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Abstract

This dissertation covers some of the ideas needed to understand what the black hole

information paradox is, and some recent progress in providing a mechanism for

accounting for the supposedly lost information. We will briefly visit the AdS/CFT

correspondence and see how this can be used to calculate entanglement entropy in

general, and then in the black hole context. Finally we will briefly see how these

ideas have been applied to a simple model of a black hole to reproduce unitary

evolution.
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Chapter 1

Introduction

The Black hole Information paradox, is no longer a paradox, or at least is closer than

ever to not being one. Our understanding of black holes has been a driving force

in our goal to understand how quantum mechanics and gravity can be reconciled.

In this dissertation I will aim to review much of the necessary information required

to understand what the problem is, and how recent progress has aimed to solve

the paradox. Our first job will be to understand how black holes give off radiation.

This was first understood in Hawking’s original 1975 paper [1]. This was after the

discovery that black holes follow a set of laws analogous to the standard laws of

thermodynamics, black hole entropy will be a key player. Namely the Bekinstein-

Hawking entropy SBH = A
4GN

which will be a starting point in finding a fine grained

formula for the black hole entropy.

We will then move on to look at quantum field theory in curved space-time. This

is a nice approach as you can gain an understanding about black hole evaporation

without ever mentioning them. Our main study will be the Unruh effect, uncovered

by Fulling in 1973 [2]. We will also see a way of deriving hawking radiation directly

from the Schwarzschild black hole metric.
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Chapter 1. Introduction

Our treatment of QFT in curved spacetime will consist of generalising covariant

quantisation when we have a metric that is dynamical. This will mean that our no-

tion of what a particle is, will change depending on the metric. In more technical

terms, we will redefine the raising and lowering operators and find the correspond-

ing transformation between them. From this we find that we cannot define a unique

vacuum relative to all observers, even in flat spacetime. The Unruh effect is the

statement that a uniformly accelerated observer in Rindler coordinates will see the

vacuum as thermal and hence observe a temperature. Using simple arguments from

this and the fact that the near horizon coordinates of a Schwarzschild black hole

looks like Rindler coordinates we can deduce that black holes have a temperature

given by TH = ~κ
2πkB

.

Chapter 4 is an introduction to the notion of entanglement entropy and how taking

a black hole to work as a quantum system we can predict the entropy of that system

will act as follows. Page proposes [3, 4] that if a black hole is viewed as a quantum

bipartate system, formed from a pure state, then the entanglement entropy of the

radiation follows the so called ”Page curve”. The main aim of many modern works

tackling the information paradox is reproducing this curve in the entropy of the

Hawking radiation. The main trouble is, the absence of full theory of quantum

gravity. We focus on methods of calculating the entropy of subsystems in Conformal

field theories, such as the ”Replica trick”, which stars in recent progress on the black

hole problem [5].

Next we introduce the AdS/CFT correspondence, this is a conjectured equivalence

between specific quantum field theories, with additional conformal symmetry, and

gravitational theories in AdS. The AdS/CFT correspondence provides some respite if

we don’t like calculating Entanglement entropies (EEs) in the language of Conformal

Field Theory (CFT). As we saw in the previous section, calculating EEs directly from

the CFT language gets very tricky very fast. We take the same example of the single
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Chapter 1. Introduction

interval and calculate the result equivalently without the replica trick in AdS3.

In the next section we introduce the Ryu-Takayanghi (RT) formula that conjectures

a link between entropies of CFTs, and extremal surfaces in AdS space. Subsequent

higher order corrections to this formula were made by Faulkner, Lewkowycz and

Maldacena (FLM) [6], then Engelhardt and Wall (EW) [7]. These led us to the most

recent leap in progress [5, 8] to include regions behind the horizon dubbed ”Islands”

in the calculation of Srad. These regions begin to appear some time after the black

hole has formed and have been shown, in a toy model of a black hole, to unitary

evolution of the original state, in this case will be a levelling out of the Page curve.
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Chapter 2

Background

2.1 Black hole thermodynamics

In this chapter we will outline some of the essential tools, results and ideas used to

understand black holes as thermodynamic objects. This chapter will be mainly based

on lecture notes by Dowker [9], Townsend [10], and Gauntlett [11]. Starting with

a simple black hole background we can derive equations that look suspiciously like

the laws of thermodynamics from standard statistical mechanics. This was originally

stated in Carter and Hawking’s 1973 paper [12] where they layed down The four

laws of black hole mechanics and [13]. First we must make some definitions.

Definition:Null hypersurface

Let S(x) be a smooth function of our spacetime coordinates xµ and consider the

family of hypersurfaces S = constant. The vector fields normal to this surface are

l = f̃(x)(gµν∂νS)
∂

∂xµ
(2.1)
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Chapter 2. Background 2.2. THE LAWS OF BLACK HOLE MECHANICS

Where f̃ is an arbitrary non-zero function. If l2 = 0 for any hypersurface N in

this family of surfaces. Then N is a null hypersurface. So vectors normal to null

hypersurfaces, are also tangent to the surface.

Definition: Killing vector

A vector field ξµ(x) is a killing vector if

Lξg = 0 (2.2)

Definition:Killing horizon

A null hypersurface N , is a Killing horizon of a killing vector ξµ if ξµ is normal to N

on N .

Definition:Surface gravity

On N there exists a function κ such that

∇µξ
νξν |N = −2κξµ (2.3)

κ is called the surface gravity. The surface gravity will be interpreted to be related to

the temperature of the black hole.

2.2 The laws of black hole mechanics

In 1973 Hawking published a paper [12] relating the way black holes change when

mass is added, to the laws of thermodynamics from standard statistical mechanics.

• Zeroth law

The surface gravity κ is constant over the event horizon of a stationary black

hole. This law draws a comparison between a black hole and any thermo-
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2.2. THE LAWS OF BLACK HOLE MECHANICS Chapter 2. Background

dynamic system in thermal equilibrium, where temperature is constant every-

where.

• First law

dM =
1

8π
κdA+ ΩHdJ (2.4)

Where M is the mass, A is the area of the horizon, J is the angular momentum,

and ΩH is the rotational velocity of the horizon. This law is derived directly

from the metric by considering first the area of the horizon, and considering a

small variation in the parameters M and a. We first find the area of the horizon

by setting r = r+ = M +
√
M2 − a2 (working in units where G = 1) and we

get an induced metric on the horizon [14].

ds2
horizon = (r2

+ + a2cos2θ)dθ2 +

[
(r2

+ + a2)2sin2θ

r2
+ + a2cos2θ

]
dφ2 (2.5)

To find the area we integrate to induced volume element from the new metric.

We find that

A = 4π(r2
+ + a2) (2.6)

The law comes directly from varying the area (after a lot of algebra, of course).

The analogy with traditional thermodynamics comes from assuming that the

entropy is proportional to the area of the horizon.

• Second law

dA ≥ 0 This states that when two black holes collide, the area of the resulting

black hole is greater than the sum of the two areas. This is reminiscent of the

second law of thermodynamics that states that the entropy always increases.

This is suggestive of a link between the area and the entropy of the black hole.

• Third law The surface gravty κ cannot be reduced to zero in a finite number
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Chapter 2. Background 2.2. THE LAWS OF BLACK HOLE MECHANICS

of operations.

These laws are for the moment purely classical, they can be derived directly from

general relativity and Einstein’s equations. Despite these suggestive equations, It

was not believed that black holes were thermodynamic objects, until 1975 when

Hawking discovered that black holes, aren’t actually completely black. They give off

radiation, and have a temperature proportional to the surface gravity

TH =
~κ
2π

(2.7)

The generalised entropy formula for a black hole is

Sgen =
A

4~GN

+ Soutside (2.8)

This will turn out to be the wrong formula and lead to a monotonically increasing

entropy as the black hole evaporates, which seems to create entropy out of nothing.

This is bad for quantum mechanics, since a black hole formed from a pure state,

which should have no entropy, seems to unitarily evolve into a mixed state!
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Chapter 3

QFT in curved space-time

This chapter will start with the general formulation of QFT in curved space-time and

show some important phenomena that occur when we allow our background metric

to be dynamical and our definition of what a ”particle” is to change with it. This

will then lead us to considering how our QFT changes when we simply change the

coordinate system (in our case this will be Rindler co-ordinates) and give a key link

to understanding how black holes evaporate.

3.1 Scalar field quantisation

This short introduction to the formulation of QFT in curved spacetime is largely

based on Birrel and Davies [15] and Fay Dowkers notes [9]. To go from QFT in flat

spacetime, to curved, the first step must be to express our equations in a coordinate

invariant form. We will focus on the simple case of the real Klein-Gordon scalar. We

start with the Lagrangian density..

8



Chapter 3. QFT in curved space-time 3.1. SCALAR FIELD QUANTISATION

L =
1

2

√
−g(gµν∇µφ∇νφ−m2φ2) (3.1)

Where φ = φ(t,x) This leads to the equation of motion.

∇2φ−m2φ = 0 (3.2)

And conjugate momentum

π =
∂L

∂(∇0φ)
=
√
−g∇0φ (3.3)

We now can impose the canonical commutation relations (as usual)

[
φ̂(t,x), φ̂(t,y)

]
= 0 (3.4)[

π̂(t,x), π̂(t,y)
]

= 0 (3.5)[
φ̂(t,x, π̂(t,y)

]
=

i√
−g

δ3(x− y) (3.6)

Our next step will be to define an inner product.

(φ1, φ2) = −i
∫

Σ

dΣµ
√
−g(φ1∂µφ

∗
2 − φ2∂µφ

∗
1) (3.7)

Where we take Σ to be a Cauchy surface, under the assumption that our spacetime

is globally hyperbolic (for precise definitions of these terms see [16]). The inner

product is invariant of the choice of Cauchy surface.

Now, there exist some ui(x) such that they are a complete set of mode solutions,

9



3.1. SCALAR FIELD QUANTISATION Chapter 3. QFT in curved space-time

with orthonormal relations in the product (3.7).

(ui, uj) = δij, (u∗i , u
∗
j) = −δij, (ui, u

∗
j) = 0 (3.8)

We can now expand the field φ in terms of its mode solutions and some raising and

lowering operators ai and their conjugates a∗i

φ(x) =
∑
i

[aiui(x) + a†iu
∗
i (x)] (3.9)

Now impose commutation relations on these operators.

[
ai, a

†
j

]
= δij (3.10)

We now have the setup required to build a fock space in the usual way. By defining

the vacuum state |0〉 to be annihilated by lowering operators ai. We form states by

acting on the vacuum state with successions of raising operators a†in. Doing this we

form a basis for a Hilbert space H.

However there are some caveats when working in curved spacetime. The way we

expand the field φ(x) in terms of raising and lowering operators and mode solutions

is certainly not unique, so we must think of a way to account for this ambiguity.

Note that this is already hinting at the Unruh effect, in that we seem to be unable to

define a unique vacuum state. So the next step is to question how we relate different

expansions of the field φ(x).

10



Chapter 3. QFT in curved space-time 3.1. SCALAR FIELD QUANTISATION

3.1.1 Bogoliubov transformations

Say φ(x) can be expanded in some other way.

φ(x) =
∑
j

[ājūj(x) + ā†jū
∗
j(x)] (3.11)

Where we now have different raising and lowering operators that now by definition

have to kill a new vacuum, so that.

āj |0̄〉 = 0,∀j (3.12)

Since both are complete sets of modes, complete meaning that they satisfy the cor-

rect set of orthonormality conditions, we can express ūj in terms of the old modes

with some relating coefficients. We call these Bogoliubov coefficients.

ūj =
∑
i

[αjiui + βjiu
∗
i ] (3.13)

ū∗j =
∑
i

[α∗jiu
∗
i + β∗jiui] (3.14)

Now we shall impose our orthonormality conditions on the new model solutions and

see some properties of the Boguliubov coefficients.

By demanding (3.8) we get

αα† − ββ† = I (3.15)

αβT − βαT = 0 (3.16)

11



3.1. SCALAR FIELD QUANTISATION Chapter 3. QFT in curved space-time

The coefficients are calculated using

αij = (ūi, uj), βij = −(ūi, u
∗
j) (3.17)

Now we have the necessary relations in order to express the new raising and low-

ering operators in terms of the old ones. Our trajectory from here is beginning to

get clearer. We are going the end up with a different expression for the new ai op-

erators and therefore the number operator N̂ = a†iai will have a different vacuum

expectation value.

our expansion for āi in terms of the Boguluibov coefficients is.

āi =
∑
i

[α∗jiai − β∗jia
†
i ] (3.18)

3.1.2 Particle production in dynamical spacetimes

We now have ther tools to think about how particles are defined in spacetimes that

change in time. In Minkowski spacetime, or even a more exotic one that does not

change, we have a universal notion of a particle. When curvature is non-stationary,

we have a changing definition of a one particle state. To see this, let’s consider the

so-called ”sandwich spacetime” M = M− ∪M0 ∪M+. Where in M− we expand the

scalar field in solutions of the Klein-Gordon equation. When we evolve to M+ the

functions used in M− will no longer solve the Klein-Gordon equation so we expand

in different functions to represent the same field. We must now use our Bogoliubov

transformations to relate M− and M+.

We showed before, the transformed number operator with respect to the old raising

and lowering operators, is given by N̄i = ā†i āi. Which we shall calculate it’s expecta-

12



Chapter 3. QFT in curved space-time 3.2. THE UNRUH EFFECT

Figure 3.1: The sandwich spacetime. This is essentially a nice way of visualising a
dynamical spcetime. The field expansion will change between time t1 to t2 [10]

tion value in the original vacuum. The original ai’s kill the original vacuum |0〉 and

we are left with a non-zero expectation value of the number operator in the vacuum.

〈0| N̄i |0〉 = 〈0| ā†i āi |0〉 (3.19)

=
∑
jk

〈0| ak(−βik)(−β∗ija
†
j) |0〉 (3.20)

=
∑
jk

〈0| aka†j |0〉 βikβ∗ij (3.21)

=
∑
j

βijβ
∗
ij (3.22)

= (ββ†)ii = Tr
(
ββ†
)

(3.23)

Note that there is no summation over the index here. So we get an expectation value

that is not necessarily zero. Therefore if β is non zero we get particle production in

our time dependant spacetimes!

3.2 The Unruh effect

We will next explore a stunning result from QFT in curved spacetime first predicted

by Fulling in 1973 [2] and subsequently Davies [17] and Unruh [18]. The basic

13



3.2. THE UNRUH EFFECT Chapter 3. QFT in curved space-time

idea of the Unruh effect is similar to what we have already covered. We can observe

a temperature from the vacuum, in this example we will explicitly show how this

effect can even be observed in flat spacetime.

Consider for simplicity, two-dimensional Minkowski spacetime with the metric.

ds2 = dt2 − dx2 (3.24)

Our task will be to consider the massless wave equation on this metric and transform

it into a uniformly accellrated coordinates (Rindler space). We will then need to

find the Bogoliubov coefficients in order explicitly calculate the vacuum expectation

value in these coordinates.

First we choose new coordinates (η, ξ) which reflect the perspective of a uniformly

accelerated observer. Where −∞ < η, ξ <∞

t =
1

a
eaξ sinh aη (3.25)

x =
1

a
eaξ cosh aη (3.26)

Or in null coordinates (ū, v̄)

ū = −1

a
e−au (3.27)

v̄ =
1

a
eav (3.28)

This leads to the new metric. where a is These coordinates now describe the right

Rindler wedge, shown in fig.(3.2).

Changing coordinates again with u = η − ξ, v = η + ξ (3.27) becomes.

ds2 = e2aξdudv = e2aξ(dη2 − dξ2) (3.29)

14
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Figure 3.2: Representation of rindler spacetime, the hyperbolae represent the paths
taken by uniformly accelerated observers. Figure taken from Birrell and Davies [15]

The Rindler spacetime is now split into four causally disconnected regions. The lines

ū = 0 and v̄ = 0 act as event horizons. where a uniformly accelerated observer will

not cross between wedges. When we consider quantisation on this spacetime we

must include solutions for both the left and the right Rindler wedge. The left wedge

is simply defined by reversing the signs in our original transformation (3.25)-(3.26)

Consider our massless wave equation in Minkowski and then Rindler coordinates.

2φ = e−2sξ(
∂2

∂η2
− ∂2

∂ξ2
)φ = e−2aξ ∂

2φ

∂u∂v
= 0 (3.30)

We can very easily solve this with a complete set of positive frequency mode so-

lutions. The modes on the right wedge however, will not be considered positive

frequency in the left wedge. To deal with this we take two sets of solutions. Firstly

in Minkowski space.

ūk =
1√
4πω

eikx−iωt (3.31)

Where ω =| k | and −∞ < k <∞.

15



3.2. THE UNRUH EFFECT Chapter 3. QFT in curved space-time

And in Rindler coordinates.

uk =
1√
4πω

eikξ±iωη (3.32)

ω =| k, −∞ < k <∞ (3.33)

Where the positive sign on the η term is associated with the positive frequency solu-

tions on the right Rindler wedge. vice versa for the negative sign. We represent this

as two separate mode solutions.

Ruk =


1√
4πω

eikξ−iωη, in R

0, in L
(3.34)

Luk =


1√
4πω

eikξ+iωη, in L

0, in R
(3.35)

Now we have all of our solutions in the left and right wedge, we can expand it in

the usual way and define what we think a particle is, as a Rindler observer. Each

solution and its conjugate will be associated with a different raising operator for

these ”Rindler particles”. Note that we can do this because the left and right moving

modes form a complete basis for functions on the manifold.

φ =
∞∑

k=−∞

(b
(1)L
k uk + b

(1)†L
k u∗k + b

(2)R
k uk + b

(2)†R
k u∗k), (3.36)

Expressed in minkowski coordinates would simply be.

φ =
∞∑

k=−∞

(akūk + a†kū
∗
k) (3.37)

Now we have the field expressed in both coordinate systems we can begin to build

16



Chapter 3. QFT in curved space-time 3.2. THE UNRUH EFFECT

two separate fock spaces based off the two vacuums |0M〉 and |0R〉. Both defined

in the standard way, by demanding that they are killed by their respective annihi-

lation operators. In the Rindler case, |0R〉 is killed by both its left and right wedge

annihilation operator.

Our next step will be to relate the two solutions via our Bogoliubov coefficients

(3.17). Our calculation will follow Dowkers treatment in [9].

Recall (3.13) we get the right handed positive frequency Rindler modes.

uRj =

∫ ∞
0

dω′[αωω′uω′ + βωω′u
∗
ω′ ] (3.38)

Note the Minkowski modes take the form uω′ = 1√
4πω′

e−iω
′(x−t), where we are focus-

ing on the right moving modes k > 0 so ω = k. And from now on for ease of notation

we will define v = x− t

Next we define the fourier transform of the right moving Rindler mode

uRω (v) =
1

2π

∫ ∞
−∞

dω′e−iω
′vũω(ω′) (3.39)

where

ũω(ω′) =

∫ ∞
−∞

dv̄eiω
′v̄uRω (v̄) (3.40)

We split up (3.39) in the following way, our aim at the moment is to find the β

coefficient.

uRω (v̄) =
1

2π

∫ ∞
0

dω′e−iv̄ω
′
ũω(ω′) +

1

2π

∫ ∞
0

dω′eiv̄ω
′
ũω(−ω′) (3.41)

We then compare this with our original expression for the mode expressed in terms

17



3.3. HAWKING RADIATION Chapter 3. QFT in curved space-time

of Bogoliubov coefficients. We find that

αωω′ =

√
ω′

π
ũω(ω′) βωω′ =

√
ω′

π
ũω(−ω′) (3.42)

We now must use the following relation which we will state but not prove, for a

proof see [9]. We claim that ũω(−ω′) = e−
−πω
a ũω(ω′). This is useful when used in

conjunction with the relation (3.15). We can find an expression for |βωω|2.

We evaluate the Rindler number operator in the Minkowski vacuum to obtain the

”Unruh temperature”.

〈0M | b(1,2)†
k b

(1,2)
k |0M〉 =

1

e
2πω
a − 1

(3.43)

Which is the planck spectrum with at a temperature.

T =
a

2πkB
(3.44)

Where kB is the Boltzman constant.

This is an amazing result. Even in flat spacetime, we predict that a uniformly accel-

erated observer will see the Minkowski vacuum as thermal.

3.3 Hawking radiation

If we start with the usual metric for a Schwarzschild geometry

ds2 = −(1− 2GM

r
)dt2 +

dr2

(1− 2GM
r

)
+ r2dΩ2 (3.45)

18
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Once again we go to near horizon coordinates by defining

r = 2GM(1 +
ρ2

4(2GM)2
) t = 2(2GM)T (3.46)

Following a similar procedure to that in (2.2.1) and taking the limit ρ << 2GM we

arrive at the near horizon metric

ds2 = −ρ2dT 2 + dρ2 + higher order terms (3.47)

Which is the metric for Rindler space. This is where our hard work on the Unruh

effect comes to fruition. an observer near the horizon will be uniformly accelerating

and will observe a temperature. This is an easy way to convince yourself that black

holes have a temperature if you can accept the Unruh effect. Hawking’s calculation

showing particle production by black holes requires slightly more work but the basic

concept is similar. We will want to find Bogoluibov coefficients and calculate the

expectation value of N [1, 9].

Note the Carter-Penrose diagram for a spherically symmetric collapsing star in fig

We must attempt to solve the vaccum Klein-Gordon equation in Schwarzschild space-

time.

ds2 = (1− 2M

r
)(−dt2 + dr2

∗) + r2dΩ2
2 (3.48)

Using the relation that

2 = ∇µ∇µ =
1√
−g

∂µ(
√
−ggµν∂ν) (3.49)

We will use a spherical harmonic decomposition of the field, namely φ(t, r∗, θ, φ) =

19



3.3. HAWKING RADIATION Chapter 3. QFT in curved space-time

Figure 3.3: Conformal diagram for a spherically symmetric collapsing star, figure from
[9].

χl(r, t)Ylm(θ, φ), we derive the result

[∂2
t − ∂2

r∗ + Vl(r∗)]χl = 0 (3.50)

Our aim is to compare the modes on J + and J −. There is a caveat in finding a

Cauchy surface on this spacetime as it is not globally hyperbolic, as the asymptotic

past near J− is a Cauchy surface, so we are fine simply finding positive frequency

modes here. J + is not a Cauchy surface, however H+ ∪J + is, so we can specify our

complete set as a union of modes with support on only J + and then H+ respectively.

In analogy with the Unruh effect, we will want to express the outgoing late modes

on J + ∪ H+ in terms of the early modes on J −. We do this by tracing a solution

back in time, along a null geodesic and find that part of the mode is transmitted to

J − and part falls into the collapsing matter. When we start with a mode such as
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gω = e−iωu, we end up with the modes on J − looking like

gtransmitted
ω =


e
iω
κ

ln(−v) for v < 0

0 for v > 0

(3.51)

For these modes our Bogoliubov coefficients will look exactly analogous to the Rindler

ones. Except with κ swapped with a. Hereby we can derive the hawking temperature

in the same way as we did the Unruh with.

TH =
~κ

2πkB
(3.52)

3.3.1 Extremal Reissner-Nördstrom solution

Let’s focus on a specific solution to Einstein’s equations. The Reissner-Nördstrom

solution for a charged black hole. The metric is [19]

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
2 (3.53)

Where f(r) = 1− 2M
r

+ Q2

r2
.

As seen in the previous section, we often get interesting results by a change of co-

ordinates. Again, our coordinate change will be near horizon limit. When the black

hole is not extremal, we should simply reproduce the previous result of Rindler×S2.

However if we consider the extremal limit where M = Q, we find a few things hap-

pen. Firstly we find that the inner and outer horizons coincide and as a result the

black hole no longer radiates.
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Next take near horizon coordinates by defining

r = Q(1 +
λ

z
), t =

QT

λ
(3.54)

And noting that

dr2 =
Q2λ2

z4
dz2 (3.55)

dt2 =
Q2

λ2
dT 2 (3.56)

f(r) = (
λ

z + λ
)2 (3.57)

Using this, and taking the limit λ→ 0 we arrive at the metric

ds2 =
Q

z2
(−dT 2 + dz2) +Q2dΩ2

2 (3.58)

This metric represents the geometry AdS2 × S2. This will be crucial later on when

we consider the AdS/CFT correspondence to calculate the generalised entropy of

the black hole.
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Chapter 4

Entropy

This aim of this chapter will be to introduce the notion of entropy in a quantum

system.We start with some classical information theory as the notion of entropy is

easier to understand here and we can make good analogy with the quantum case,

we then move on the the different notions of entropy in a quantum system. Most

notably we will be interested in the von Neumann entropy, sometimes called the

”fine-grained entropy” of a quantum system. Next we will be concerned with trying

to calculate this entropy, more specifically when we have a subsystem of a larger

Hilbert space, we call this the entanglement entropy. Later on we will want to view

a black hole simply as a quantum system split into two parts, the black hole, and the

radiation and our task will be to compute the entanglement entropy of the Hawking

radiation.

4.1 Quick review of classical information theory

We will start with the simpler case of classical information theory. Most of the defini-

tions in this section will carry over and be extremely useful in the case of calculating
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quantum entropy. We will follow Headricks treatment [20]

Take some probability distribution

pa ≥ 0
∑
a

pa = 1 (4.1)

From a simplistic point of view, the case of lowest entropy, were we know the most

about any outcome would be a determanistic distribution, where pai = 1 for some

1 ≤ i ≤ n, this would correspond to S=0. On the other hand maximum entropy

would correspond to a uniform distribution where pai = 1
n
∀i. The definition of

the shannon entropy is

S(p) = −
∑
a

pa ln pa

There are a few importanrt properties of the shannon entropy. Say we have two

adjoined systems A and B.

• Extensiveness This means that if we consider two independent systems A and

B, the entropy of the system as a whole is simply the sum of the two entropies.

• Subadditivity - S(AB) ≤ S(A) + S(B) This is an important condition as it

relates to entanglement in the quantum sense. Equality holds if and only if A

and B are independent. If they are not then they must be correlated in some

way.

• Conditional entropy H(A|B) = S(AB)−S(B) This is the entropy of the system

as a whole after learning of the state B.

• Mutual information - I(A : B) = S(A) − H(A|B) This tells you information

gained on A, when we learn about B.

• The maximum entropy of any system is Smax(A) = ln dimHA.
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4.2 The density matrix and von Neumann entropy

Firstly we will want to define an object that encodes all that we know about a quan-

tum system, that is to calculate expectation values of observables. We do this by

defining the density matrix ρ which is an operator that acts on our Hilbert space H.

ρ† = ρ, ρ ≥ 0, Tr ρ = 1 (4.2)

The density matrix is expressed as ρ =
∑

i pi |ψ〉 〈ψ| where each pi represents the

probability of being in the state i. Pure states are ones that can be expressed in the

form ρ = |ψ〉 〈ψ|, any state that cannot be factorised in this way are called mixed.[20]

From the density matrix we can extract a quantity known as the von Neumann en-

tropy, it is defined to be.

S(ρ) := −Tr ρ ln ρ (4.3)

This is useful as it satisfies many properties we would expect an entropy to satisfy.

The von Neumann entropy of a pure state is zero. This is resonable, seeing as we

”know everything about the state of the system”. This quantity also has many of the

tropes that we expect from classical information theory (Shannon entropy). With

an additional nice property that it is invariant under unitary transformations [21].

Another useful property to note is that Tr(ρ2) ≤ 1 with equality if and only if ρ is a

pure state.

It will be useful to define the dentisy matrix in a thermal state. it is useful to think of

the topology of our theory, for example on a circle. Our density matrix is represented

by a path integral with two open cuts, so this would be a cylinder with boundary

conditions on the top and bottom. [19].

ρ =
1

Z
e−βH (4.4)

25



4.2. THE DENSITY MATRIX AND VON NEUMANN ENTROPY Chapter 4. Entropy

Where β is the inverse temperature and H is called the modular Hamiltonian. Z

is the partition function and is there to ensure states are properly normalised. We

can represent the trace as a Euclidean path integral over a cylinder with the ends

identified, in other words, a torus.

Z = Tr e−βH (4.5)

4.2.1 Rényi entropies

Practically when calculating the von Neumann entropy of an actual system, we go via

an an indirect but often much easier route of the Rényi entropy. These are defined

as follows [20].

Sα :=
1

1− α
ln Tr ρα =

1

1− α
ln

(∑
a

ραa

)
, (α 6= 0, 1,∞) (4.6)

S0 := lim
α→0

Sα = ln(rankρ) (4.7)

S1 := lim
α→1

Sα = S (4.8)

S∞ := lim
α→∞

Sα := − ln ‖ρ‖ = − ln
(

max
a
ρa

)
(4.9)

Where ρa are the eigenvalues of ρ. We will later on outline a specific example that is

very important to our story.

4.2.2 Entanglement Entropy

Our next important idea will start with splitting up a quantum system into two

spaces, often called a bipartate system. Take a Hilbert space, made up of the ten-
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sor product between two separate systems A and B.

H = HA ⊗HB (4.10)

We can set A to be the smaller system ie. |A| < |B|. For any system such as this there

will be a density matrix describing it, ρAB. We define the reduced density matrix

describing subsystem A as

ρA = TrB ρAB (4.11)

From this we define the entanglement entropy of A as the von Neumann entropy of

the reduced density matrix associated to A.

SA = −Tr ρA ln ρA (4.12)

There are many useful properties of von Neuman entropies that we will make use of

in the coming chapter, such as subadditivity and extensiveness. So if ρAB is a product

state, then the entropy of the total system is simply the sum of the entropy of each

individual system. If not, then there must be some mixture of states, said in symbols.

ρAB = ρA ⊗ ρB ⇐⇒ S(AB) = S(A) + S(B) (4.13)

ρAB 6= ρA ⊗ ρB ⇐⇒ S(AB) < S(A) + S(B) (4.14)

The von Neumnn entropy has a few enlightening properties known as strong subad-

ditivity

S(AB) + S(BC) ≥ S(B) + S(ABC) (4.15)

It also obeys the Araki-Lieb inequality

S(AB) ≥ |S(A)− S(B)| (4.16)
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and weak monotonicity

S(AB) + S(BC) ≥ S(A) + S(C) (4.17)

A very useful property for our purposes will be that when AB is in a pure state, then

this means

S(A) = S(B) (4.18)

4.3 Ideas from Quantum information

We will start with the setup of (reference equation) with a bipartate system and a

pure state on it.

|ψ〉 =
1√
2

(|00〉+ |11〉) (4.19)

We have clearly started out with a pure state as it cannot be factorised. Our notation

is such that |00〉 = |0〉A⊗ |0〉B and so on. By taking the partial trace over this we can

compute the marginal states.

ψA = TrB ψ =
1

2
(|0〉A 〈0|+ |1〉A 〈1|) (4.20)

ψB = TrA ψ =
1

2
(|0〉B 〈0|+ |1〉B 〈1|) (4.21)

We have ended up with both being mixed states. We can check this by noting that

they are both proportional to the identity operator on the total Hilbert space and

checking. Tr
(
( I

2
)2
)

= 1
2
< 1 In this example we have started off with a pure state,

but have uncovered entanglement in the system. This notion will be useful later

when we consider the bipartate system of a black hole interior and its radiation.

This also starts its life as a pure state, and appears to move into a mixed state. This

is where the paradox arises.
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An important property of bipartate systems in a pure state is that the two systems

will have equal entropy.

4.3.1 Purifiying mixed states

This will be important later to understanding the sudden reduction in the fine grained

entropy once the black hole has reduced to half of it’s initial mass.

Say we have a mixed state on some system, ρA on A. If we so choose, we can add

another system, B, onto A, to make a larger hilbert space. If we do this in a specific

way, the state on A∪B will be a pure state, and therefor e have zero entropy. Firstly

we express ρA as a diagonal matrix.

ρA =
∑
a

pa |a〉A 〈a| (4.22)

Where pa are the eigenvalues of ρA. We can now define the pure state |ψ〉.

|ψ〉 :=
∑
a

√
pa |a〉A ⊗ |a〉B (4.23)

Where |a〉B are an orthonormal set of vectors on HB.

4.4 The replica trick

Our ultimate goal here will be to arrive at a formula for the entropy of an evaporating

black hole. A helpful result will be the EE of a single interval in 1+1 CFT. To do

this we use the replica trick. We arrive at this method by the calculation of Renyi
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Figure 4.1: Representation of our α sheeted surface glued together along our subregion
[23].

entropies [20, 22, 23, 24]

S = −Tr ρ ln ρ = − ∂

∂n
Tr ρn|n=1 (4.24)

When ρ = |ψ〉 〈ψ| We view this as α copies of the original sheet and glue them

together at the boundaries, eventually connecting them cyclically at the boundaries

[25]. 〈
φA0
∣∣ ρ2

A

∣∣φA2 〉 =

∫
DφA1

〈
φA0
∣∣ ρA ∣∣φA1 〉 〈φA1 ∣∣ ρA ∣∣φA2 〉 (4.25)

Where we have inserted a complete set of states in the middle to integrate over.

To link this two sheeted surface, we take the trace by setting φA0 = φA2 . Fig 4.2 is

a representation of our surface that we integrate over in order to find the Rényi

entropies.
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The calculation first done by Holzhey et al. [26] finds that Tr ρnA are given by (noting

that Tr ρA = 1)

Tr ρnA = (Z1)−n
∫

(tE ,x)∈Rn
Dφe−S(φ) =

Zn
(Z1)n

(4.26)

The calculation of equation (4.26) is given in the language of CFTs by evaluating two

point functions of twist operators. One shows that the α’th Rényi entropy is given by

Sα =
c

6
(1 +

1

α
) ln

L

ε
+ finite (4.27)

Which for α = 1 is the even simpler

S(A) =
c

3
ln
L

ε
(4.28)

4.5 The page curve

We now know that we can split up any quantum system into a product of two (or

more) subsystems. From this we can calculate the entanglement entropy of each in-

dividual system by tracing over the total density matrix ρ to find the reduced density

matrix ρA = TrB ρ. We can then go ahead and calculate the von Neumann entropy

as SA = −Tr ρA ln ρA.

4.5.1 General quantum systems

Before applying anything to black holes, we can think in a much more general sense

about quantum systems. In 1993 Don Page conjectured [3] that if a system of Hilbert

space dimension mn is in a random pure state, the average entropy of a subsystem

of dimension m ≤ n is Sm,n =
∑mn

k=n+1
1
k
− m−1

2n
. This was building upon earlier work
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by Lubkin [27]. He found that for a random pure state of some system AB, with

A < B. The smaller system, A, will be essentially maximally mixed. This means

that the entanglement entropy of that system will be nearly maximal and therefore

near our upper bound of entropy, ln dimHA. So the entropy will follow the simple

formula.

S(A) = min{ln dimHA, ln dimHB}+O(1) (4.29)

If we give the system a large number of degrees of freedom, we get a page curve for

the entropy of the subsystem A. We will now see this applied to black holes.

4.5.2 Page curve applied to black holes

Due to Page [3, 4] we can view a black hole in this way by splitting the system up

into a black hole region and the radiation. Since we know that a black hole is formed

from a pure state, we know that SV N(HBH ∪ HR) = 0. Where we split up the total

Hilbert space into a black hole region and the radiation. Page argues that the entropy

of the radiation grows linearly with time from zero (since we have a pure state). At

this time, we will have SV N(R) = Srad and hence creates entropy out of nowhere.

This is where our problem lies. Page argues that the von Neumann entropy of the

radiation increases at early times, but after a so called ”Page time”, the degrees of

freedom in the radiation become more entangled with degrees of freedom inside the

black hole. We now have SV N(R) = SBH

Following this logic we can derive the page curve for the Schwarzschild black hole.

In [3] Page states that in a bipartate system H = A ⊗ B where |A| << |B|, the

entropy of system A is essentially thermal, meaning S(A) ≈ ln(dimension ofHA)

We know that the black hole will evaporate in some finite time te. The fine grained

entropy of the radiation will increase with time up until the page time tpage. We know
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that the BH emmits a thermal spectrum of hawking radiation and we have some

number Nf species of massless particles. We also know that all of our quantities are

time dependent so we have time dependent temperature T (t), mass M(t), BH and

radiation entropy SBH(t) and Srad(t) and we also know black hole thermodynamics

T =
1

8πM
(4.30)

dM = TdSBH (4.31)

dM

dt
= −Nf

πT 2

12
(4.32)

Now we go forth with these relations and solve for our variables.

dT

dt
=

2π2NfT
4

3
=⇒ T (t) =

1

(2π2Nf )
1
3 (te − t)

1
3

(4.33)

And

M(t) =
1

8πT
(4.34)

We can now derive the BH entropy over time. Again solving simple ODEs, we begin

with equation (4.31)

dSBH
dt

=
1

T

dM

dt
(4.35)∫ te

t

dSBH =
(2π2Nf )

2
3

24π

3(te − t)
2
3

2

∣∣te
t

(4.36)

SBH(t) =
(2π2Nf )

2
3

16π
(te − t)

2
3 (4.37)

(4.38)

Now we need the entropy of the radiation over time. By similar methods

Srad =
πNf

4(2π2Nf )
1
3

(t
2
3
e − (te − t)

2
3 ) (4.39)
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Figure 4.2: The page curve, figure taken from[29]

So Srad grows from 0 and increases. Using pages argument mentioned before, at

early times we take the von Neumann entropy to be the entropy of the radiation, at

the page time we replace this with the Bekinstein-Hawking entropy. so our formula

can be expressed as [4, 28].

SV N(R) = min
{
Srad(t), SBH(t)

}
(4.40)
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The island rule

So far we have reviewed some necessary material for calculating entanglement en-

tropies. We would like to reproduce the page curve, in calculating the entropy of

an evaporating black hole. Hawking’s original calculation seems to indicate a loss

of information from the universe (Or a creation of entropy). Since the BH starts out

in a pure state, which has zero entropy, after evaporation there should still be zero

entropy. Another way of saying this is that the S-matrix is unitary.There has been

recent progress in calculating the page curve for the black hole [30, 31, 32]. This

chapter will aim to outline how we arrive at this rule for calculating the fine grained

entropy of the black hole and how this possibly resolves the paradox by reproducing

the page curve.

5.1 A word on the AdS/CFT correspondence

Discovered by Maldacena in 1997 [33], he conjectured that certain Conformal field

theories can be represented as living on the boundary of a gravitational theory in one

higher dimension. For example, CFT2 living on the boundary of AdS3. We refer to
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the fields in the AdS theory as bulk fields and the CFT fields as boundary fields. We

will be using results from this in order to understand the potential resolution of the

information paradox. Although it is good to note that the AdS/CFT correspondence

gives us the answer to the problem, information is not lost. But having the answer

doesn’t help us understand why this is true. We will have to do some more work.

5.1.1 Ryu-Takayangi formula

Using the AdS/CFT correspondence we can calculate the holographic entanglement

entropy. As we have seen from 2.2.1 the near horizon limit for the extremal Reissner-

Nördstrom black hole has an appearence of AdS2×S2. In their paper [34], they pro-

pose that the HEE can be calculated by finding ”minimal surfaces” on the boundary

of AdS. We work in the following setup. The entanlement entropy of a subsystem

SA of a CFTd+1 on R1,d. Where the subsystem has a boundary ∂A ∈ Rd. The CFTd+2

lives on the boundary of AdSd+2[34, 35]

SA =
Area of γA

4G
(d+2)
N

(5.1)

Where γA is our d-dimensional ”minimal surface” on the static (not time depen-

dent) slice of AdS and G(d+2)
N is Newtons constant in the dimension of the CFT. One

can motivte this formula in many ways, the first being that it looks much like the

Bekingstein-Hawking formula for a black hole.

This statement makes calculating entanglement entropies significantly simpler in

certain holographic theories. Using the conjeture we are able to reproduce the result

for a 1+1 CFT with relative ease. Our problem of calculating the EE of an interval

x ∈ [−LA
2
, LA

2
]. Is reduced to finding geodesics of the dual geometry AdS3. One more

simplification we make is to consider a static state, so set t = 0. Our metric is now
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Figure 5.1: The arc in red shows the geodesics on the boundary of AdS3

[19].

ds2 =
l2

z2
(dx2 + dz2) (5.2)

Where we must connect the points in our CFT that both lie on the boundary of our

geometry, via a geodesic. Once we find the length to be Length = 2LA log
(
LA
εUV

)
where εUV is our UV cutoff. We plug this into the RT formula, changing paramters

between the gravity and the CFT so LA = 2cGN
3

we end up with the expected result

SA =
c

3
log

(
LA
εUV

)
(5.3)

as it is simply a geometry problem. We have the CFT2 living on the boundary on

AdS3. The minimal surface in the gravity theory is an arc as shown in figure 5.1.

There were subsequent generalisations made by HRT relaxing some of the limitations

of the RT formula [36]. They proposed a covariant version of the formula where

the entropy of a general boundary region is given by the area of the minimal bulk

extremal spacelike surface homologous to A. The difference here being extremal

rather than just minimum. So there may be many surfaces that satisfy our condition,

we pick the one with the minimum area. The homologous condition is there to make

sure the minimal surface is not just the empty set. Later on the HRT definition of the
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Figure 5.2: This figure shows the CFT living on the boundary of the bulk. Ab is the
region inside enclosed by the minimal surface. Figure from [6]

HEE is shown by Wall to be equivalent to a ”maximin surface” prescription [37].

Corrctions of order G0
N to this result were found in by Faulkner, Lewkowcyz and

Maldacena (FLM)[6]. The correction is given by the von Neumann entropy of the

region not contained within the minimal surface in the bulk. Figure 5.2 illustrates

this.

S(A) = Scl + Sbulk(Ab) (5.4)

This was then further generalised to include a perscription of a Quantum extremal

surface by Engelhardt and Wall in [7].

Sgen(B) = extQ
[Area(Q)

4GN

+ Smatter(B)
]

(5.5)

The main idea of the EW prescription is that the entropy of the holographic bound-

ary region is given by the generalised entropy of some quantum extremal surface

rather than on the horizon. B represents the region between the QES and the AdS

boundary, similar to the FLM prescription. The quantum extremal surface will be

one which extremises Sgen, in general there will be many that satisfy this condition.

We then pick the one that minimises the entropy. later work then also showed that
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the maximin prescription applied to the FLM formula was equivalent to finding HRT

surfaces.

In order to reproduce the page curve the conjectured ”Island rule” is proposed.

S(ρR) = minQ

{
extQ

[
Area(Q)

4GN

+ S(ρ̃I∪R)

]}
(5.6)

At early times, the radiation is collected in region R and the entropy increases lin-

early, as expected. If we considered no island, it would continue to increase with

no change until the BH had fully evaporated. After the page time, the degrees of

freedom in region R start to become entangled with a region known as the ”Island”

inside the black hole. Taking this into account and taking the full Cauchy slice to

include islands, the entropy starts to decrease in accordance with the Page curve.

This can be understood as the states outside being purified with their entanglement

pair behind the horizon as we saw in section 4.3.1.

5.1.2 The entanglement wedge

Temporarily forgetting about islands, we turn to entanglement wedge reconstruc-

tion. For a given CFT we can define a region in the bulk called the entanglement

wedge. As defined in [38], we first make some definitions [39]. The future an past

domain of dependence of A D+(A) and D−(A) respectively are the regions which

must be causally influenced by or influence evnts in A. The causal wedge CA of a

subregion A on some boundary Cauchy slice Σ is simply the intersection in the bulk

between of the future and past domain of dependence. This picture is illustrated in

figure 5.3. The entantlement wedge [37, 40, 41] , EA, is the domain of dependence of

some surface in the bulk who’s boundary is A∪γA. Where γA is the HRT surface of A.

Now why is this at all important? We would like to calculate the fine grained entropy
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Figure 5.3: The causal wedge CA of a subregion A in the CFT in the bulk. figure from
[39]

of the Hawking radiation, and show that it reproduces the page curve, this was done

using entanglement wedge reconstruction in [30, 31] published simultaneously.

5.2 A useful toy model

In this section we will briefly review the model of a black hole used in a recent paper

by Almheiri, Hartman, Maldacena, Shaghoulian and Tajdini (AHMST) [5]. The most

useful model for our sake turns out to be two-dimensional Jackiw-Teitelboim (JT)

dilaton gravity theory coupled to a matter CFT.

5.2.1 JT gravity

The action for JT gravity + CFT goes as follows

I = IJT (φ, g) + ICFT (g) (5.7)
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With

IJT (φ, g) = − φ0

8πGN

[
1

2

∫
M2

R +

∫
∂M2

K

]
− 1

8πGN

[
1

2

∫
M2

φ(R + 2) + φb

∫
∂M2

(K − 1)

]
(5.8)

The second part of this equation is interesting as we have an interaction between

the scalar field (dilaton) and the metric. The CFT part of the action is a general CFT

that is not coupled to the dilaton, only the background metric g. Our setup includes

an AdS2 JT gravity region in the middle, glued to a 2-dimensional CFT bath on each

side. We impose transparent boundary conditions in order to have matter fields

smoothly cross the horizon. We argue that this is a good model for the maximally

extended Schwarzschild black hole.

Figure 5.4: Our toy model of a black hole. The left figure shows the Lorentzian signature
and the right is Euclidean [5].

In their paper [5], AHMST consider the this toy model of a black hole and calculate

the fine grained entropy of the regions discussed directly from a gravity calculation.

They take the model for a black hole through a series of conformal transforma-

tions with the aim of calculating the entanglement entropy of a region [−a, b] which

stretches from the flat CFT region to the AdS region.

To reproduce the Page curve, AHMST use the replica method to compute von Neu-

mann entropy of a region R in the flat wedges. We use a Euclidean path integral and

glue the copies together along the cuts on R. To get the so-called ”Replica worm-

holes” we fix the conditions on the AdS boundary. Radiation is collected in the CFT

bath region and the entropy increases, up to the page time. After the page time,
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island regions in the black hole interior are included and the curve levels out. This

model is of course a non evaporating black hole, so we would not expect the entropy

to fall, this resolves this simple version of the paradox.
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Chapter 6

Conclusion

In this dissertation I have attempted to give a general reader with a background in

theory, some of the tools to understand and see how the paradox could be solved. To

gain an even better understanding, we turn to the explicit computations in the CFT

language. We saw how the replica trick can be used to calculate the entanglement

entropy of a subsystem and the implications of it in the black hole context.

Here we have set out just one way that the Page curve has been derived from a simple

model of a black hole. Since these calculations were done there is now much more

attention on this approach to the black hole information problem. There are new

papers being published regularly on this topic such as [42]. Where Goto, Hartman

and Tajdini investigate the replica wormholes present in these calculations in greater

detail, and for a non-eternal, evaporating black hole. There is of course more work

to be done here, but this recent work has found ways to reduce the late time entropy

of the fields outside the black hole and produce unitary evolution which is consistent

with quantum mechanics. There is now the space and time for attempts to be made

at more complicated models and deeper investigations into the quantum properties

of black holes.
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[22] Horaiu Năstase. Introduction to the ADS/CFT Correspondence. Cambridge Uni-

versity Press, 2015. pages 30

[23] Tatsuma Nishioka, Shinsei Ryu, and Tadashi Takayanagi. Holographic entan-

glement entropy: an overview. Journal of Physics A: Mathematical and Theoret-

ical, 42(50):504008, 2009. pages 30

[24] Pasquale Calabrese and John Cardy. Entanglement entropy and quan-

tum field theory. Journal of statistical mechanics: theory and experiment,

2004(06):P06002, 2004. pages 30

[25] Curtis Callan and Frank Wilczek. On geometric entropy. Physics Letters B,

333(1-2):55–61, 1994. pages 30

[26] Christoph Holzhey, Finn Larsen, and Frank Wilczek. Geometric and renormal-

ized entropy in conformal field theory. Nuclear physics b, 424(3):443–467,

1994. pages 31

[27] Elihu Lubkin and Thelma Lubkin. Average quantal behavior and thermody-

namic isolation. International journal of theoretical physics, 32(6):933–943,

1993. pages 32

[28] S. Prem Kumar. Notes and discussions. University of Swansea, 2021. pages 34

46



BIBLIOGRAPHY BIBLIOGRAPHY

[29] Ahmed Almheiri, Thomas Hartman, Juan Maldacena, Edgar Shaghoulian,

and Amirhossein Tajdini. The entropy of hawking radiation. arXiv preprint

arXiv:2006.06872, 2020. pages 34

[30] Geoffrey Penington. Entanglement wedge reconstruction and the information

paradox. Journal of High Energy Physics, 2020(9):1–84, 2020. pages 35, 40

[31] Ahmed Almheiri, Netta Engelhardt, Donald Marolf, and Henry Maxfield. The

entropy of bulk quantum fields and the entanglement wedge of an evaporating

black hole. Journal of High Energy Physics, 2019(12):1–47, 2019. pages 35, 40

[32] Ahmed Almheiri, Raghu Mahajan, Juan Maldacena, and Ying Zhao. The page

curve of hawking radiation from semiclassical geometry. Journal of High Energy

Physics, 2020(3):1–24, 2020. pages 35

[33] Juan Maldacena. The large-n limit of superconformal field theories and super-

gravity. International journal of theoretical physics, 38(4):1113–1133, 1999.

pages 35

[34] Shinsei Ryu and Tadashi Takayanagi. Holographic derivation of entanglement

entropy from ads. CFT, arxiv, 603001, 2016. pages 36

[35] Shinsei Ryu and Tadashi Takayanagi. Aspects of holographic entanglement

entropy. Journal of High Energy Physics, 2006(08):045, 2006. pages 36

[36] Veronika E Hubeny, Mukund Rangamani, and Tadashi Takayanagi. A covariant

holographic entanglement entropy proposal. Journal of High Energy Physics,

2007(07):062, 2007. pages 37

[37] Aron C Wall. Maximin surfaces, and the strong subadditivity of the co-

variant holographic entanglement entropy. Classical and Quantum Gravity,

31(22):225007, 2014. pages 38, 39

47



BIBLIOGRAPHY BIBLIOGRAPHY

[38] Xi Dong, Daniel Harlow, and Aron C Wall. Reconstruction of bulk operators

within the entanglement wedge in gauge-gravity duality. Physical review letters,

117(2):021601, 2016. pages 39

[39] Veronika E Hubeny and Mukund Rangamani. Causal holographic information.

Journal of High Energy Physics, 2012(6):1–35, 2012. pages 39, 40

[40] Matthew Headrick, Veronika E Hubeny, Albion Lawrence, and Mukund Ranga-

mani. Causality & holographic entanglement entropy. Journal of High Energy

Physics, 2014(12):1–36, 2014. pages 39

[41] Bartłomiej Czech, Joanna L Karczmarek, Fernando Nogueira, and Mark

Van Raamsdonk. The gravity dual of a density matrix. Classical and Quan-

tum Gravity, 29(15):155009, 2012. pages 39

[42] Kanato Goto, Thomas Hartman, and Amirhossein Tajdini. Replica wormholes

for an evaporating 2d black hole. Journal of High Energy Physics, 2021(4):1–

57, 2021. pages 43

48


	1 Introduction
	2 Background
	2.1 Black hole thermodynamics
	2.2 The laws of black hole mechanics

	3 QFT in curved space-time
	3.1 Scalar field quantisation
	3.1.1 Bogoliubov transformations
	3.1.2 Particle production in dynamical spacetimes

	3.2 The Unruh effect
	3.3 Hawking radiation
	3.3.1 Extremal Reissner-Nördstrom solution


	4 Entropy
	4.1 Quick review of classical information theory
	4.2 The density matrix and von Neumann entropy
	4.2.1 Rényi entropies
	4.2.2 Entanglement Entropy

	4.3 Ideas from Quantum information
	4.3.1 Purifiying mixed states

	4.4 The replica trick
	4.5 The page curve
	4.5.1 General quantum systems
	4.5.2 Page curve applied to black holes


	5 The island rule
	5.1 A word on the AdS/CFT correspondence
	5.1.1 Ryu-Takayangi formula
	5.1.2 The entanglement wedge

	5.2 A useful toy model
	5.2.1 JT gravity


	6 Conclusion

