity as expected. Now let
us evaluate the following correlation

∫
dNξ

∫
dN ξ̄ D(ξ, ξ̄|Ψ)ξxξy =

1

4π2

√
4π2

det
←−
W

∫
d2ξ ξxξy exp{ i

2
ξT�F ~ξ}

=
∂

i∂�xyF

1

4π2

√
4π2

det
←−
W

∫
d2ξ exp{ i

2
ξT�F ~ξ}

=

√
4π2

det
←−
W

∂

i∂�xyF

1

4π2

√
(2πi)2

det�F

=
1√
det
←−
W

∂

∂�xyF

1√
det�F

=
1√
det
←−
W

∂

∂�xyF

1√
�xxF �

yy
F − (�xyF )2

=
1√
det
←−
W

�xyF
(�xxF �

yy
F − (�xyF )2)3/2

=
1√
det
←−
W

i(
←−
W−1)xy

(det(i
←−
W−1))3/2

= −det
←−
W · (

←−
W−1)xy =

←−
W xy, (3.10)

where we used that W−1 = 1

det
←−
W

(
W yy −W xy

−W yx W xx

)
, verifying 3.6.

Similarly, we have that

∫
dα

2π

dβ

2π
exp{−iαξx − iβξ̄y}〈exp{iαφx}exp{iβφy}〉

=

∫
dα

2π

dβ

2π
exp{−i(β α)

(
ξ̄y

ξx

)
}〈exp{−1

2
(β α)

(
W yy W yx

W xy W xx

)(
β
α

)
}〉

=

∫
dα

2π

dβ

2π
exp{−i(α β)

(
ξ̄x

ξy

)
}〈exp{−1

2
(αβ)

(
W xx W xy

W yx W xx

)(
α
β

)
}〉

=
1

2π

√
1

detW
exp{ i

2
ηT�~η}, (3.11)

where η =

(
ξ̄x

ξy

)
and � ≡ iW−1.

Carrying out the η integral we would get
∫
dη exp{ i2η

T�~η} =

√
(2πi)2

det� .
Now we estimate the correlation function as

∫
dNξ

∫
dN ξ̄ D(ξ, ξ̄|Ψ)ξ̄xξy =

1

2π

√
1

detW

∫
dη ξ̄xξy exp{ i

2
η�η}

=
1

2π

√
1

detW

∂

i∂�xy

∫
dη exp{ i

2
η�η}

...
= W xy. (3.12)
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Finally, we have that∫
dNξ

∫
dN ξ̄D(ξ, ξ̄|Ψ)ξ̄xξ̄y =

1

2π

√
1

det
−→
W

∫
d2ξ̄ ξ̄xξ̄y exp{ i

2
ξ̄�̄ξ̄} =

−→
W xy (3.13)

Without doing any further work we see that∫
dNξ

∫
dN ξ̄ D(ξ, ξ̄|Ψ)ξxξx = 〈φxφx〉Ψ =: W xx . (3.14)

Also for ∫
dNξ

∫
dN ξ̄ D(ξ, ξ̄|Ψ)(ξx)m = 〈(φx)m〉Ψ (3.15)

we can use Wick’s theorem, e.g. for m= 4, we have that∫
dNξ

∫
dN ξ̄ D(ξ, ξ̄|Ψ)(ξx)4 = 〈(φx)4〉Ψ = 3W xx . (3.16)

Hence, we can state the general expression∫
dNξ

∫
dN ξ̄ D(ξ, ξ̄|Ψ)ξx1ξx2 . . . ξxk = 〈T [φx1φx2 . . . φxk ]〉Ψ (3.17)

=: −iG0F (x1, x2, . . . , xk), (3.18)

where we define −iG0F as the free "Feynman k-point function", where the term "Feynman" is used
to highlight that this is an expectation value of a time ordered product of field operators in the SJ
state Ψ. Then, in the case of a gaussian state, this can be easily evaluated because knowing the
Wightman function W , all the higher free k-point functions can be calculated by Wick’s formula. The
path integral version of Wick’s theorem states that for any gaussian integral

G0F (x1, x2, . . . , xk) = i
∑

W
xj1xj′1 . . .W

xjN/2
xj′

N/2 (3.19)

where k is even and the sum is over all the possible ways of arranging the set {1, 2, . . . , k} into
pairs. Now, we are ready to approach the interacting case where we replace D(ξ, ξ̄|Ψ) in 3.17 by the
interacting decoherence functional.

3.2 Interacting Decoherence functional for φ4 theory

Given a causet (C,�) of cardinality N, we propose the interacting decoherence functional for φ4 theory:

D(ξ, ξ̄|Ψ,Λ) := N 〈δ(φ1 − ξ̄1)δ(φ2 − ξ̄2) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . (3.20)

δ(φ1 − ξ1)〉Ψ ei(ξ
4−ξ̄4)·Λ (3.21)

where

Λ = (λ1, λ2, λ3, . . . λN ) (3.22)

is a vector of N coupling constants, one for each causet element and

ξ4 · Λ :=
N∑
x=1

(ξi)4Λi etc. . (3.23)
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and N is a normalisation factor that needs to be worked out perturbatively.
The interacting decoherence functional D(ξ, ξ̄|Ψ,Λ) satisfies the "bi-additive property" of decoherence
functionals, following from its definition 2.9.2. In addition, it is possible to show that D(ξ, ξ̄|Ψ,Λ)
is strongly positive, requiring that there is the same Λ of coupling constants on both sides of the
"Schwinger history" for related ξ and ξ̄. As proven in [FD20], we can think to the free decoherence
functional as the set of all inner products 〈Ψ|O†O|Ψ〉 where O = δ(φN − ξN ) . . . δ(φ1 − ξ1) and Ψ a
pure state, defining a strongly positive matrix. The interaction terms add a phase (a complex number)
to the expression, preserving strong positivity.
In the first instance, we choose all the Λ′is to be zero except for one at point z, Λz = λ: Λ =
(0, 0, . . . , 0, λ, 0, . . . , 0, 0). Later, we will set more of the Λ′is to equal λ. However, we are also free to
choose different values of the coupling at different points. For example, the Λ′is could be zero except
in some interaction region and constant in the middle of that region and tend "smoothly" to zero in
some boundary region of the interaction region. This would describe an interaction which is turned on
smoothly.
Referring to [Car10], we deviate from a treatment that emphasises the spacetime approach and space-
time Feynman diagrams using Euclidean techniques and "Wick rotation" to get Lorentzian path inte-
gral expressions. We work in the Lorentzian ("real time") domain, meaning:

• we require that if two points are spacelike, the field operators at those points commute (micro-
causality condition),

• we introduce the factor eiλφ4 for interaction instead of e−λφ4 as in the Euclidean case.

Then, we aim to recast the results in [Car10] in terms of the causal set decoherence functional in
Lorentzian domain.

3.3 Hermiticity of D(ξ, ξ̄|Ψ,Λ)

Since φ† = φ for any point in the causal set, then

δ(φ− ξ) =

∫
R

dt

2π
e−itξeitφ , (3.24)

and so

δ(φ− ξ)† =

∫
R

dt

2π
eitξe−itφ

=

∫
R

dt′

2π
e−it

′ξeit
′φ

= δ(φ− ξ) , (3.25)

by changing variables to t′ = −t, proving δ(φ− ξ)† = δ(φ− ξ). Then, we have that

D(ξ, ξ)∗ = 〈δ(φ1 − ξ1
) . . . δ(φ1 − ξ1)〉

∗

= 〈δ(φ1 − ξ1)† . . . δ(φ1 − ξ1
)†〉

= 〈δ(φ1 − ξ1) . . . δ(φ1 − ξ1
)〉

= D(ξ, ξ) . (3.26)

3.4 Normalization

The normalisation condition is

1 = N (Λ)M(Λ) . (3.27)
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where

M(Λ) =

∫
dNξ

∫
dNξ D(ξ, ξ) ei(ξ

4−ξ̄4)·Λ , (3.28)

is real, as

M(Λ)∗ =

∫
dNξ

∫
dNξ D(ξ, ξ)∗ ei(ξ

4−ξ̄4)·Λ

=

∫
dNξ

∫
dNξ D(ξ, ξ) ei(ξ

4−ξ̄4)·Λ

=M(Λ) , (3.29)

by relabelling ξ and ξ. More generally, any double integral over a function f(ξ, ξ), satisfying f(ξ, ξ)∗ =
f(ξ, ξ), is real, given we can always relabel ξ and ξ. Note that sinceM(Λ) is real, N (Λ) is as well.
To begin with, we need to work out the normalization factor perturbately. Let us consider one inter-
action point and expand the exponential at different order in the coupling constant λ
Order λ0 N=1
Order λ1∫

dNξ

∫
dN ξ̄ N〈δ(φ1 − ξ̄1)δ(φ2 − ξ̄2) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ2 − ξ2)δ(φ1 − ξ1)〉Ψ

(iλ(ξz)4 − iλ(ξ̄z)4)

= iλN (〈(φz)4〉 − 〈(φz)4〉) = N iλ 3(W zz)2 − 3(W zz)2 = 0

(3.30)

Hence, N=1
Order λ2∫

dNξ

∫
dN ξ̄ N〈δ(φ1 − ξ̄1)δ(φ2 − ξ̄2) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ2 − ξ2)δ(φ1 − ξ1)〉Ψ

(iλ)2((ξz)4 − (ξ̄z)4)2 =

N (iλ)2

∫
dNξ

∫
dN ξ̄〈δ(φ1 − ξ̄1) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ1 − ξ1)〉Ψ

(iλ)2((ξz)8 + ¯(ξz)
8 − 2(ξz)4(ξ̄z)4) =

N (iλ)2(〈(φz)8〉Ψ + 〈(φz)8〉Ψ − 2〈(φz)8〉Ψ) = N (iλ)2105(W zz)4 + 105(W zz)4 − 210(W zz)4 = 0

(3.31)

Hence, N=1
Order λ3∫

dNξ

∫
dN ξ̄ N〈δ(φ1 − ξ̄1)δ(φ2 − ξ̄2) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ2 − ξ2)δ(φ1 − ξ1)〉Ψ

(iλ)3((ξz)4 − (ξ̄z)4)3 =∫
dNξ

∫
dN ξ̄N〈δ(φ1 − ξ̄1) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ1 − ξ1)〉Ψ

(iλ)3((ξz)12 − ¯(ξz)
12 − 3(ξz)8(ξ̄z)4 + 3(ξz)4(ξ̄z)8 =

N (iλ)2(〈(φz)8〉Ψ − 〈(φz)8〉Ψ − 3〈(φz)12〉Ψ + 3〈(φz)12〉Ψ) = 0

(3.32)

Hence, N=1
Let us now consider two interaction points z and x with the same coupling constant λ and expand.
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For now we choose x ≺ z
Order λ0 N=1
Order λ1

∫
dNξ

∫
dN ξ̄ N〈δ(φ1 − ξ̄1)δ(φ2 − ξ̄2) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ2 − ξ2)δ(φ1 − ξ1)〉Ψ

(iλ(ξz)4 − iλ(ξ̄z)4 + iλ(ξx)4 − iλ(ξ̄x)4) =

N iλ(〈δ(φ1 − ξ̄1) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . (φz)4δ(φz − ξz)δ(φ1 − ξ1)〉Ψ−

−〈δ(φ1 − ξ̄1)(φx)4δ(φz − ξz) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ1 − ξ1)〉Ψ+

+〈δ(φ1 − ξ̄1) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . (φx)4δ(φx − ξx)δ(φ1 − ξ1)〉Ψ−

−〈δ(φ1 − ξ̄1)(φx)4δ(φx − ξx) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ1 − ξ1)〉Ψ =

N iλ 3(W zz)2 − 3(W zz)2 + 3(W xx)2 − 3(W xx)2 = 0

(3.33)

Hence, N=1
Order λ2

N (iλ)2

∫
dNξ

∫
dN ξ̄ 〈δ(φ1 − ξ̄1)δ(φ2 − ξ̄2) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ2 − ξ2)δ(φ1 − ξ1)〉Ψ

((ξz)4 − (ξ̄z)4 + (ξx)4 − (ξ̄x)4)2 =

N (iλ)2

∫
dNξ

∫
dN ξ̄〈δ(φ1 − ξ̄1) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ1 − ξ1)〉Ψ

((ξz)8 + (ξ̄z)8 + (ξx)8 + (ξ̄x)8 + 2(ξz)4(ξx)4 + 2(ξ̄z)4(ξ̄x)4 − 2(ξz)4(ξ̄x)4 − 2(ξx)4(ξ̄z)4) =

N (iλ)2(〈δ(φ1 − ξ̄1) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . (φz)8δ(φz − ξz)δ(φ1 − ξ1)〉Ψ+

+ 〈δ(φ1 − ξ̄1)(φz)8δ(φz − ξ̄z) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ1 − ξ1)〉Ψ+

+ 〈δ(φ1 − ξ̄1) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . (φx)8δ(φx − ξx)δ(φ1 − ξ1)〉Ψ+

+ 〈δ(φ1 − ξ̄1)(φx)8δ(φx − ξ̄x) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ1 − ξ1)〉Ψ+

+ 2〈δ(φ1 − ξ̄1) . . . δ(φN − ξ̄N )δ(φN − ξN )(φz)4δ(φz − ξz) . . . (φx)4δ(φx − ξx)δ(φ1 − ξ1)〉Ψ+

+ 2〈δ(φ1 − ξ̄1)(φx)4δ(φx − ξ̄x)(φz)4δ(φz − ξ̄z) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ1 − ξ1)〉Ψ−

− 2〈δ(φ1 − ξ̄1)(φx)4δ(φx − ξ̄x) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . (φz)4δ(φz − ξz)δ(φ1 − ξ1)〉Ψ

− 2〈δ(φ1 − ξ̄1)(φz)4δ(φz − ξ̄z) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . (φx)4δ(φx − ξx)δ(φ1 − ξ1)〉Ψ =

N (iλ)2105(W zz)4 + 105(W zz)4 + 105(W xx)4 + 105(W xx)4 + 2[9(W zz)2(W xx)2 + 24(W zx)2]+

+2[9(W zz)2(W xx)2+24(W xz)2]−2[9(W zz)2(W xx)2+24(W xz)2]−2[9(W zz)2(W xx)2+24(W zx)2] = 0
(3.34)
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Hence, N=1
Order λ3

N (iλ)3

∫
dNξ

∫
dN ξ̄〈δ(φ1 − ξ̄1)δ(φ2 − ξ̄2) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ2 − ξ2)δ(φ1 − ξ1)〉Ψ

((ξz)4 − (ξ̄z)4 + (ξx)4 − (ξ̄x)4)3 =

N (iλ)3

∫
dNξ

∫
dN ξ̄〈δ(φ1 − ξ̄1) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ1 − ξ1)〉Ψ

((ξx)12 + (ξz)8(ξx)4 + (ξ̄x)8(ξx)4 + (ξ̄z)8(ξx)4 + 2(ξx)8(ξz)4 − 2(ξx)8(ξ̄z)4

−2(ξx)8(ξ̄x)4 − 2(ξz)4(ξ̄x)4(ξx)4 − 2(ξz)4(ξ̄z)4(ξx)4 + 2(ξx)4(ξ̄x)4(ξ̄z)4)+

+((ξz)12 + (ξx)8(ξz)4 + (ξ̄x)8(ξz)4 + (ξ̄z)8(ξz)4 + 2(ξz)8(ξx)4 − 2(ξx)4(ξ̄z)4(ξz)4

−2(ξx)4(ξz)4(ξ̄x)4 − 2(ξz)8(ξ̄x)4 − 2(ξz)8(ξ̄z)4 + 2(ξz)4(ξ̄x)4(ξ̄z)4)+

(+(ξx)12 + (ξz)8(ξx)4 + (ξ̄x)8(ξx)4 + (ξ̄z)8(ξx)4 + 2(ξx)8(ξz)4 − 2(ξx)8(ξ̄z)4

−2(ξx)8(ξ̄x)4 − 2(ξz)4(ξ̄x)4(ξx)4 − 2(ξz)4(ξ̄z)4(ξx)4 + 2(ξx)4(ξ̄x)4(ξ̄z)4)−

−((ξx)8(ξ̄x)4 + (ξz)8(ξ̄x)4 + (ξ̄x)12 + (ξ̄z)8(ξ̄x)4 + 2(ξz)4(ξx)4(ξ̄x)4 − 2(ξx)4(ξ̄z)4(ξ̄x)4

−2(ξx)4(ξ̄x)8 − 2(ξz)4(ξ̄x)8 − 2(ξz)4(ξ̄z)4(ξ̄x)4 + 2(ξ̄x)8(ξ̄z)4)

−((ξx)8(ξ̄z)4 + (ξz)8(ξ̄z)4 + (ξ̄x)8(ξ̄z)4 + (ξ̄z)12 + 2(ξz)4(ξx)4(ξ̄z)4 − 2(ξx)4(ξ̄z)8

−2(ξx)4(ξ̄x)4(ξ̄z)4 − 2(ξz)4(ξ̄x)4(ξ̄z)4 − 2(ξz)4(ξ̄z)4(ξ̄z)4 + 2(ξ̄z)8(ξ̄x)4) =

N (iλ)3(〈(φx)12〉Ψ + 〈(φz)8(φx)4〉Ψ + 〈(φx)12〉Ψ + 〈(φz)8(φx)4〉Ψ + 2〈(φz)4(φx)8〉Ψ − 2〈(φz)4(φx)8〉Ψ−

−2〈(φx)12〉Ψ − 2〈(φx)4(φz)4(φx)4〉Ψ − 2〈(φz)8(φx)4〉Ψ + 2〈(φx)4(φz)4(φx)4〉Ψ+

〈(φz)12〉Ψ + 〈(φz)4(φx)8〉Ψ + 〈(φx)8(φz)4〉Ψ + 〈(φz)12〉Ψ + 2〈(φz)8(φx)4〉Ψ − 2〈(φz)8(φx)4〉Ψ−

−2〈(φx)4(φz)4(φx)4〉Ψ − 2〈(φx)4(φz)8〉Ψ − 2〈(φz)12〉Ψ + 2〈(φx)4(φz)8〉Ψ−

〈(φx)12〉Ψ + 〈(φx)4(φz)8〉Ψ + 〈(φx)12〉Ψ + 〈(φx)4(φz)8〉Ψ + 2〈(φz)4(φx)4(φz)4〉Ψ − 2〈(φz)4(φx)4(φz)4〉Ψ−

−2〈(φx)12〉Ψ − 2〈(φx)8(φz)4〉Ψ − 2〈(φx)4(φz)8〉Ψ + 2〈(φx)8(φz)4〉Ψ−

−〈(φz)4(φx)8〉Ψ + 〈(φz)12〉Ψ + 〈(φx)8(φz)4〉Ψ + 〈(φz)12〉Ψ + 2〈(φz)8(φx)4〉Ψ − 2〈(φz)8(φx)4〉Ψ−

−2〈(φx)4(φz)4(φx)4〉Ψ − 2〈(φx)4(φz)8〉Ψ − 2〈(φz)12〉Ψ + 2〈(φx)4(φz)8〉Ψ = 0

(3.35)

Hence, N=1.

Lemma 3.4.1. The interacting decoherence functional is already normalized for all orders in Λ, i.e
N=1.

Proof. Let us consider the expression of the decoherence functional as∫
dNξ

∫
dN ξ̄ D(ξ, ξ̄|Ψ,Λ) = 〈O†O〉Ψ, (3.36)
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where O is the time ordered operator

O =

∫
dNξ δ(φN − ξN ) . . . δ(φ2 − ξ2)δ(φ1 − ξ1) eiΛ·ξ

4

, (3.37)

while O† is the anti-time ordered operator

O† =

∫
dN ξ̄ δ(φ1 − ξ̄1)δ(φ2 − ξ̄2) . . . δ(φN − ξ̄N ) e−iΛ·ξ̄

4

. (3.38)

In order to prove our conjecture, we need to show that as well as being the adjoint of each other, they
are also inverse of each other. Applying the delta function, let us rewrite O as

O = T ei(λNφ4N+···+λ1φ41) = T lim
m→+∞

ei(λNφ
4/m
N +···+λ1φ4/m1 )m =

= lim
m→+∞

T eiλNφ
4/m
N . . . eiλ1φ

4/m
1

m-2 times· · · eiλNφ
4/m
N . . . eiλ1φ

4/m
1

= lim
m→+∞

eiλNφ
4
N . . . eiλ1φ

4
1 ,

(3.39)

using that the time order and the limit commute. In the same way, working with the anti-time ordered
operator we get

O† = T −1e−i(λ1φ
4
1+···+λNφ4N ) = e−iλ1φ

4
1 . . . e−iλNφ

4
N . (3.40)

Hence, the resulting expression is

〈O†O〉Ψ = 〈e−iλ1φ41 . . . e−iλNφ4N eiλNφ4N . . . eiλ1φ41〉Ψ = 1, (3.41)

where 1 is the identity operator, highlighting that the interacting decoherence functional is already
normalized.

3.5 Interacting k-point functions

In the interacting case, we define the interacting Feynman k-point function replacing D(ξ, ξ̄|Ψ) in 3.17
by the interacting D(ξ, ξ̄|Ψ,Λ) :

−iGΛF (x1, x2, . . . , xk) :=

∫
dNξ

∫
dN ξ̄ D(ξ, ξ̄|Ψ,Λ) ξx1ξx2 . . . ξxk (3.42)

Let us find an expression for φintx , interacting operators, proceeding in the following way. Let P (x) =
{y ∈ C | y ≺ x} be the (noninclusive) past of x. P (x) is a subcauset of C that is a past set or down
set. i.e. P (x) is a stem in C; a stem is a finite subcausal set that contains its own past. Let R be the
cardinality of P (x) and choose a linear extension of P (x): y1, y2, y3, . . . yR. Then, define

φintx := e−iλy1 (φy1 )4e−iλy2 (φy2 )4 . . . e−iλyR (φyR )4φxe
iλyR (φyR )4 . . . eiλy2 (φy2 )4eiλy1 (φy1 )4 , (3.43)

Lemma 3.5.1.

GΛF (x1, x2, . . . , xk) = i〈T [φintx1 φ
int
x2 . . . φ

int
xk

]〉Ψ, (3.44)

where GΛF is defined by 3.42 and φxint by 3.43. The time ordering is on all operators in expression.
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Proof. Consider a causet (C,�) of cardinality N and some labelling i = 1, . . . , N consistent with the
causal order, i.e. natural labelling. Then, define the interacting k-point function with both ξ and ξ̄ as

GΛF (n1, . . . , nN ;m1 . . .mN ) := i

∫
dNξ

∫
dN ξ̄D(ξ, ξ̄|Ψ,Λ)(ξ1)n1 . . . (ξN )nN (ξ̄1)m1 . . . (ξ̄N )mN

= i

∫
dNξ

∫
dN ξ̄ 〈δ(φ1 − ξ̄1) . . . δ(φN − ξ̄N )δ(φN − ξN ) . . . δ(φ1 − ξ1)〉Ψ e(iΛ·ξ4−iΛ·ξ̄4)

(ξ1)n1 . . . (ξN )nN (ξ̄1)m1 . . . (ξ̄N )mN =

= i

∫
dNξ

∫
dN ξ̄ 〈e−iλ1(ξ̄1)4(ξ̄1)m1δ(φ1 − ξ̄1) . . . e−iλN (ξ̄N )4(ξ̄N )mN δ(φN − ξ̄N )

eiλN (ξN )4(ξN )nN δ(φN − ξN ) . . . eiλ1(ξ1)4(ξ1)n1δ(φ1 − ξ1)〉Ψ =

= i〈e−iλ1(φ1)4(φ1)m1 . . . e−iλN (φN )4(φN )mN eiλN (φN )4(φN )nN . . . eiλ1(φ1)4(φ1)n1〉Ψ,

(3.45)

where the φx are free, "Heisenberg" operators.

Let φintx := e−iλ1(φ1)4e−iλ2(φ2)4 . . . e−iλN (φN )4φxe
iλN (φN )4 . . . eiλ2(φ2)4eiλ1(φ1)4 .

We can notice that

(φintx )n = e−iλ1(φ1)4 . . . e−iλN (φN )4φxe
iλN (φN )4 . . . eiλ1(φ1)4 n-2 times· · · e−iλ1(φ1)4 . . . e−iλN (φN )4φxe

iλN (φN )4 . . . eiλ1(φ1)4 =

= e−iλ1(φ1)4 . . . e−iλN (φN )4(φx)neiλN (φN )4 . . . eiλ1(φ1)4

Then,

〈T [(φint1 )n1(φint2 )n2 . . . (φintN )nN ]〉Ψ =

= 〈T [e−iλ1(φ1)4 . . . e−iλN (φN )4(φ1)n1eiλN (φN )4 . . . eiλ1(φ1)4 . . .

e−iλ1(φ1)4 . . . e−iλN (φN )4(φN )nN eiλN (φN )4 . . . eiλ1(φ1)4 ]〉Ψ =

= 〈T [e−iΛ·ξ̄
4

(φ1)n1 . . . (φN )nN eiΛ·ξ
4

]〉Ψ =

=

∫
dNξ

∫
dN ξ̄ 〈e−iλ1(ξ̄1)4δ(φ1 − ξ̄1) . . . e−iλN (ξ̄N )4δ(φN − ξ̄N )

eiλN (ξN )4(ξN )nN δ(φN − ξN ) . . . eiλ1(ξ1)4(ξ1)n1δ(φ1 − ξ1)〉Ψ =

= 〈e−iλ1(φ1)4 . . . e−iλN (φN )4(φN )nN eiλN (φN )4 . . . (φ1)n1eiλ1(φ1)4〉Ψ =

= −i GΛF (n1, . . . , nN )

(3.46)
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It is important to notice that the product of field operators φ1φ2 . . . φN does not depend on the choice
of natural labelling. This means that if we choose another natural labelling and write down the product
of field operators in this new total (linear) order, this new product will equal the original one due to
spacelike commutativity.
A property of partial orders is that if causet A is a stem of causet B, then there is a natural labelling
of causet B that labels the elements of the stem A first and then carries on labelling the other elements
of B. This is fundamental to prove our conjecture.
Label the elements of stem A following 1 . . . R and the ones of B with 1 . . . R . . .N
Define

φintx := e−iλ1(φ1)4e−iλ2(φ2)4 . . . e−iλR(φR)4φxe
iλR(φR)4 . . . eiλ2(φ2)4eiλ1(φ1)4 .

Again, we use that

(φintx )n = e−iλ1(φ1)4 . . . e−iλR(φR)4(φx)neiλR(φR)4 . . . eiλ1(φ1)4

Then,

〈T [(φintR+1)nR+1(φintR+2)nR+2 . . . (φintN )nN ]〉Ψ =

= 〈T [e−iλ1(φ1)4 . . . e−iλR(φR)4(φR+1)nR+1eiλR(φR)4 . . . eiλ1(φ1)4

e−iλ1(φ1)4 . . . e−iλR(φR)4(φR+2)nR+2eiλR(φR)4 . . . eiλ1(φ1)4 . . .

e−iλ1(φ1)4 . . . e−iλR(φR)4(φN )nN eiλR(φR)4 . . . eiλ1(φ1)4 ]〉Ψ =

= 〈T [exp(−iΛ · ξ̄4
)(φR+1)nR+1(φR+2)nR+2 . . . (φN )nN exp(iΛ · ξ4)]〉Ψ =

=

∫
dNξ

∫
dN ξ̄ 〈e−iλ1(ξ̄1)4δ(φ1 − ξ̄1) . . . e−iλR(ξ̄R)4δ(φR − ξ̄R) . . . δ(φN − ξ̄N )(ξN )nN δ(φN − ξN )

. . . (ξR+2)nR+2δ(φR+2 − ξR+2)(ξR+1)nR+1δ(φR+1 − ξR+1)eiλR(ξR)4δ(φR − ξR) . . . eiλ1(ξ1)4δ(φ1 − ξ1)〉Ψ =

= 〈e−iλ1(φ1)4 . . . e−iλR(φR)4(φN )nN . . . (φR+2)nR+2(φR+1)nR+1eiλR(φR)4 . . . eiλ1(φ1)4〉Ψ =

= −i GΛF (nR+1, . . . , nN )

(3.47)

Lemma 3.5.2. Only interaction points in the causal past of the causal set C influence the free propa-
gation.

Proof. Given the background causal set C with k elements, let us define F (x) = {y ∈ C | y � x}
which is the (noninclusive) future of x with cardinality R and P (x) = {y ∈ C | y ≺ x} which is the
(noninclusive) past of x , with cardinality N- R. Time ordering is applied to all labels, y1 � · · · � yR �
x1 · · · � xk � yR+1 · · · � yN Start with defining interacting operators including the future interaction
points as

φintx := e−iλy1 (φy1 )4e−iλy2 (φy2 )4 . . . e−iλyN (φyN )4φxe
iλyN (φyN )4 . . . eiλy2 (φy2 )4eiλy1 (φy1 )4 .
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GΛF (x1, x2, . . . , xk) = i〈T [φintx1 φ
int
x2 . . . φ

int
xk

]〉Ψ =

= i〈T e−iλyN (φyN )4 . . . e−iλy1 (φy1 )4φx1e
iλy1 (φy1 )4 . . . eiλyN (φyN )4

e−iλyN (φyN )4 . . . e−iλy1 (φy1 )4φx2e
iλy1 (φy1 )4 . . . eiλyN (φyN )4 . . .

e−iλyN (φyN )4 . . . e−iλy1 (φy1 )4φxke
iλy1 (φy1 )4 . . . eiλyN (φyN )4〉Ψ =

= i〈e−iλyN (φyN )4 . . . e−iλy1 (φy1 )4eiλy1 (φy1 )4 . . . eiλyR (φyR )4φx1φx2 . . . φxke
iλyR+1

(φyR+1
)4 . . . eiλyN (φyN )4〉Ψ =

= i〈e−iλyN (φyN )4 . . . e−iλyR+1
(φyR+1

)4φx1φx2 . . . φxke
iλyR+1

(φyR+1
)4 . . . eiλyN (φyN )4〉Ψ

(3.48)

Indeed, the definition for φintx is 3.43, where the only relevant interaction points are the one in the past
of x.

3.6 Series truncation

Lemma 3.6.1. The number of contributions to the k-point function is finite, i.e there is a cut off in
the perturbation expansion of the interaction terms.

Proof. We start with treating the interaction as a perturbation expansion, considering an application
of Baker-Campbell-Hausdorff (BCH) Formulae [Meh13]: given two operators A and B

eABe−A = B + [A,B] +
1

2
[A, [A,B]] + . . .

1

n!
[A, [A, . . . [A︸ ︷︷ ︸

n A’s

, B]..] + . . . (3.49)

For instance, for a weak interaction at y,

e−iλφ
n
yφxe

iλφny = φx + [φx, iλφ
n
y ]

= φx + n iλi∆xyφ
n−1
y ,

and by inserting 1 = e−iλφ
n
y eiλφ

n
y in between each φx, we have

e−iλφ
n
yφmx e

iλφny = (φx + n iλi∆xyφ
n−1
y )m . (3.50)

Let us label the top point as 0, and points below as 1, 2, etc, in the opposite order to the causal order,
i.e. 0 � 1 � 2 � 3..., assuming that the coupling constant is λ through all the interaction region.
Then, we want to evaluate the highest power of λ in

U−1
1,r φ0U1,r , (3.51)

where

U1,r = eiλφ
n
r eiλφ

n
r−1 ...eiλφ

n
1 , (3.52)
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for r > 1, so that r indicates the sublevel below 0 where the earliest interaction can happen. Consider
the first case, i.e. r = 1. We have

U−1
1,1φ0U1,1 = n iλi∆01φ

n−1
1 ...

= O(λ)O(φn−1) + ... .

(3.53)

where "..." denotes all other terms involving smaller powers of λ. Now consider r = 2:

U−1
1,2φ0U1,2 = n iλi∆01(U−1

2,2φ1U2,2)n−1...

= n iλi∆01(n iλi∆12φ
n−1
2 + ...)n−1 + ...

= O(λ1+(n−1))O(φ(n−1)2) + ... .

(3.54)

Next, for r = 3, we get

U−1
1,3φ0U1,3 = U−1

3,3 (n iλi∆01(n iλi∆12φ
n−1
2 + ...)n−1)U3,3 + ...

= n iλi∆01(n iλi∆12(U−1
3,3φ2U3,3)n−1 + ...)n−1 + ...

= n iλi∆01(n iλi∆12(n iλi∆23φ
n−1
3 + ...)n−1 + ...)n−1 + ...

= O(λ1+(n−1)+(n−1)2)O(φ(n−1)3) + ... .

(3.55)

Hence, it should now be clear that the powers of λ follow the sum

Sr,n =

r−1∑
k=0

(n− 1)k =
(n− 1)r − 1

n− 2
. (3.56)

As a result, we obtained a formula to evaluate the highest power of λ for an interaction region with r
sublevels, i.e.

U−1
1,r φ0U1,r = O(λSr,n) . (3.57)

highlighting the order for which the expansion of φn theory truncates. The value of Sr,n may be odd
or even depending on n and r. If the interacting field is combined in some correlation function with
some other fields, or some other power of fields, such that the highest order term has an odd number
of fields in total, then that term will vanish under the expectation value. In this case, subtracting 1
off Sr,n is necessary to calculate the highest power of λ present in the given correlation function.
For this subtraction of 1 to be legitimate, we need to know that a term of O(λSr,n−1) appears in
U−1

1,r φ0U1,r. If there is no term, then no such term will be present under the expectation value. To see
that there is such a term, consider the r = 3 example above:

U−1
1,3φ0U1,3 = n iλi∆01(n iλi∆12(n iλi∆23φ

n−1
3 + ...)n−1 + ...)n−1 + ...

= c λ1+(n−1)(n iλi∆23φ
n−1
3 + φ2)(n−1)2 + ... ,

(3.58)

for some constant c. For any r we have

U−1
1,r φ0U1,r = c λSr−1,n(c′ λφn−1

r + φr−1)(n−1)r−1
+ ... , (3.59)

for constants c and c′. The (non-commutative) binomial expansion of (c′ λφn−1
r +φr−1)(n−1)r−1 on the

RHS gives terms of order O(1) up to O(λ(n−1)r−1
). This includes a term of O(λ(n−1)r−1−1), which

when combined with the powers of λ outside the brackets gives our desired order of O(λSr,n−1).
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Then, taking the difference of consecutive powers as Sr,n − Sr−1,n, gives the maximum power of λ
associated to the interaction point at the r-sublevel, i.e the maximum number of interactions at that
vertex.

3.7 Generetaing functional

In the continuum theory, the source term is introduced into the action in the path integral expression,
the single path integral, to define a generating functional of the source function. Then, k-functional
derivatives of the generating functional w.r.t. the source give the "Feynman k-point functions": the free
k-point function if there is no interaction term in the action and the interacting k-point function if there
is an interaction. Now, we want to recover a similar structure in a discrete and finite framework, given
a causet (C,�) of cardinality N . We introduce two independent sources for ξ and ξ̄, J = (J1, J2, . . . JN )

and J̄ = (J̄1, J̄2, . . . , J̄N ), so that the decoherence functional gets multiplied by eiJ ·ξ−iJ̄ ·ξ̄. Then, the
resulting object is a generating functional but not a decoherence functional defined as:

Z(J, J̄ |Ψ,Λ) :=

∫
dNξ

∫
dN ξ̄D(ξ, ξ̄ |Λ)eiJ ·ξe−iJ̄ ·ξ̄ =

〈e−iλ1(φ1)4e−iJ̄1φ1 . . . e−iλN (φN )4e−iJ̄NφN eiλN (φN )4eiJNφN . . . eiλ1(φ1)4eiJ1φ1〉Ψ.
(3.60)

We can note that since we showed that D(ξ, ξ̄ |Ψ,Λ) is normalised, there is no need to divide the
generating functional by Z(0, 0).
Then, a derivative with respect to iJx brings down a ξx and w.r.t. −iJ̄x brings down a ξ̄. Proceeding
in this way, we can generate the Feynman k-point functions taking k J derivatives. Specifically, the
expression 3.45 can be recovered up to a factor of i as one takes ni derivatives w.r.t to iJi, and mi

derivatives w.r.t −iJ̄i, and then sets all the J-parameters to 0.
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Chapter 4

Evaluation

4.1 Two-point function

Now, we evaluate the two-point function

〈T φintx φinty 〉Ψ =

∫
dNξ

∫
dN ξ̄ D(ξ, ξ̄|Λ)ξxξy (4.1)

as a perturbation series in λ and try to interpret the terms in the series as sums of Lorentzian spacetime
"Feynman diagrams", using Wick’s theorem.
Let us consider 3 interaction points totally ordered such as x ≺ 1 ≺ 2 ≺ 3 ≺ y, assuming that the
interaction points are in the causal past of y and not in the causal past of x. As we fix the coupling
constant to be equal in the interaction region, the expression of the two-point function becomes

〈T φintx φinty 〉Ψ = 〈e−iλ1φ41e−iλ2φ42e−iλ3φ43φyeiλ3φ
4
3eiλ2φ

4
2eiλ1φ

4
1φx〉Ψ. (4.2)

Now, to treat it perturbatively, we can use the application of BCH 3.49. Then, the following commu-
tator relation from [Pai12] will be frequently applied in the calculations :

[Xn
i , Y

m
j ] = −

min(n,m)∑
k=1

(cij)
kn!m!

k!(m− k)!(n− k)!
Xn−k
i Y m−k

j , (4.3)

where in our evaluation cij = −i∆ij . In particular, useful forms are:

[φ3
i , φ

4
j ] = 12i∆ijφ

2
iφ

3
j − 36(i∆ij)

2φiφ
2
j + 24(i∆ij)

3φj ,

[φ2
i , φ

4
j ] = 8i∆ijφiφ

3
j − 12(i∆ij)

2φ2
j .

(4.4)

Finally, we notice that as we choose the order j ≺ i, ∆ij = KR
ij since KA

ij = 0, contributing as a
retarded propagator.
Hence, we are ready to start our evaluation with φ3 interaction, first commutator,

[φy, (iλ)φ4
3] = 4(iλ)i∆y3φ

3
3 (4.5)

Second term for φ3 interaction

[4(iλ)i∆y3φ
3
3, (iλ)φ4

3] = 0. (4.6)

First contribution for φ2 interaction, using 4.4

[φy + 4(iλ)i∆y3φ
3
3, (iλ)φ4

2] = 4(iλ)i∆y2φ
3
2 + 4(iλ)2i∆y3(12i∆32φ

2
3φ

3
2 − 36(i∆32)2φ3φ

2
2 + 24(i∆32)3φ2).

(4.7)
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Second commutator for φ2 interaction, using 4.4
1

2
[4(iλ)i∆y2φ

3
2 + 4(iλ)2i∆y3(12i∆32φ

2
3φ

3
2 − 36(i∆32)2φ3φ

2
2 + 24(i∆32)3φ2), (iλ)φ4

2] =

1

2
4(iλ)3i∆y3(12i∆32[φ2

3, φ
4
2]φ3

2 − 36(i∆32)2[φ3, φ
4
2]φ2

2) =

−1

2
4(iλ)3i∆y3(−12 8 (i∆32)2φ3φ

6
2 + 12 12 (i∆32)3φ5

2 + 36 4 (i∆32)3φ5
2).

(4.8)

Third term for φ2 interaction

1

3!
4 12 8(iλ)4i∆y3(i∆32)2[φ3, φ

4
2]φ6

2 =
1

3!
4 12 8 4(iλ)4i∆y3(i∆32)3φ9

2. (4.9)

Again, at the next iteration, the series truncate. First contribution for φ1 interaction (only up to λ3),
estimating term by term

[φy + 4(iλ)i∆y3φ
3
3 + 4(iλ)i∆y2φ

3
2, (iλ)φ4

1] =

4(iλ)i∆y1φ
3
1 + 4(iλ)2i∆y3(12i∆31φ

2
3φ

3
1 − 36(i∆31)2φ3φ

2
1+

24(i∆31)3φ1) + 4(iλ)2i∆y2(12i∆21φ
2
2φ

3
1 − 36(i∆21)2φ2φ

2
1 + 24(i∆21)3φ1),

[4 12(iλ)2i∆y3i∆32φ
2
3φ

3
2, (iλ)φ4

1] = 4 12(iλ)3i∆y3i∆32([φ2
3, φ

4
1]φ3

2 + φ2
3[φ3

2, φ
4
1] =

−4 12(iλ)3i∆y3i∆32(−8i∆31φ3φ
3
1φ

3
2 + 12(i∆31)2φ2

1φ
3
2

−12i∆21φ
2
3φ

2
2φ

3
1 + 36(i∆21)2φ2

3φ2φ
2
1 − 24(i∆21)3φ2

3φ1) =

−4 12(iλ)3i∆y3i∆32(−8i∆31φ3([φ3
1, φ

3
2] + φ3

2φ
3
1)+

12(i∆31)2([φ2
1, φ

3
2] + φ3

2φ
2
1)− 12i∆21φ

2
3φ

2
2φ

3
1 + 36(i∆21)2φ2

3φ2φ
2
1 − 24(i∆21)3φ2

3φ1) =

−4 12(iλ)3i∆y3i∆32(−8i∆31φ3(−9i∆21φ
2
2φ

2
1 + 18(i∆21)2φ2φ1 − 6(i∆21)3 + φ3

2φ
3
1)+

12(i∆31)2(6(i∆21)2φ2 − 6i∆21φ
2
2φ1 + φ3

2φ
2
1)− 12i∆21φ

2
3φ

2
2φ

3
1 + 36(i∆21)2φ2

3φ2φ
2
1 − 24(i∆21)3φ2

3φ1),

[4(iλ)2i∆y3(−36(i∆32)2φ3φ
2
2 + 24(i∆32)3φ2), (iλ)φ4

1] =

4(iλ)3i∆y3(−36(i∆32)2[φ3, φ
4
1]φ2

2 − 36(i∆32)2φ3[φ2
2, φ

4
1] + 24(i∆32)3[φ2, φ

4
1]) =

4(iλ)3i∆y3(−36 4 (i∆32)2i∆31φ
3
1φ

2
2 − 36 8(i∆2

) i∆21φ3φ2φ
3
1+

12 36(i∆32)2(i∆21)2φ3φ
2
1 + 24 4(i∆32)3i∆21φ

3
1) =

4(iλ)3i∆y3(−36 4 (i∆32)2i∆31([φ3
1, φ

2
2] + φ2

2φ
3
1)−

−36 8(i∆32)2i∆21φ3φ2φ
3
1 + 12 36(i∆32)2(i∆21)2φ3φ

2
1 + 24 4(i∆32)3i∆21φ

3
1) =

−4(iλ)3i∆y3(36 4 (i∆32)2i∆31(−6i∆21φ2φ
2
1 + 6(i∆21)2φ1 + φ2

2φ
3
1)+

36 8(i∆32)2i∆21φ3φ2φ
3
1 − 12 36(i∆32)2(i∆21)2φ3φ

2
1 − 24 4(i∆32)3i∆21φ

3
1).

(4.10)
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Second term for φ1 interaction (only up to λ3)

1

2
4(iλ)2i∆y3(12i∆31[φ2

3, (iλ)φ4
1]φ3

1 − 36(i∆31)2[φ3, (iλ)φ4
1]φ2

1) =

1

2
4(iλ)3i∆y3(12i∆31(8i∆31φ3φ

6
1 − 12(i∆31)2φ5

1)− 36 4(i∆31)3φ5
1),

1

2
4(iλ)2i∆y2(12i∆21[φ2

2, (iλ)φ4
1]φ3

1 − 36(i∆21)2[φ2, (iλ)φ4
1]φ2

1) =

1

2
4(iλ)3i∆y2(12i∆21(8i∆21φ2φ

6
1 − 12(i∆21)2φ5

1)− 36 4(i∆21)3φ5
1).

(4.11)

Applying 3.56 for n=4 and r=3, the series is expected to truncate at order λ13. However, following
up with the calculation, we notice that this term is the expectation value of an odd number of fields.
Hence, the highest order contribution is with λ12. We can also evaluate the maximum number of
interactions at each vertex, i.e 8 for φ1, 3 for φ2 and 1 for φ3.

4.1.1 Diagrams

Now, starting from the previous calculations, we develop a pictorial representation for x ≺ 1 ≺ 2 ≺ y,
this means excluding an interaction point from the above results. We draw the contributions in terms
of retarded and Feynman propagators, arising from the possible Wick contractions. Let a b =←−
W ba represent a Wick contraction, while a b = −i∆ba = cba

Order λ1

cy2〈φ3
2φx〉Ψ + cy1〈φ3

1φx〉Ψ (4.12)

a)

y

2

1

x b)

y

2

1

x

Figure 4.1: Diagrams at order λ of the two-point function with 2 points in the interaction region. b)
is the only diagram for which there is no a decorated leg from the element immediately below y to y.
Contribution 4.12

Order λ2

cy2c21〈φ2
2φ

3
1φx〉Ψ + cy2c

2
21〈φ2φ

2
1φx〉Ψ + cy2c

3
21〈φ1φx〉Ψ (4.13)

a)

y

2

1

x b)

y

2

1

x c)

y

2

1

x d)

y

2

1

x e)

y

2

1

x f)

y

2

1

x

Figure 4.2: Diagrams at order λ2 of the two-point function with 2 points in the interaction region.
Contribution 4.13
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Order λ3

cy2c
2
21〈φ2φ

6
1φx〉Ψ + cy2c

3
21〈φ5

1φx〉Ψ (4.14)

a)

y

2

1

x b)

y

2

1

x c)

y

2

1

x

Figure 4.3: Diagrams at order λ3 of the two-point function with 2 points in the interaction region.
Contribution 4.14

Order λ4

cy2c
3
21〈φ9

1φx〉Ψ (4.15)

a)

y

2

1

x

Figure 4.4: Diagram at order λ4 of the two-point function with 2 points in the interaction region.
Contribution 4.15

Hence, we can recognize one topology of the λ of the type

y

2

1

x ,3 topologically distinct diagrams

of the λ2 i.e

y

2

1

x ,

y

2

1

x and

y

2

1

x 2 for λ3

y

2

1

x and

y

2

1

x and 1 for λ4

y

2

1

x
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Now, we draw diagrams for x ≺ 1 ≺ 2 ≺ 3 ≺ y
For λ1 and λ2, the diagrams are the same as in the previous case: we choose to omit 1 or 2 or 3 and
then draw the figure on the remaining elements.
Order λ3

Again, we consider pictorial representations for 2 interaction points, excluding one vertex: there are 3 ×
3 of them. In addition, new diagrams arise involving all three interaction vertices. The resulting graphs
always have a decorated leg connecting 3 and y and so this is omitted in the following representations.

c32c21〈φ2
3φ

2
2φ

3
1φx〉Ψ (4.16)

a)

3

2

1

x b)

3

2

1

x c)

3

2

1

x d)

3

2

1

x e)

3

2

1

x f)

3

2

1

x g)

3

2

1

x h)

3

2

1

x

i)

3

2

1

x j)

3

2

1

x k)

3

2

1

x

Figure 4.5: Diagrams at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.16

c32c
2
21〈φ2

3φ2φ
2
1φx〉Ψ (4.17)

a)

3

2

1

x b)

3

2

1

x c)

3

2

1

x d)

3

2

1

x e)

3

2

1

x f)

3

2

1

x

Figure 4.6: Diagrams at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.17

c32c
3
21〈φ2

3φ1φx〉Ψ (4.18)

a)

3

2

1

x b)

3

2

1

x

Figure 4.7: Diagrams at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.18
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c32c31c21〈φ3φ
2
2φ

2
1φx〉Ψ (4.19)

a)

3

2

1

x b)

3

2

1

x c)

3

2

1

x d)

3

2

1

x e)

3

2

1

x f)

3

2

1

x

Figure 4.8: Diagrams at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.19

c32c31c
2
21〈φ3φ2φ1φx〉Ψ (4.20)

a)

3

2

1

x b)

3

2

1

x c)

3

2

1

x

Figure 4.9: Diagrams at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.20

c32c31c
3
21〈φ3φx〉Ψ (4.21)

a)

3

2

1

x

Figure 4.10: Diagram at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.21
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c32c31〈φ3φ
3
2φ

3
1φx〉Ψ (4.22)

a)

3

2

1

x b)

3

2

1

x c)

3

2

1

x d)

3

2

1

x

e)

3

2

1

x f)

3

2

1

x g)

3

2

1

x h)

3

2

1

x

Figure 4.11: Diagrams at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.22

c32c
2
31c21〈φ2

2φ1φx〉Ψ (4.23)

a)

3

2

1

x b)

3

2

1

x

Figure 4.12: Diagrams at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.23

c32c
2
31c

2
21〈φ2φx〉Ψ (4.24)

a)

3

2

1

x

Figure 4.13: Diagram at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.24

42



c32c
2
31〈φ3

2φ
2
1φx〉Ψ (4.25)

a)

3

2

1

x b)

3

2

1

x c)

3

2

1

x

Figure 4.14: Diagrams at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.25

c2
32c21〈φ3φ2φ

3
1φx〉Ψ (4.26)

a)

3

2

1

x b)

3

2

1

x c)

3

2

1

x d)

3

2

1

x

Figure 4.15: Diagrams at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.26

c2
32c

2
21〈φ3φ

2
1φx〉Ψ (4.27)

a)

3

2

1

x b)

3

2

1

x

Figure 4.16: Diagrams at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.27

c2
32c21c31〈φ2φ

2
1φx〉Ψ (4.28)

a)

3

2

1

x b)

3

2

1

x

Figure 4.17: Diagrams at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.28
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c2
32c

2
21c31〈φ1φx〉Ψ (4.29)

a)

3

2

1

x

Figure 4.18: Diagram at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.29

c2
32c31〈φ2

2φ
3
1φx〉Ψ (4.30)

a)

3

2

1

x b)

3

2

1

x c)

3

2

1

x

Figure 4.19: Diagrams at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.30

c3
32c21〈φ3

1φx〉Ψ (4.31)

a)

3

2

1

x

Figure 4.20: Diagram at order λ3 of the two-point function with 3 points in the interaction region.
Contribution 4.31
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To conclude, there are 12 topologically distinct diagrams involving all 3 interaction vertices with y
connecting to the top element in each case, i.e.

3
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1

x

3

2

1

x

3

2

1

x

3

2

1

x

3

2

1

x
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2

1
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2

1

x

3

2

1

x

3

2

1

x

3

2

1

x
3

2

1

x
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Chapter 5

Results and Conclusion

5.1 Modified Feynman rules

Now, we want to summarize our calculations for the two-point function, so that we can find a general
pattern between diagrams. Our aim is to assign a mathematical expression to allowed diagrams to
estimate the contributions at any order λ for the x ≺ 1 ≺ 2 · · · ≺ m ≺ y chain in φ4 interacting theory
without doing any calculation.

5.1.1 Terminology

Call a b an F-leg or F-line, where F stands for Feynman, while a b a ∆-leg or ∆-line.
Call a vertex with lines an interaction vertex.
a is called a self loop, while

a
is an infinity loop or double-self loop.

Call a diagram D={T, dec} where T is the topological diagram and dec is the ∆ decorations on T.

For instance, T=

3

2

1

x and dec=

3

2

1

x

5.1.2 The value of each diagram

These rules allow to estimate the value of each diagram, giving to each symbol a mathematical corre-
spondence.

1. Each interaction vertex contributes a factor (−iλ)t where t is the "number of interactions" at

the vertex.

2. Each F-leg connecting i ≺ j contributes
←−
W ji

3. Each ∆-leg connecting i ≺ j contributes −i∆ji

4. Each diagram is weighted by a combinatorial factor. See next section 5.1.3
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5.1.3 Combinatorial factors rules

Let’s call a vertex with k interactions (i.e. 4k legs) a k-interaction-vertex, (k-IV). In calculating the
combinatorial factor of a diagram, each k-IV must be considered as a set of k separate vertices, from
each of which there must be a ∆-path upwards to y, which does not need to be unique. The separated
vertices are considered as indistinguishable, i.e. identical.
EXAMPLES
So, for instance, for 2 interaction vertices at order λ3 in 4.3 a), there are two ∆-legs up from the
2-multivertex and by this rule, one of the legs must go up from one separated vertex and the other leg
from the other separated vertex.
The result we would expect is (1/2 · 48 · 8)· Wick factor from 〈φ2φ

6
1φx〉.

Firstly, separate out the vertex 1 into 1A and 1B.
Then, the counting for diagram gives (4 for “y attaches to 2”) · (3-choose-2 for the 2 legs of 2 that will
attach to 1A and 1B) · (4 for leg1 of 2 to attach to 1A) · (4 for leg2 of 2 to attach to 1B) · (Wick factor
from 〈φ2φ

6
1φx〉 which joins x to the diagram and wires the remaining legs together). No factor for the

decoration which is unique. Hence, 4 · 3 · 4 · 4 = 48 · 4, which is correct.
Now, we look at λ4 diagram for 2 interaction vertices 4.4. The contribution we want to recover is
(1/6) · 48 · 8 · 4· (Wick factor from 〈φ9

1φx〉). Again, firstly separate out the vertex 1 into 1A and 1B
and 1C. Then, from the diagram we get (4 for y attaches to vertex 2) · (4 for 1A) · (4 for 1B) · (4 for
1C) · (Wick factor from 〈φ9

1φx〉 ) = 16 · 16 · (Wick factor from 〈φ9
1φx〉 ) which is what we expected.

5.1.4 More terminology

The interaction vertex set (IVS) of a diagram is the set of interaction vertices.
The vertex set (VS) of a diagram is the set of interaction vertices and {x, y}. Hence, VS= IVS ∪{x, y}
The DO is the order induced on the IVS (or VS) by the restriction of the causal set order to the IVS
(VS).
The ∆-DO is the order ≺Delta on the IVS defined by: i ≺Delta j if there is a ∆-leg from i to j and take
the transitive closure.

DO and ∆-DO are different orders. For instance, considering 4.11 c),

3

2

1 is
3

2

1 in DO and

3

2 1 is in ∆-DO.

Another example is 4.3 a), which is a total order in DO but

y

2

1x in ∆-DO.

5.1.5 Diagram rules

The following rules can be applied to select the diagrams which exist and contribute at order λ and
above. Hence, we can construct graphical representations for all perturbative corrections in the expan-
sion.

1. y is above exactly one interaction vertex in the ∆-DO. The vertex, Vy, is the unique maximal
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element of IVS on ∆- DO.

2. In the ∆-DO there is an "upward chain of ∆-legs" from each vertex in IVS to Vy (and hence up

to y), which does not need to be unique, as shown by 5.1.

y

Vy

21 x

Figure 5.1: This figure highlights rule 2 applied to the contribution 4.30, where the green vertices are
in IVS

3. There is a leg, exactly one, from x to an interaction vertex

4. The total number of legs (∆ or F) from an interaction vertex is 4η where η > 1, η ∈ N. t is the

number of interactions at the vertex.

5. There is a limit on how many interactions can happen at a given vertex in IVS depending on its

"sublevel below y", see 3.6. At sublevel r, the maximum number of interactions ηr is given by

ηr =
(n− 1)r − (n− 1)r−1

n− 2

Accordingly, there is a cut off in the series at finite order of λ and so a finite number of diagrams

contributing to the expression.

Note: We took into account elements between x and y which are totally ordered in the underlying
causal set order. However, our rules include all the cases in which the elements are not totally ordered,
since spacelike contributions would give vanishing ∆-legs, leading to a general underlying order.
In addition, x can precede or be spacelike to any other element because x is connected by a F-leg to
an interaction point, which does not require a causal order. Hence, the correlation between x and y is
evaluated considering how y is affected by interactions in its past.

5.2 Similar approaches

In [RDC14], Dickinson et al. develop relativistic quantum field theories highlighting the role of causal-
ity in particle dynamics. Their approach contrasts the usual “in-out” formalism where amplitudes
consist of Feynman propagators and sources and detectors are treated on the same footing. On the
other hand, they distinguish the detection and the production source evaluating an “in-in” expectation
value instead of the usual expression for the scattering matrix. With this method, the retarded prop-
agator plays a prominent role, leading to manifestly causal results. In particular, they evaluate the
expectation value of fields in the presence of an external source, showing that an unbroken chain of
retarded propagators transmits the effect of the source to the detector. Although Feynman propagators
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contribute, they never break the causal link from source to detector.
Our procedure is in agreement with their method, although some discrepancies can be analysed. A
major difference with our calculation is that they estimate 〈T φinty 〉 in φ3 theory given the interaction
in the source region in the continuum, instead of the two-point function 〈T φinty φintx 〉, with the interac-
tion region in the causal past of y with discrete spacetime. As a result, their contributing series does
not truncate since it is always possible to add more points in the interaction region of a continuum
spacetime. Furthermore, they introduce a new interaction vertex at each iteration in the perturbation
expansion, allowing just one interaction at each vertex and assuming that the contribution from the
commutator relation with the same field at the next iteration gives a vanishing term. We would re-
cover their results, relabelling all the exceeding contributions at each vertex. In addition, they discard
vacuum diagrams, since they are ruled out by the sensitivity of the detector. Such loop diagrams are
fundamental in our results, so a further calculation with the source and detector set up would have
helped the comparison.

In the interest of studying non-linearities during the inflationary era, an alternative diagrammatic
representation of the in-in formalism and the associated rules are given by Marcello Musso in [Mus13].
Starting with an iterative solution of the equation of motion for the interacting operator field, higher
order corrections are obtained in terms of lower order ones and retarded Green functions. Then, the
resulting correlation functions are shown to be analogous to the local n-point functions computed in
the in-in formalism along a close time path. Developing the diagrammatic framework, he first deals
with open graphs, i.e. a general procedure to represent the perturbation operators expansion. Then,
closed graphs are assembled from open trees joining the free legs, expressing correlation functions.
Hence, a new version of Feynman rules is introduced to evaluate loop correlation functions involving
retarded Green functions and two-field expectation values without doing any calculation. However,
most of the diagrammatic contributions includes divergences in the integrals over three-momentum,
demanding the renormalization of the effective potential and highlighting that this approach still deals
with continuum spacetime.

5.3 Further work

What follow involves directions of further work and open questions on the research topic.

• Suppose we choose Ψ to be a two particle state, i.e. the SJ state acted on by two single-
particle-SJ-mode-packet creation operators. We can define a decoherence functional for that
state which is Gaussian. Since the SJ modes are a "complete set", we can find a superposition of
SJ modes that corresponds to "an incoming wave packet with momentum peaked around some
momentum"[Sor17]. Then, we can choose the state in the decoherence functional to be a state
representing two incoming packets whose spacetime support intersects in the spacetime region
where the interaction is turned on. Is this an alternative to deal with scattering or do we recover
the same results as in our method, i.e calculating "Feynman n-point functions" as perturbative
expansions in λ and summing over Feynman diagrams and then plug the appropriate n-point
function(s) into a scattering calculation?

• Let us build a scenario. Fix a physical lab of a particular physical size-duration, i.e. a 4 volume,
and choose two points x and y that we want to calculate the two-point function of. Let x ≺ y
and let R be an interaction region of a fixed physical size in the Alexandrov interval between x
and y. Then, we sprinkle into this interaction region at different densities ρ and we assume the
interaction happens at every sprinkled point in R. Adding x and y to our sprinkled points forms
our causet C. We have a mass m and a coupling λ. Then, for each ρ, m and λ we can calculate
the two-point function 〈T φinty φintx 〉. Comments:
1. If ρ is too small it will not be able to capture the physics of a field of mass m and coupling λ.
2. If we keep ρ fixed (and big enough for that m and λ) and calculate the two-point function for
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different sprinklings, what is the mean and and what are the fluctuations?
3. What happens if we keep m and λ fixed and increase ρ?
4. Is there a "continuum limit"? Is there a sequence of theories (ρk,mk, λk) such that ρk → ∞
as k →∞ while the 2 point function tends to a meaningful expression in the limit?
5. It seems reasonable that the sprinkling density ρ in R sets the physical "scale" at which the
calculation is being done in the effective field theory sense i.e. it cuts off the physics at smaller
physical scales. Can we have an evidence of it?
6. Are the higher order terms in the λ expansion small so that perturbation expansion makes
sense? Is the λ2 term smaller than the λ3 term etc.? We note that ∆ab in 4-D goes like √ρ from
2.10, while what are the values of

←−
W entries?

• The main point that needs further discussion is how to deal with loops at vertices. A loop at
vertex i gives a factor Wii which is finite in the causal set theory but singular in the continuum.
In φ4 there are two diagrams in the case of two interaction points at order λ as shown in 4.1
and so there are N diagrams for N interaction points, always assuming that the interaction
points are only in the causal past of y and not of x. So the sum over all diagrams at O(λ) is
a sum of that "diagram-type" over all interaction points. In the perturbative φ4 theory in a
Lorentzian manifold, the O(λ) contribution to the interacting two-point function is given by the
same diagram. In the continuum, the mathematical expression for the loop at i is the divergent
factor Wii with point i integrated over the whole interaction region to the causal past of y.
Each loop contributes the same to the diagram in the continuum when the state is the usual
vacuum state no matter where the interaction point is since in that case Wii = Wjj . However,
for the SJ state in the causal set, the diagonal terms of W are not constant.
Finally, we notice that there is a difference between single loops at vertices and double loops.
A double loop can be removed and the remaining diagram is still a valid diagram with one less
power of λ. On the contrary, a single loop cannot be so removed.

• An interesting application of this work is to use the interacting two-point correlations to compute
the entanglement entropy (up to first order in perturbation theory), as described in [YCZ20].
The scenario involves particular circumstances where there is limited access to the spacetime
where a quantum field is defined. A loss occurs in the information that was enclosed in the
n-point functions involving all points in the region. This loss of information is measured by
entanglement entropy. For instance, a black hole is the prototypical and most studied example
of a background spacetime where all the correlation information of a quantum field are not
accessible.
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