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Abstract

Improvements in the implementations of quantum circuits in noisy de-
vices are one of the main challenges to target in order to benefit from the
currently available quantum computers – the NISQ devices. The recent accu-
rate implementations of quantum gates have opened a search of other possible
sources of noise that could be affecting the quantum circuits.

This thesis works in assessing how errors in the initialization and measure-
ment affect the quality of the dynamics of a quantum circuit. We use Quan-
tum Process Tomography and gate fidelity to discover this impact through
the application of different types of errors. In particular, we study the impact
of incoherent classical noise, encoded as CPTP maps, to the reconstruction
of Pauli gates. Our method is first established for Pauli gates for a 1-qubit
system and then extended to a 2-qubit system. In both cases we find that
the influence of these errors on fidelity is considerably small. An expansion
to 3-qubits and beyond is possible but computationally challenging. We will
also establish the theoretical baseline to confront some of the limitations for
possible future work.
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Chapter 1

Introduction

1.1 Research Motivation

Quantum Computation is a continuously growing field with an enormous
potential to revolutionize different areas, ranging from science to industry.
It is currently reaching what John Preskill named the “Noise intermediate
scale quantum (NISQ) devices era” [3], where we have available computers
with enough qubits to surpass a classical computer but not enough to reach
Quantum Supremacy. We label these “Noisy” due to their imperfect perfor-
mance and “intermediate” due to their limited qubit availability.

Increasing the number of qubits in these computers would allow them to
reach their full potential. Nevertheless, we can still expect a few hundreds of
qubits to be enough to solve computationally challenging problems in a clas-
sical setting. It is therefore interesting to develop further the NISQ devices.

In order to improve them, we must think of ways to mitigate the noise.
The main source of issues comes from current technology hindering the full
cohesion between Quantum software and Quantum Hardware [4]. There are
several approaches to tackle this. Quantum Error Correction (QEC) is the
most direct strategy, but unfortunately, it requires a very large increase in
the number of qubits, which is currently not possible. It is consequently
essential that we look into error mitigation [5]. This technique is based on
combining additional measurement data with classical post-processing such
that relatively noise-free results can be extracted from noisy devices.

For NISQ devices, Quantum Error mitigation is thus the fundamental
tool for improvement. However, we must grow an extensive knowledge in
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Quantum Errors to further develop these into fault-tolerant quantum com-
puters through error mitigation. We can find quantum computers errors in
the preparation, channel and measurement phases.

Recently, there have been significant improvements in the implementa-
tions of the quantum gates [6], but we still experience faulty operations. The
presence of this noisiness takes us to revise other possible places of errors.
Hence, it is imperative to provide a further study on the initialization and
measurement errors in order to check the source of this noisiness.

1.2 Research Objectives

Our primary goal is to estimate the error level at which different ini-
tialization and measurement mistakes affect our quantum systems. From a
higher standpoint, we hope this can translate to a better understanding of
Quantum Errors and contribute to guide the efforts in the research for QEM.

We want to provide tangible results on the effect of different types of pos-
sible errors on gate fidelity. The main hypothesis of this research states
that:

“We analyse the effect of different errors in the input states and mea-
surement through gate reconstruction, to provide an insight and improve our
understanding in the errors of quantum circuits running on NISQ devices.”

To achieve this hypothesis, the main task for this project is to:

Investigate the correlation between input and measurement errors and the
quality of the dynamics of a quantum system via gate reconstruction and gate
fidelity.

1.3 Project Approach

Our approach to demonstrating the relationship between the input and
measurement errors and the noisiness in the quantum circuits is divided into
multiple steps:
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- The first step consists in studying and reviewing Quantum Noise and
the state-of-the-art techniques in Quantum Error Correction and Quan-
tum Error Mitigation to put our thesis in context.

- Secondly, we analyse the Quantum Tomography techniques to find the
appropriate gate reconstruction procedure. We pick Standard Quan-
tum Process Tomography which is suitable for the errors and gates we
wish to study, and therefore serves our purpose.

- We then move to study appropriate methods to model errors. To do
this, we review the ways in which we can encode them, and in order to
apply our gate reconstruction model, we select a specific type of errors
– incoherent errors. This choice is motivated by the latest discoveries
in the research in this area.

- We compute the results for the gate fidelity of different Pauli gates and
the aforementioned errors and provide a graphical illustration of those.

It is worth mentioning that we build and analyse the methodology above
for 1 and 2 qubits by translating the theoretical work to a Mathematica code
base in order to perform the corresponding operations. We also reflect on
other possible state-of-the-art methods to apply for the possible expansion
of our work to 3 qubits and to a more experimental-friendly setting.

1.4 Scientific Contributions

The major contribution of this research is a robust proof of the claim
that fidelity is not greatly impacted by the appearance of the selected input
and/or measurement errors. It is therefore possible to perform considerable
quantum circuits even in the presence of these errors. Consequently, the
noise in the quantum systems could potentially come either from different
error sources or from other unchecked parts of the quantum circuit, like an-
cilla qubits.

Even more, we designed an algorithm that performs Quantum Processs
Tomography under the presence of errors produced by CPTP maps and which
calculates the gate fidelity of the process. Using this model could prove to
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be very useful for researchers who are trying to get an idea of whether or
not a certain error might impact their quantum circuit. For instance, the
researcher can look to measure the error impact theoretically with this tool.
This can be specially useful to perform a general check of performance with
no further use of more qubits or assessment on the qubit directly, and serve
as a help to the study of Quantum Error Mitigation.

An interesting facet of our thesis is the robustness of the obtained results.
Indeed, we conduct in most of the cases a reconstruction and a fidelity esti-
mation with a heavily randomised application of the errors. The objective of
this is to proof our method against a real physical noise so that our results
are closer to an experimental setting.

Additionally, to the best of our knowledge, this thesis is the first to in-
sert different initialization and measurement incoherent errors in SQPT to
predict their effect on quantum circuit dynamics. Exploiting the possible
applications of QPT is a very interesting task and it is an honour to be able
to make good use of it. Finally, with our comments on a further expansion
of this model we hope to motivate a continuation of this research.
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Chapter 2

Literature Review

2.1 NISQ Devices

This section reviews the concept of NISQ devices, their current availabil-
ity, capabilities, and issues. We also want to highlight their importance in the
final composition of a quantum computer that reaches quantum supremacy
and hence the relevance of working towards its improvements.

Quantum annealers, Noise Intermediate-Scale Quantum computers and
fault-tolerant universal quantum computers are the three categories in which
we can classify quantum computers. Quantum annealing [7] involves control-
ling fluctuations in quantum states to perform calculations instead of sending
them through gates in a circuit. The most popular available quantum anneal-
ers are from D-Wave, which has announced a 5000-qubit quantum computer.
However, quantum annealers are not on the development path that leads to
fault-tolerant universal quantum machines. Therefore, NISQ sets itself as the
only candidate towards the ultimate goal of quantum supremacy by building
fault-tolerant universal quantum computer.

Currently, the most exploited systems of qubits are photons, trapped
ions, superconducting circuits and spins in semiconductors. Major break-
throughs have been recently made such as constructing a quantum computer
with above 50 superconducting qubits [8], or trapped ions [9]. Trapped and
detected cold atoms produced two hundred fifty-six qubits in optical tweez-
ers (arrays of ultra-cold atoms) [10]. About 76 light-based qubits have been
reached [11]. Although, currently, only devices between 5-79 qubits are avail-
able to the general public.
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Figure 2.1: Comparison between the number of operations used by Shor’s
and the General number field sieve algorithm to factorise a number with d
number of digits [1].

Historically, one of the most famous algorithms which served as a proof
of quantum advantage was Shor’s algorithm [12] for factoring integers, which
became famous for being a threat to the current security systems. This al-
gorithm is an evidence that NISQ can be superior to classical computers in
certain tasks.

If N is the number to be factorized, and d ∼ log2(N) is the number of
digits, Shor’s algorithm has complexity O(d3). Whereas, the General num-
ber field sieve algorithm [13] has an exponential asymptotic run-time to the

number of digits, it has complexity of O(ed
1
3 )

As we can see in Figure 2.1, for the case of qubits between 10-100, we
can already notice a clear reduction on the number of operations and hence
on the computational time when we use the quantum computer versus the
classical.

Looking at the figure 2.1, we can see that we require many qubits far
beyond 300 to perform the factorization that threatens our current systems.

We must remain patient since quantum computers will not reach the so-
called quantum supremacy until more qubits are in place [14]. Nevertheless,
it is also true that their full potential remains unexplored. The power of
NISQ devices is becoming more evident. Recent examples include a sam-
pling task quantum algorithm finished by Zuchongzhi Quantum Computer
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in about 1.2 hours which would take the most powerful supercomputer at
least eight years [15]. Sampling algorithms are used in statistical models,
and they are procedures that extract a suitable unit from a population. This
advance represents a giant leap for fields such as machine learning or data
science. We have also seen other exponential speedups against their classical
counterpart e.g. Recommendations systems [16]

Therefore, as we can see, it is in our best interest to advance on developing
NISQ devices in order to be as close to fault-tolerance as possible. They have
already demonstrated an advance compared to their classical counterparts;
increasing qubits is expected to exponentially outpace the classical comput-
ers on some tasks. However, not only this, but as we have mentioned, a
further study will boost the speed to reach the so-called quantum supremacy.

In order to look at the advantage of NISQ devices, it is fundamental to
mention a recent framework which helps exploit the full capabilities of NISQ
devices: VQA [17]. This is key to use processes with limited number of
qubits, as we will see.

2.1.1 Variational Quantum Algorithms (VQA)

Variational Quantum Algorithms is a framework that encodes a task into
a parametrized function run in the quantum computer. All the variational
quantum algorithms are based on the Rayleigh-Ritz variational principle,
which states that:

min
~β
〈ϕ(~β)|H|ϕ(~β)〉 ≥ EG (2.1)

where H is the Hamiltonian of the system and EG is the ground state
energy. The VQA runs the parametrized quantum circuits. And through the
measurements from the different variations of the parameter, we perform an
analysis on the system.

The concept of VQA is broad. We review one of the most important and
simple Variational Quantum algorithms: Variational Quantum Eigensolver.

Variational Quantum Eigensolver

Theoretically, we might be doomed to think that finding the eigenvalue
of an operator is an easy task:

H |ψ〉 = E |ψ〉
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In practice, we can see this problem as a phase estimation algorithm,
as we can consider the application of an operator as just adding a phase.
We can therefore apply the standard quantum phase estimation algorithm
to find this value [18]. However, the issue is that an extra number of ancilla
qubits are needed to apply this method. Given that extracting the eigenvalue
is a fundamental task in quantum computing, a better method is essential
for the NISQ devices to operate. Therefore, we trade ancilla qubits for a
larger amount of measurements. In fact, VQE requires quadratically more
measurements than the phase estimation.

The VQE algorithm serves to find the eigenvalues of a Hamiltonian with
just one extra ancilla qubit. This was proven to find the ground state in
a particular case in [19]. The procedure is as follows, we first prepare a

quantum state |ψ〉 parametrized by ~β to then measure its expectation value

〈ψ|H |ψ〉 =
∑

α fα

〈
ψ(~β) |σα|ψ(~β)

〉
where σα = σα1

1 ⊗ σα2
2 ⊗ . . . σ

αM
M for M

qubits.
The bound that the variational principle provides is the essential point

that allows us to iterate to find the eigenvalue. Note that we can decompose
the Hamiltonian in terms of the Pauli operators as above, since they form
a complete basis of operators. The optimal choice of ~β to approximate the
ground state is the choice which minimizes the expectation value of H in
terms of ~β. We use non linear optimizer varying the ~β, such as the gradi-
ent based optimizers [20] to find the global minimum which represents the
ground state of the system.

One of the risks in the variational algorithms is that associated to opti-
mization techniques. The solution might be confused for a local minimum of
the ansatz space. VQA is a very clear representation of the techniques re-
quired and used in the algorithms implemented in the experimental settings
for NISQ. In fact, VQA is one of the key points of success in our current
development of accurate gate implementation [6]

2.2 Quantum noise

We review in this section the general concept of noise, its location, clas-
sification and the techniques to alleviate it. In chapter 3, we will specify the
error modelling we carry out in our methodology.

Errors affect our computations since they affect the implementation accu-
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racy to construct high-quality qubits and gates. This impediment represents
a significant challenge to reaching the so-called fault tolerance. The thresh-
old beyond which quantum computers will be considered reliable enough.

If we interpret quantum states as being encoded as wave functions, we
can view the concept of quantum noise in terms of errors which arise affecting
the interference in the quantum computer. When we construct the quantum
states, we are essentially creating a constructive interference to reach the cor-
rect answer and destructive interference for any other possibility. Working
with interference is very delicate, and two possible types of errors may arise:
implementation inaccuracies and interactions with the environment, the lat-
ter one being the most significant one. We will classify our errors in that
way. Additionally, the location of errors is an interesting point of discussion,
as we will next comment on.

2.2.1 Error Location

We can divide the steps of a process in a quantum computer in 3 high-
level steps: input, process and output. Due to the qubit limitations in NISQ,
we are unable to run algorithms to record where the errors lie in the com-
puter, and hence, it is very difficult to estimate the errors in each step.

However, IBM recent studies estimate that, in their quantum computer,
single-qubit gates have an error rate in the range of 0.1% − 0.3%, and two-
qubit gates have an error rate in the range of 2% − 5% [21]. Measurement
seems to be the most error-prone operation in current quantum computers.
It is also, however, easy to correct as they usually manifest as bit-flip errors.
Recent studies have shown an average error rate for measurement operation
is in the range of 4% − 8% and as high as 31% in IBM Machines [21]. We
speak more about these in section 3.3.

For the case of initialization errors, it is estimated that the error rate is
much lower [22] . Also, other sources claim an accurate initialisation [23].

However, the lack of universality in a quantum computer and the com-
plexity of the noise affecting quantum computers make the results mentioned
refer to estimations for specific quantum computers under some specific en-
vironmental settings. We must therefore remain cautious and continue to
study the error rates in each step of the process.

It has been shown that the implementations of the CNOT gate [24], H
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Hadamard [25], Z Phase flip [26] and Π
8

rotation [27] are still not highly
precise. These gates form the universal set and hence their inaccurate im-
plementations means an inaccurate implementation in any gate.
However, recent studies seem to have found ways to implement accurately
gates under unitary gate errors and decoherence for single and two qubits [28].
Even though the implementation seems to be accurate, these systems still
present some low fidelities [6]. Due to the inability to locate the errors, we
are unsure of the source of these or how could we fix them. For this rea-
son, we focus our work on providing a further study on the initialization and
measurement errors.
The motivation for this thesis is to explore further how Measurement and
Preparation errors affect fidelity in order to predict how this would in prin-
ciple contribute to the overall fidelity of the process.

2.2.2 Error Classification

To classify the errors, we first define the concept of coherence.

Definition 1 Quantum coherence refers to the ability of a quantum state
to maintain the superposition state. In quantum computers, quantum states
are translated experimentally to be in a high energy state |1〉 or in a low-
energy state |0〉.The word coherence, refers to the ability of a quantum me-
chanical system to build and keep interferences. The loss of coherence is
called decoherence, i.e. it is the destruction of the quantum mechanical su-
perposition.

Definition 2 Coherence Time is defined as the time a qubit can retain
data. The coherence times for superconducting quantum computers have im-
proved from 1 nano-second to 100 micro-seconds in the last decade [29].

There are multiple ways to categorize the errors. We classify errors in
terms of whether they maintain coherence or not: [30]

Coherence-Errors

Coherent noise is the error that does not destroy the coherence of a state.
They are ”slow” noise processes, they introduce small perturbations that
accumulate and limit the depth of the quantum circuit. These are systematic
rotations and are associated with incorrect implementation of the system
dynamics.
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The coherence error model is achieved via a coherent unitary operation
where the target is the desired initial state.

To keep things simple, we view an example. For an incorrect implemen-
tation of a quantum circuit, we can find an error induced to be a phase error
which creates a small rotation around the X-axis on a state |0〉, i.e.

|ψ〉 = eiεσx|0〉 = cos(ε)|0〉+ i sin(ε)|1〉

We wish to obtain the |0〉 when we measure in the {|0〉 , |1〉} basis. However,
with the induced error:

P (|0〉) = cos2(ε) ≈ 1− (ε)2

P (|1〉) = sin2(ε) ≈ (ε)2

Hence, the probability of error in this trivial quantum algorithm is given by
perror ≈ (ε)2, which will be small given that ε � 1. Here we can see ε as
an angle that make the error fluctuate from one gate application to another.
Usually, all errors are modelled as Pauli errors. However, it was found that
coherent errors (systematic rotations) on physical data qubits might also
differ significantly from those predicted by a Pauli model [31]. Further than
this, even though, coherent errors have been greatly ignored in the literature,
recent studies confirm they might be a significant source of noise [32]. This
establishes that work around coherent errors is still necessary.

Incoherent-Errors

Incoherent noise is the error that destroys the coherence of a state. This
refers to ”fast” noise processes and they are described by stochastic errors.
This noise on quantum operations sources from the interaction of the quan-
tum system with the environment.
In comparison from above, incoherent errors do not represent systematic er-
rors. We can represent a simple example of how decoherence could act on a
initialization state:

ρi = (1− pI) |0〉 〈0 |+pI | 1〉 〈1|

where probability pI is the probability of encountering the initialization error.
Historically, this type of error has been considered the primarily source

of noise. We next provide an example of an interaction between state and
environment, creating an incoherent noise [33]. We now assume that the
environment starts in the pure state, |E〉 = |e0〉, and couples to the system
such that:

HσIH|0〉|E〉 =
1

2
(|0〉+ |1〉) |e0〉+

1

2
(|0〉 − |1〉) |e1〉
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Pure states will be transformed into classical mixtures. Hence, we now move
into the density matrix representation for the state HσIH|0〉|E〉

ρf =
1

4
(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|) |e0〉 〈e0|

+
1

4
(|0〉〈0| − |0〉〈1| − |1〉〈0|+ |1〉〈1|) |e1〉 〈e1|

+
1

4
(|0〉〈0| − |0〉〈1|+ |1〉〈0| − |1〉〈1|) |e0〉 〈e1|

+
1

4
(|0〉〈0|+ |0〉〈1| − |1〉〈0| − |1〉〈1|) |e1〉 〈e0|

Since we do not measure the environmental degrees of freedom, we trace over
this part of the system, giving,

TrE (ρf ) =
1

4
(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|)

+
1

4
(|0〉〈0| − |0〉〈1| − |1〉〈0|+ |1〉〈1|)

=
1

2
(|0〉〈0|+ |1〉〈1|)

As we can see, the measurement of the system will consequently return |0〉
50% of the time and |1〉50% of the time. We therefore see the effect of inco-
herent noise.

An elegant way to formulate both types of errors together is the Lind-
blad formalism in which the coherent and dynamical evolution of the density
matrix can be written as:

∂tρ = − i
~

[H, ρ] +
∑
k

ΓkL[ρ] (2.2)

Where H is the Hamiltonian and Lk[ρ] =
([
Lk, ρL

†
k

]
+
[
Lkρ, L

†
k

])
/2 repre-

sents the incoherent evolution. The operators Lk are used to model specific
decoherence channels, with each operator parametrized by some rate Γk ≥ 0.
This differential equation is known as the density matrix master equation.

For instance, we can view a bit flip error(incoherent) followed by a rota-
tion error(coherent) on a qubit state ρ as follows:

Vrotation ◦ Vbit−flip[ρ] = (1− p)e−iεX/2ρeiεX/2 + pXe−iεX/2ρeiεX/2X (2.3)
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where p is the probability of a stochastic bit-flip and ε is the angle of a small
rotation error that is constant in time.

We can translate our bit-flip and decoherence errors into these parameters
to a physical dephasing rate γ and systematic rotation at rate ω through the
master equation

dρ

dt
= −iω

2
[X, ρ] + γ(XρX − ρ) (2.4)

by setting ε = ωτ and q = (1− e−2γτ ) /2 for a gate time τ .

This describes the composition of a coherent process, Λε, and an inco-
herent process, Λq. This is a good example for decoherence produced by the
environment together with a systematic rotation.

We will next move to describe Quantum Error Correction (QEC) and
Quantum Error Mitigation (QEM). Before this, we mention that there has
been much more emphasis on QEC and QEM for incoherent errors. How-
ever, it is interesting to mention that recently, it has been discovered that [34]
when we consider a memory error (qubit decoherence) on a qubit, it has been
estimated that the probability of failing is linear with the decoherence time
for small errors. In the case of coherent errors, the error probability is esti-
mated to increase quadratically with the decoherence time. Given the fact
that QEM and QEC methods are mostly performed for decoherence, there
is a concern that coherent errors might be causing unwanted damage due to
this quadratic increase in error.

Besides the improvements in the hardware and physical implementations,
Quantum Error Correction (QEC) and Quantum Error Mitigation(QEM) are
the two possible ways we will reach fault-tolerance: which we will describe
next.

But first, we check the three most significant differences and challenges
compared to the classical counterpart when battling against errors.

Theorem 1 (No-cloning theorem) Assume that |v〉 is a pure (unknown)
state. Then there is no unitary operator taking |v〉⊗|s〉 to |v〉⊗|v〉 (quantum
copy of |v〉) for all quantum states |v〉, where |s〉 is a standard pure state.
More precisely, given two particular pure quantum states |v〉 and |w〉 to be
copied, it follows that the quantum copy process is possible only if |v〉 = |w〉
or if |v〉 and |w〉 are orthogonal.
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In addition, the set of errors is continuous and so, at first glance, it seems
that the quantum code must correct an infinity of errors. Unlike for the
classical case, in which a bit can only take values of 0 or 1 and the error is
limited. The third difficulty is that the measurements of qubits destroy the
quantum information, and therefore we must minimise our measurements.

These are three conditions that establish the limits to our work. We
have to work around these to formulate our solutions to aid our quantum
algorithms against noise.

2.2.3 Quantum Error Correction

It is the ideal way to solve the issues with errors. Classical and Quantum
computers require at least some form of error correction. Quantum Error
Correction is comparable to classical Error Correction [35].

Experimentally, it has only been recently when QEC [36] [2] has provided
with fault-tolerance in one logical qubit i.e one data qubit and 8 ancilla
qubits. In this code, more errors are suppressed than introduced by the over-
head required to implement the error correction. This was a recent work of
the Google team. They applied QEC and claimed to have error rates as low
as 10−15 [2], in comparison to other state-of-the-art quantum platforms that
typically have physical error rates near 10−3 [37] [38] [39] [40]

To provide an example of how QEC is performed we explain the method
carried out by Google.

In general, the idea behind a stabilizer code [41] is that quantum states
could be represented by operators that stabilize them, e.g. |ψ〉 = (|00〉 +
|11〉)/

√
2 is the unique state such that

X1X2|ψ〉 = |ψ〉, Z1Z2|ψ〉 = |ψ〉

QEC makes use of this concept to identify errors to then correct them.
It also uses the following key mathematical terms:

1. Pauli Group: refers to Gn = {I,X,Y ,Z}⊗n ⊗ {±1,±i} with prop-
erties: P 2 = ±I, PQ = ±QP, PP † = I

2. Stabilizer group S: it is a subgroup of Gn in which all elements commute
with each other. It does not contain −I.

3. Stabilizer generators: are the minimal set of operators gk that generate
S : S =< g1, g2, · · · , gr >⊆ Gn
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Figure 2.2: Schematic visualization of the circuit Google implemented for
phase-flip error correction code in their quantum computer [2].

4. Stabilizer subspace: is the subspace of dimension 2n−r

HS = {|ψ〉|S|ψ〉 = |ψ〉 for S ∈ S}

Also, we enunciate the conditions for the correction of errors. Suppose
{Ek} is a set of operators in Gn and S is the stabilizer for a quantum code.
The error can be corrected if:

- E†
aEb ∈ S

- There is an M ∈ S that anti-commutes with E†aEb.

We can show a small proof as follows:

Case 1:
〈
φj
∣∣E†aEb

∣∣φk

〉
= 〈φj | φk〉 = δjk

Case 2:
〈
φj
∣∣E+

aEb

∣∣φk〉 =
〈
φj
∣∣E†aEbM

∣∣φk〉 = −
〈
φj
∣∣ME†aEb

∣∣φk〉 =

−
〈
φj
∣∣E†aEb

∣∣φk〉 and therefore
〈
φj
∣∣E†aEb

∣∣φk〉 = 0

Hence, given a circuit as the one in the figure 2.2, for a stabilizer code
with generators < g1, g2, · · · , gr >: if we measure all the generators and
each of the measurements yields +1, we know that our logical qubit’s state
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belongs to the code subspace. Otherwise, if a measurement yields -1, we can
conclude that an error has happened. We can then apply a phase-flip to
correct it.

The main complication with QEC is not being able to create as many
qubits as required. Even if we did, we would never reach an infinite correction
given that we can see errors as continuous. This means that more techniques
to reduce noise are also required.

2.2.4 Quantum Error Mitigation

The importance of QEM for our work is in different ways. Primarily,
it first helps us put our work into context. The effectiveness of QEM tech-
niques, together with VQA, to implement quantum gates is what has sparked
our interest in the topic of this thesis. Beyond this, QEM is the main space
in which we hope our discoveries could be utilised. As we will see, it is fun-
damental to have extensive knowledge of the errors and the error rates to
apply mitigation techniques to them.

Quantum Error Mitigation (QEM) are methods that aim to reduce errors
in quantum processes without the use of extra qubits. They employ hybrid
quantum-classical algorithms [42] to perform classical post-processing
optimisation of the experiment data of the quantum process. Their target
is to estimate what the outcome would have been if the noise was not present.

QEM is a very popular subject of recent studies, e.g. [43]. Currently, all
the available quantum computers run these hybrid quantum-classical algo-
rithms to be able to reach a quantum advantage [44].

To start with, we can look at a very simple error mitigation case, in order
to exemplify what QEM tries to perform. When we want to reconstruct a
matrix from an erroneous one, we can build a correlation matrix with the
errors: pexp = Cpideal. After we have obtained this correlation matrix, we can
correct all our future calculations with the aid of this matrix. The effective-
ness of this method relies on 2 main assumptions: the number of experiments
we perform is very large and that the noise model is constant. This is an
elegant linear inversion method, however, experimentally, we need to look
for more sophisticated techniques that could offer us an advantage in a less
ideal scenario.

Hence to further explore how quantum error mitigation is performed, we
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review one of the current noise reduction techniques. Before this, we define
the concept of POVM that we will use across our method.

Definition 3 (Positive operator-valued measure) A positive operator-
valued measure (POVM) is defined by a set of operators {Pk} satisfying the
completeness condition:

∑
k P
†
kPk = I, where each Pk is a POVM element.

{Pi} is also positive semi-definite i.e.

x>Px ≥ 0

for all x ∈ Rn\{0}(2.5)

In contrast to projective measurements, A POVM is the mathematical
concept that defines a generalised measurement. It is introduced to prevent
mistakes from possible new representations and manipulations of measure-
ments. For a system in state ρ, the result represented by operator P will
occur with probability Tr(ρP ). In fact, in terms of POVM, we can see that
QEM methods target at recovering the expectation value of observables,
which translates as recovering <P> = Tr(ρidealP ).

Linear Extrapolation Error Mitigation

For an expectation value E(λ) =< P >, suppose we can expand the noisy
expectation value as a Taylor series as follows:

E
(d)
poly (λ) = a0 + a1λ+ . . . adλ

d (2.6)

where λ is the noise strength and the parameters ai are real parameters.
a0 represents the noiseless expectation value. If we only consider the case
of d = 1, we refer to this as linear extrapolation. The main point on the
extrapolation technique is that, considering we can manipulate the noise
scale for n noise rates λj = cjλ in which c0 = 1 < c1 < c2 . . . < cn, and
obtain a set of their corresponding measurements y = {y1, y2, . . . yn}: we can
find an analytic solution computing the classical optimization least squares
estimation technique, which gives the following result:

E(0) =
1

m

∑
j

yj −

∑
j

(
λj − λ̄

) (
yj − 1

m

∑
j yj

)
∑

j

(
λj − λ̄

)2 λ̄

where λ̄ = 1
m

∑
j λj
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Note that the manipulation on the error rate can be carried out by re-
scaling parameters in our system. See [43] for more details.

We note that we have ”extrapolated” the erroneous term. In this case, it
was only one term. However, the extrapolation technique can be expanded
for more errors terms. When ad 6= 0 for d=0,1,2 it takes the name of Richard-
son extrapolation. The noiseless expectation value is calculated through the
interpolating Lagrange polynomial.

Our research hopes to help understand the effectiveness of the error miti-
gation techniques. As we will see, our model takes an error and assesses how
it would affect a process. We can therefore use this methodology to com-
pare theoretically the quality of the dynamics in the presence of the error
against the case in which the error is mitigated. Another important note to
take-away is that the knowledge on the error is key to optimize our error
mitigation techniques, as they mostly rely on a good choice of ansatz. This
is also something we contribute to, as we are helping expand the knowledge
on the effect of errors.

Together with VQA, Error mitigation techniques have proven to be very
effective in the accurate implementation of quantum gates, as we have pre-
viously mentioned [6].

2.3 Quantum Tomography

Quantum Tomography is the mathematical description to reconstruct the
different parts of a quantum information process. There has been different
methods of performing tomography. We note that one of the main math-
ematical concepts used in Quantum Tomography is the Born rule, pµ =
Tr(PµΛ[ρ]) for a channel Λ and a projector Pµ [45].

2.3.1 Quantum State Tomography

Quantum State Tomography (QST) is the technique to reconstruct quan-
tum states through the measurement of different outputs. The importance
of QST is to obtain an estimation of the state without having to perform a
measurement directly affecting our quantum circuit.

22



QST Classical Analog

A nice example to view the meaning of Quantum State Tomography is
to find its classical equivalent. The simplest analogy is to estimate the bias
of a coin [46].

For a certain bias p, we model the coin toss as a random variable CT
with outcomes 1 for Heads and 0 for Tails. The probability distribution
corresponds to: Pr(CT | p) = pCT (1 − p)1−CT . For nTot independent mea-
surements and we get nH heads then the estimated bias of the coin is

pestimated =
nH
nTot

We take the bias to be the density matrix representing the state of the qubit,
the random variable is the measurement.

Following this introduction, we describe the most important method for
QST: Direct Inversion Tomography. Before we work through this method,
we will clarify a few important concepts:

Definition 4 (Bloch sphere state) We can describe the most general state
of a qubit as a superposition of states

a |1〉+ b |0〉

A point (a, b) ∈ C2 fulfill this condition iff it lies on the Bloch Sphere.
A reasonable parametrization is given by a = eiλ cos

(
θ
2

)
, b = eiλ sin

(
θ
2

)
eiφ,

where a and b are complex numbers. The overall phase factor λ has no
observable effect and can be set to zero. The variables θ ∈ [0,Π] and φ ∈
[0, 2Π] are numbers that define a point on the surface of the Bloch sphere.
We note that the bloch sphere only represents pure states.

For an operation Λ, the isomorphism SU(2) ∼= SO(3)/1 gives the possibil-
ity to see this operation on the qubit as a simple rotation of its Bloch vector
in R3, where the eigenstates of Λ are equal to the rotations axis. The advan-
tage is clear: abstract operations in the special unitary space became now
simple rotations in the three dimensional space. Note that this is considered
for a system that is not under a dephasing process.

Definition 5 (Rotation operators on the Bloch Sphere) The rotation
operators on the Bloch sphere about the axes x, y and z by angle φ are de-
scribed by:
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Rθ
x ≡ e−iθσx/2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
σx =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
(2.7)

Rθ
y ≡ e−iθσy/2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
σy =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
(2.8)

Rθ
z ≡ e−iθσz/2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
σz =

(
e−iθ/2 0

0 eiθ/2

)
(2.9)

We note that using the Bloch sphere to more than one qubit becomes
complicated. However, since we build our method from the 1-qubit case, this
is still very useful.

Definition 6 ( Pure density operator) For the system of N qubits the
pure density operator is a 2N×2N matrix that contains

(
4N − 1

)
independent

real parameters. The density matrix can be written as:

ρ̂ =

(
ρ00 ρ01

ρ10 ρ11

)
= ρ00|0〉 〈0 |+ρ01| 0〉 〈1 |+ρ10| 1〉 〈0 |+ρ11| 1〉 〈1| (2.10)

or explicitly as

ρ̂ = |Ψ〉
〈

Ψ| = |a|2 | 0
〉
〈0 |+ab∗| 0〉 〈1 |+a∗b| 1〉

〈
0|+ |b|2 | 1

〉
〈1| (2.11)

=

(
|a|2 ab∗

a∗b |b|2
)

Also, the density operator satisfies:

• Hermitian: ρ = ρ†

• Unity trace: Tr(ρ) = 1

Definition 7 (Bloch vector r̂) We can see that the definition of ρ can be
easily inverted and the coefficients of the Bloch vector can be expressed as:

rx = ρ01 + ρ10 = 2 Re (ρ10)

ry = i (ρ01 − ρ10) = 2 Im (ρ10)

rz = ρ00 − ρ11 = 1− 2ρ11

(2.12)

Once defined these concepts, we move to look at the Direct Inversion
Tomography method.
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Direct Inversion Tomography

Our aim is to obtain the Bloch vectors describing our state |ψ〉.
From a similar way to the classical case, we encode it through the expec-

tation value. If we take a measurement in |1〉 〈1|, considering a large amount
of experiments, we obtain pz = |〈1 | ψ〉|2, which we can expand as follows:

pz = |〈1 | ψ〉|2 = |b|2 = sin2

(
θ

2

)
=

1− cos(θ)

2
=

1− rz
2

where pz is the average of the experiments. From this expansion we see
we obtain rz.

From the definition of rz in terms of ρ11, we can calculate the rest of the
coefficients by rotating.

Rotating θ = π
2

about x-axis, yields the imaginary part of the element
ρ10 of the density matrix (note that Im (ρ10) = − Im (ρ01)), because after this
rotation the ry-coefficient of the Bloch vector appears to be in front of the
σz-matrix in the Pauli decomposition of the density matrix:

Rθ
xρ̂
(
Rθ
x

)†
=

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
ρ̂

(
cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

)
|θ=π/2 =

= (r0σ0 + rxσx − rzσy + ryσz) /2

because

Rπ/2
x σx

(
Rπ/2
x

)†
= σx, Rπ/2

x σy
(
Rπ/2
x

)†
= σz, Rπ/2

x σz
(
Rπ/2
x

)†
= −σy

Analogously, after rotation by the angle θ = −π/2 about y-axis, yields the
coefficient rx of the Bloch vector (now under this rotation the coefficient rx
appears to be in front of the σz-matrix), and, therefore, Re (ρ10) element of
the density matrix is measured:

Rθ
yρ̂
(
Rθ
y

)†
=

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
ρ̂

(
cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)∣∣∣∣
θ=−π/2

=

= (r0σ0 − rzσx + ryσy + rxσz) /2

because

R−π/2y σx
(
R−π/2y

)†
= σz, R−π/2y σy

(
R−π/2y

)†
= σy, R−π/2y σz

(
R−π/2y

)†
= −σx
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We therefore see we can provide the full characterisation of the density
matrix. For multiple qubits, the expansion of the density matrix in terms
of Pauli matrices can be generalized to ρ̂ = 1

2N

∑3
i=0

∑3
j=0 . . .

∑3
k=0 rij...kσi⊗

σj ⊗ . . . ⊗ σk, and the idea of the measurement remains the same: measure
some coefficients rij...k, apply basis rotations, and measure other coefficients r.

We require 3N rotations to perform QST. For a single qubit we only re-
quire 3 rotations (counting with the identity rotation), for 2 qubits we require
a nine and for 3 qubits we require twenty seven.
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2.3.2 Quantum Process Tomography

Quantum Process Tomography (QPT) is the procedure to characterize an
unknown quantum process [47]. This methodology requires the preparation
of a set of quantum states. We then evolve these quantum states with the
unknown quantum process and proceed to measure them. Once we have the
information about the input and output states, we can now reconstruct the
gate, and often we need to choose a suitable estimation procedure to recon-
struct the gate.

In this section, we will present two of the most relevant different ap-
proaches to QPT, direct and indirect dynamics characterisation. We refer
to ”direct” to those who do not require QST in the characterization of the
dynamics, ”indirect” if they do.

Before discussing these methods, we point out several mathematical con-
cepts we will come across.

Firstly, we define the operator-sum representation of our linear map as:

E(ρ) =
d2∑
i

ĀiρĀi
†

(2.13)

where d = 2N is the dimension of the system and N is the number of
qubits. Āi are the so-called Kraus operators. The Kraus Operators for a
complete positive trace preserving (CPTP) 1 linear map satisfy the com-
pleteness relation: ∑

i

A†iAi = 1

This ensures that ρ remains hermitian trace one (i.e. the map is trace
preserving) . Proof:

1 = Tr E(ρ) = Tr

(∑
j

ĀjρĀj
†

)
=
∑
j

Tr
(
ĀjρĀj

†
)

= Tr

(∑
j

Āj
†
Ājρ

)

This means that we can write the effect of the map as ρ→ E(ρ).

1Note that a linear map Λ : A→ B is called positive map if Λ maps positive elements
to positive elements: a ≥ 0 =⇒ Λ(a) ≥ 0.
we extend this to complete positive in the following way: ∀ |φ〉 ∈ HA ⊗ HB :
〈φ |ΛA ⊗ 1 (ρAB)|φ〉 ≥ 0
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In case of a non trace preserving quantum operation, the condition be-

comes
∑K

j=1 Āj
†
Āj ≤ I

We may further expand Equation 2.13 in terms of a basis Aβ together
with a classical error correlation matrix χ such that:

E(ρ) =
d2∑

α,β=1

χαβAαρA
†
β (2.14)

χ ∈ Cd2×d2 is the process matrix and Aα ∈ Cd×d is a chosen basis of
operators.

For the one qubit case, χ will have 12 independent parameters. And if
we take the Pauli Operators to be our basis operators, we can see the error
correlation matrix terms in the following way:

• 3 of these describe arbitrary unitary transforms exp (i
∑

k rkσk) on the
qubit

• 9 parameters describe possible correlations established with the envi-

ronment E via exp
(
i
∑

jk γjkσj ⊗ σEk
)

An important note is that by assuming that the map is trace preserving,
χ reduces from d4 to d4 − d2 real independent parameters [47]

Standard Quantum Process Tomography

In summary, we require of a tomographically complete sets of input states
{ρ1, . . . , ρN} and POVM {P1, . . . , PN}. Then, by relating the equation 2.14
to ~pexp. :

~pexp. = Tr (PiE (ρk)) =
∑
α,β

Tr
(
PiAαρkA

†
β

)
χαβ

We can linearly invert and find the matrix χ, which thus defines uniquely
the process matrix. We will review this method in detail in chapter 3

We must also mention that the other popular Indirect QPT method is
AAPT [48] but we will not expand on this method.
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Direct characterization of quantum dynamics (DCQD)

Direct characterization of quantum dynamics (DCQD) is a direct gate
reconstruction technique [49]. It relies on the error-detection stabilizer for-
malism instead of QST. Here, we explain briefly how this method works for
one qubit, but we note that this method can be expanded to a larger number
of qubits. To do this, we must embed the system in a k-prime dimensional
Hilbert Space, as we can see in the publication [49]

If we recall our definition for CPTP maps, we can see that we expand
these in terms of Pauli Operators and a matrix χ. For one qubit, if we max-
imally entangle 2 qubits as |ψ〉 = (|0A0B〉+ |1A1B〉) /

√
2, and then subject

only qubit A to a map E , we see that the basis {Aα}3
α=0 becomes the identity

operator and the Pauli operators: {I,X, Y, Z}. This then means that the
state |ψ〉 is stabilized by ZAZB and XAXB. Hence if we measure for the
stabilizers using an appropriate set of 4 projection operators, we can obtain
the corresponding elements in χαα with the relation: pα = Tr [PαE(ρ)] = χαα.

The other elements of χ are calculated using this same concept. We take
the following table from [49] to present how the method is applied to a 1
qubit case:

input state Measurement output
Stabilizer Normalizer

(|0〉|0〉+ |1〉|1〉)/
√

2 ZAZB, XAXB N/A χ00, χ11, χ22, χ33

α|0〉|0〉+ β|1〉|1〉 ZAZB XAXB χ03, χ12

α|+〉|0〉+ β|−〉|1〉 XAZB ZAXB χ01, χ23

α|+ i〉|0〉+ β| − i〉|1〉 Y AZB ZAXB χ02, χ13

Note that for the off-diagonal set of elements, we also exploit the concept
of Normalizer. We can see a detailed explanation on the topic in [50].

An interesting fact about DCQD is that we can also apply this technique
partially to obtain partial information about the process. This is key for
those circumstances in which we have some extra knowledge on the dynam-
ics or also when we do not need the full details of the process.
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2.4 Fidelity

Under the presence of errors it is fundamental to have a good under-
standing of the quality of the process to measure its reliability. We find a
convenient way to estimate this is through gate fidelity. We will use this
resource to compare the gate we want to implement against the gate recon-
structed via QPT. This will provide us with a way to measure the impact of
the errors in our process.

To compare two items of information, we can make use of ”distance mea-
sures” [51]. We can measure the distance of two quantum states or processes
by either trace distance2 or fidelity. Nielsen exploited this concept to define
Gate fidelity, and he first defined it to be as follows

For a quantum channel described by a trace-preserving quantum opera-
tion, E , the average gate fidelity is defined by

F̄ (E) ≡
∫
dψ〈ψ|E(ψ)|ψ〉

where the measure dψ is on state space, normalized so
∫
dψ = 1.

You can find more specifics on the definition in the paper. Note that ψ
indicates either |ψ〉 or |ψ〉〈ψ|.

However, for this thesis, we are interested in the measure of how well E
approximates a quantum gate, U ,

F̄ (E , U) ≡
∫
dψ
〈
ψ
∣∣U †E(ψ)U

∣∣ψ〉
Note that F (E , U) = 1 if and only if E implements U perfectly, while lower
values indicate that E is a noisy implementation of U . Note that F̄ (E , U) =
F̄
(
U † ◦ E

)
, where U †(ρ) ≡ U †ρU .

There is other fidelities we can take into account like state fidelity. State
fidelity is a measure of the difference between the state we have and the state
we would like to have, for any single or multi qubit quantum system. This is
useful when we use Quantum state tomography as a mean to characterise the
actual state. State fidelity estimates the proximity between the tomographic
state and the target [52].

There are many other methods to estimate fidelity. Usually the calcula-
tion of fidelity is very costly, so estimations of fidelity are required. Recently,
there has been many advances in this space, given its importance as it pro-
vides us with a way to measure how well our system is implemented.

2Trace is the trace norm of the difference of the matrices T (ρ, σ) := 1
2‖ρ− σ‖1
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We note that the biggest point for discomfort that fidelity brings is that
the experimental calculation is very bothersome since it requires a change of
set up at every part of the experiment. We see that an alternative version
of fidelity have been developed in [6] in which we introduce estimations to
remove experimental steps. These new techniques have proven to be a faithful
approximation, specially for high fidelities.
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Chapter 3

SQPT implementation with
noise on 1 and 2 qubits

In this section, we discuss the main work of our research. We can divide
it in three parts: building the appropriate QPT method, modelling the ade-
quate errors and assessing the fidelity of the QPT under these errors. We use
SQPT as the QPT method. Even though DCQD reduces considerably the
number of measurements , we note that DCQD uses a larger Hilbert space,
compared to that of SQPT. It is for this reason that we will take SQPT in our
research, since we are considering methods that could be performed with a
small number of qubits i.e. for NISQ devices. Besides this, SQPT offers a very
simple linear inversion method which makes the insertion of the errors clearer.
In terms of noise, we use incoherent noise to model the initialization and mea-
surements errors. To assess fidelity, we use gate fidelity in terms of the error
matrix χ. The main goal of this study is to develop an artifact to measure
the effect of input and output errors in fidelity. Our method is implemented
for one and two qubits. All this work has been formulated in Mathematica
and the code is available at: https://github.com/isabelfrancg/Fidelity-study

3.1 One qubit implementation

First, we will walk through the implementation of SQPT. We use SQPT
to reconstruct a CPTP process, given an input and measurement. SQPT is
a very good method theoretically for the 1 and 2 qubit channels, but requires
of other techniques beyond that. We will speak more in detail about this in
section 4.
As explained in Section 2.3 if we have a CPTP channel, it can be written in
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the following way:

Λ(%) =
∑
ij

χijσi%σ
†
j . (3.1)

SQPT aims to calculate the error matrix χ through the measurements of the
probabilities:

pij = Tr (PiΛ(%j)) (3.2)

These probabilities are the measurement outcomes after applying the channel
to a complete set of states %j. We find their relation to χpq via the expression:

pij =
∑
pq

χpqTr
(
Piσp%jσ

†
q

)
(3.3)

of linear equations. We can simplify the right hand side by defining:

Aijpq = Tr
(
Piσp%jσ

†
q

)
(3.4)

If we introduce a single index α = α(i, j) for the double index i, j, and simi-
larly β for p, q, then A becomes a matrix, and the vector ~χ with elements χβ
reads

~χ = A−1~p (3.5)

We note that for the one qubit case pij, i ∈ {1, 4} and j ∈ {1, 4} which
corresponds to the number of measurements we require. In total, 16 mea-
surements.

Flattening the pij matrix makes a pα, which is a 16x1 matrix. For the
case of Aijpq it is a 16x16 matrices. A counts with 256 elements. We note
that the calculation of A is costly, however, it is only required once. We can
reuse its value for different processes, if we use the same type of projectors
and initialization states. So in our case, we do recycle this value for all gates
in the one qubit case.

In particular we look at the representation of A as follows:
We show Aijpq =

Tr(ρ1σpρ1σ
†
q

)
Tr(ρ1σpρ2σ

†
q

)
Tr(ρ1σpρ3σ

†
q

)
Tr(ρ1σpρ4σ

†
q

)
Tr(ρ2σpρ1σ

†
q

)
Tr(ρ2σpρ2σ

†
q

)
Tr(ρ2σpρ3σ

†
q

)
Tr(ρ2σpρ4σ

†
q

)
Tr(ρ3σpρ1σ

†
q

)
Tr(ρ3σpρ2σ

†
q

)
Tr(ρ3σpρ3σ

†
q

)
Tr(ρ3σpρ4σ

†
q

)
Tr(ρ4σpρ1σ

†
q

)
Tr(ρ4σpρ2σ

†
q

)
Tr(ρ4σpρ3σ

†
q

)
Tr(ρ4σpρ4σ

†
q

)
)

 (3.6)
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for the case i = a and j = b, ρaσpρbσ
†
q =

ρaσ1ρbσ
†
1 ρaσ1ρbσ

†
2 ρaσ1ρbσ

†
3 ρaσ1ρbσ

†
4

ρaσ2ρbσ
†
1 ρaσ2ρbσ

†
2 ρaσ2ρbσ

†
3 ρaσ2ρbσ

†
4

ρaσ3ρbσ
†
1 ρaσ3ρbσ

†
2 ρaσ3ρbσ

†
3 ρaσ3ρbσ

†
4

ρaσ4ρbσ
†
1 ρaσ4ρbσ

†
2 ρaσ4ρbσ

†
3 ρaσ4ρbσ

†
4

 (3.7)

As we did for pij, we flatten Aijpq to Aαβ such that we obtain a 16x16
matrix.

Finally, we can obtain the χpq matrix:
p11

p12

...
p21

...
p44

 .


A1111 ... A1114 A1211 ... A1414

A1121 ... A1124 A1221 ... A1424

... ... ... ... ... ...
A2111 ... A2114 A2211 ... A2414

... .... ... ... ... ...
A4141 ... A4144 A4241 ... A4444



−1

(3.8)

Finally, we reconstruct the gate by performing the summation in Equation
3.1.

We note that our measurement of the probabilities pij is through the
choice of the following complete set of initialization and projector states:

%1 = P1 = |0〉 〈0| (3.9)

%2 = P2 = |1〉 〈1| (3.10)

%3 = P3 = |x〉 〈x| , with |x〉 =
1√
2

(|0〉+ |1〉) (3.11)

%4 = P4 = |y〉 〈y| , with |y〉 =
1√
2

(|0〉+ i |1〉) , 〈y| = 1√
2

(〈0|− i 〈1|) (3.12)

Next, we check how we introduce errors in our SQPT technique

General form of errors for one qubit SQPT

We note that errors we consider in SQPT will have the following form:
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Initialization Error

The initialization errors get introduced in our work in the following way:

pi1 = Tr(PiΛ(ρerror1 )) = (p[Tr(PiΛ(|0〉 〈0|))] + (1− p)[Tr(PiΛ(δ1))]) (3.13)

pi2 = Tr(PiΛ(ρerror2 )) = (p[Tr(PiΛ(|1〉 〈1|))] + (1− p)[Tr(PiΛ(δ2))]) (3.14)

pi3 = Tr(PiΛ(ρerror3 )) = (p[Tr(PiΛ(|x〉 〈x|))] + (1− p)[Tr(PiΛ(δ3))]) (3.15)

pi4 = Tr(PiΛ(ρerror4 )) = (p[Tr(PiΛ(|y〉 〈y|))] + (1− p)[Tr(PiΛ(δ4))]) (3.16)

Measurement Error

For the measurement Errors:

pi1 = Tr(PError
i Λ(ρ1)) = (p[Tr(PiΛ(|0〉 〈0|))] + (1− p)[Tr(κiΛ(ρ1))]) (3.17)

pi2 = Tr(PError
i Λ(ρ2)) = (p[Tr(PiΛ(|1〉 〈1|))] + (1− p)[Tr(κiΛ(|1〉 〈1|))])

(3.18)
pi3 = Tr(PError

i Λ(ρ3)) = (p[Tr(PiΛ(|x〉 〈x|))] + (1− p)[Tr(κiΛ(|x〉 〈x|))])
(3.19)

pi4 = Tr(PError
i Λ(ρ4)) = (p[Tr(PiΛ(|y〉 〈y|))] + (1− p)[Tr(κiΛ(|y〉 〈y|))])

(3.20)

Initialization and Measurement Error

And for both the initialization and measurement Errors:

pi1 = Tr(P error
i Λ(ρerror1 )) =

Tr[(pmeasPi + (1− pmeas)κi)Λ(pinit(|0〉 〈0|+ (1− pinit)δ1)]
(3.21)

pi2 = Tr(P error
i Λ(ρerror2 )) =

Tr[(pmeasPi + (1− pmeas)κi)Λ(pinit(|1〉 〈1|+ (1− pinit)δ2)]
(3.22)

pi3 = Tr(P error
i Λ(ρerror3 )) =

Tr[(pmeasPi + (1− pmeas)κi)Λ(pinit(|x〉 〈x|+ (1− pinit)δ3)]
(3.23)
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pi4 = Tr(P error
i Λ(ρerror4 )) =

Tr[(pmeasPi + (1− pmeas0 )κi)Λ(pinit(|y〉 〈y|+ (1− pinit)δ4)] (3.24)

A final note on the general form for our errors: we will refer to ”scat-
tered” when we consider that the probability of complete success in one
measurement or initialization state ”p” might differ for other initialization
or measurement. This means that different pij could have different proba-
bilities p inside them. Here we have written them all as ”p” to simplify the
notation. This applies to the 2 qubit case as well.

3.2 Two qubit implementation

Theoretically, we can expand this method further to more qubits easily.
For two qubits, we show the general form pij and Aijpq takes.

We note that for this case pij, i ∈ {1, 16} and j ∈ {1, 16} which corre-
sponds to the number of probabilities measurements we require. In total,
256 measurements are required

Again, we flatten pij as pα. Which makes it a 256x1 matrix.
For the case of Aijpq it is a 256x256 matrix . It therefore counts with

65,536 elements. This is computationally heavy. Specially since we have to
calculate its inverse. However, as previously mentioned, we recycle this value
for all gates in the two qubit case.

Similarly, as before, we obtain χpq = A−1
ijpq.ppq. We then use this value to

reconstruct the gates by performing the following summation:

Λ1 ⊗ Λ2(%)Λ†2 ⊗ Λ†1 =
∑
ij

χij(σ ⊗ σ)i%(σ ⊗ σ)†j (3.25)

We take the following set of as our complete set of operators: σi ⊗ σj =

{Id⊗ Id, Id⊗X, Id⊗ Y, Id⊗ Z,X ⊗ Id,X ⊗X,X ⊗ Y,X ⊗ Z,
Y ⊗ Id, Y ⊗X, Y ⊗ Y, Y ⊗ Z,Z ⊗ Id, Z ⊗X,Z ⊗ Y, Z ⊗ Z}

(3.26)

Then for our initialization and projector states, we take the complete set:

%1 = P1 = |0〉 〈0| ⊗ |0〉 〈0| (3.27)

%2 = P2 = |0〉 〈0| ⊗ |1〉 〈1| (3.28)
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%3 = P3 = |0〉 〈0| ⊗ |x〉 〈x| (3.29)

%4 = P4 = |0〉 〈0| ⊗ |y〉 〈y| (3.30)

%5 = P5 = |1〉 〈1| ⊗ |0〉 〈0| (3.31)

%6 = P6 = |1〉 〈1| ⊗ |1〉 〈1| (3.32)

%7 = P7 = |1〉 〈1| ⊗ |x〉 〈x| (3.33)

%8 = P8 = |1〉 〈1| ⊗ |y〉 〈y| (3.34)

%9 = P9 = |x〉 〈x| ⊗ |0〉 〈0| (3.35)

%10 = P10 = |x〉 〈x| ⊗ |1〉 〈1| (3.36)

%11 = P11 = |x〉 〈x| ⊗ |x〉 〈x| (3.37)

%12 = P12 = |x〉 〈x| ⊗ |y〉 〈y| (3.38)

%13 = P13 = |y〉 〈y| ⊗ |0〉 〈0| (3.39)

%14 = P14 = |y〉 〈y| ⊗ |1〉 〈1| (3.40)

%15 = P15 = |y〉 〈y| ⊗ |x〉 〈x| (3.41)

%16 = P16 = |y〉 〈y| ⊗ |y〉 〈y| (3.42)

General form of errors for two qubits SQPT

We see the most general form that errors we consider take:

Initialization Error

For the initialization error can view it as:

pi1 = Tr(PiΛ(ρerror1 )) = (p[Tr(PiΛ(|0〉 〈0| ⊗ |0〉 〈0|))] + (1− p)[Tr(PiΛ(δ1))])
(3.43)

...

pi16 = Tr(PiΛ(ρerror16 )) = (p[Tr(PiΛ(|y〉 〈y|⊗|y〉 〈y|))]+(1−p)[Tr(PiΛ(δ16))])
(3.44)
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Measurement Error

For the measurement errors:

pi1 = Tr(P error
i Λ(ρ1)) = (p[Tr(PiΛ(ρ1))] + (1− p)[Tr(κiΛ(ρ1))]) (3.45)

...

pi16 = Tr(P error
i Λ(ρ16)) = (p[Tr(PiΛ(ρ16))] + (1− p)[Tr(κiΛ(ρ16))]) (3.46)

Initialization and Measurement Error

And for both the initialization and measurement errors:

pi1 = Tr(P error
i Λ(ρerror1 )) =

Tr((pmeasPi + (1− pmeas)κi)Λ(pinit(|0〉 〈0| ⊗ |0〉 〈0|) + (1− pinit)δ1))
(3.47)

...

pi16 = Tr(P error
i Λ(ρerror16 )) =

Tr((pmeasPi + (1− pmeas)κi)Λ(pinit(|y〉 〈y| ⊗ |y〉 〈y|) + (1− pinit)δ16))

(3.48)
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3.3 Error modelling

In chapter 2, we gave a description between coherent and incoherent noise.
In this section, we will continue our discussion about noise and we will de-
scribe and reason the ways we will model errors in initialisation and mea-
surement. We will first provide the basics about possible representation and
assumptions in our errors. We then move to deal with two key decisions in
our work, choosing quantum vs classical noise and deciding which errors to
model.

Assumptions in our method:

1 We have access to the statistics given by Born’s rule. This is the so-
called ”frequentist approach to probability”, which says that only if
we repeated the experiment infinitely times, we would get the exact
probability. We assume that this assumption is satisfied for a sufficient
number of experiments. This is an assumption that we use when cal-
culating the effect of these errors in SQPT, i.e. we are assuming the
probability measurements we obtain reflect perfectly the effect of the
noise.

2 It is a well-known fact that any quantum channel that corresponds to
a physical process can be seen as a CPTP map. We therefore only
consider CPTP maps. This is also key in SQPT since we can therefore
write gates in terms of Kraus operators, as we showed.

3 We only consider incoherent errors and act on each qubits individually
in the same way.

4 We only consider ”classical” errors

Note that we do not consider coherent noise for input and measurement
errors since the biggest focus on recent research is on incoherent errors. This
also leads us to consider errors acting individually in qubits. And, as we
clarify next, we only consider ”classical” noise.

3.3.1 Single-qubit vs qubit-qubit interactions

We can consider single-qubit or qubit-qubit interactions.
Single-qubits errors: We refer to single qubit errors as those processes

that affect each qubit individually, they are the ones that are sourced exter-
nally, such as, from the interaction with external fields. We can see these
errors as a map V on the individual qubits:

V ⊗ V ⊗ · · · ⊗ V
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where each V is a single-qubit error operator.
Qubit-qubits errors: We consider this for the case of coherent errors,

when interactions occur between data and ancilla qubits to modify the dy-
namics of the system. Note that these ancilla qubits can be syndrome qubits,
i.e. used for error syndrome measurements. In fact, recent discoveries claim
this could an important error happening in QEC [31]

In our work, as we mentioned, we will only look into single-qubit errors,
as we are only modelling incoherent noise. The general form of initialization
and measurement of these errors will be as follows:

κ1 = δ1 = p1ΛError1 |0〉 〈0|Λ
†
Error1

(3.49)

κ2 = δ2 = p2ΛError2 |1〉 〈1|Λ
†
Error2

(3.50)

κ3 = δ3 = p3ΛError3 |z〉 〈z|Λ
†
Error3

(3.51)

κ4 = δ4 = p4ΛError4 |w〉 〈w|Λ
†
Error4

(3.52)

We can generalise this to two qubits as well.
Note that we have represented p0 to be our probability of abscense of

errors. Together with pi, they form a distribution of probabilities, i.e. p0 +
pi = 1 for i = 1, 2, 3, 4. When we implement our model, we write each κ and
δ with independent probabilities and gates in order to give the most general
form. We will also apply two probability models:

- The first one is p1 = p2 = p3 = p4 i.e. we assume that the probability
of encountering the error is constant in the system.

- The other one is p1 6= p2 6= p3 6= p4, which we refer as ”scattered” i.e.
we assume that the probability p of error varies in each measuremen-
t/initialization. We have previously mentioned this, but now we can
see what it means for this description of our model.

Also, we have specified a different gate applied to each state, however, in
most of our cases we use: ΛError1 = ΛError2 = ΛError3 = ΛError4 . Only in one
of our cases, we will consider these to be different. The reason for this is to
provide a more general perspective on the effect of errors.
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3.3.2 Classical vs quantum error

An interesting discussion to reflect on is on the possible interpretations
of classical and quantum errors.

Classical Error modelling: By classical errors, we refer to those per-
turbations with a classical limit. To explain this further, we give an example
of how classical noise affect measurement.

Let us denote the ideal vector of probabilities that one would have ob-
tained from an ideal scenario as pideal . We consider a function ΛError to be
the error map in our system. Then for an arbitrary quantum state ρ, the
vector of probabilities pexp obtained in an experiment on a noisy device is
given by

pexp = Λpideal (3.53)

This is valid due to Born’s rule. Proof:
From

Pi = Tr(PiΛ(ρ)) (3.54)

For a POVM P we distinguish between the erroneous and the ideal via
the map:

P exp
i =

∑
j

p(i | j)P ideal
j (3.55)

where i ∈ {1, .., n} and p(i | j) respects two properties: p(i | j) ∈ [0, 1],∑
i p(i | j) = 1. The latter condition is added to assure that P exp is a proper

POVM. The value of n corresponds to number of quantum measurements
performed. P exp refers to erroneous POVM and P ideal corresponds to the
ideal POVM.

We can assume a similar idea of classical noise for the initialization states.

Quantum Error modelling:
We model these as deviations of some unitary rotation part. We take

the generic notation adding the extra factor corresponding to quantum be-
haviour: P exp = ΛP ideal +4 or ρexp = Λρideal +4 this would introduce an
error: pexp = Λpideal +4′

Note that the method suggested in [53] to reduce this error leads to an
optimisation problem, which should minimise the upper bound on the error
of the error-mitigation procedure. We see it more clearly below by looking at
the measure of the distance between classical probability distributions. This
is the total-Variation (TV) distance:

41



DTV

(
Λ−1pexp,pideal

)
=

1

2

∥∥Λ−1pexp − pideal

∥∥
which we wish to minimise.
Due to the arbitrary decomposition one might make when segregating

”classical” and ”non-classical”, we will not develop this further and we will
leave this as a subjective discussion on how we can classify noise. In our
study, we consider the case the non-classical part ∆ is small compared to
the term ΛM(ideal) , and we neglect the ”non classical” part. Taking this
assumption, we therefore only consider ”classical” noise in our technique.

3.3.3 Error models

We can represent error processes in a number of ways. The key points
are that these will be changes in the phase and state. We see this in our
models for incoherent noise. As specified, we are considering: incoherent
”classical” single-qubit noise, modelled as CPTP maps. Another key point
is that Initialization and measurements errors are modelled the same way for
incoherent error models.

We will model several popular incoherent errors. The most common way
to model these are in terms of the Kraus operators. For a general arbitrary
error map of the density matrix, which satisfies all our conditions above, we
consider a general Kraus map to model our error on a multi-qubit density
matrix as follows

ρ→
∑
k

A†kρAk

where
∑
A†kAk = I.

Non-Pauli channel noise

We first look at our application of an incoherent noise written in terms
of a Non-Pauli matrix

The amplitude damping channel: This channel refers to the qubit
falling from an excited state to a ground state through spontaneous emission.
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The Kraus operator elements of the channel can be written as:

A1 =

(
1 0
0
√

1− γ

)
, A2 =

(
0
√
γ

0 0

)
ρ 7→ ΛError(ρ) = M 0ρM

†
0 +M 1ρM

†
1

The form of the operator elements indicate that this channel is not a
Pauli channel.

Pauli channel noise

On the other hand, we model Pauli channels. These are quantum chan-
nels that apply an n-qubit Pauli operator. They have been the most common
way to model errors, especially for the models applied in Quantum Error
Correction Codes. We can emphasize their relevance from the studies on
the randomized compiling [54]. This is a technique which maps noise to a
Pauli channel. This is very powerful because this has lead to very positive
reductions of noise

We consider a general Pauli error as follows:

ρ→ (1− px − py − pz) ρ+ pxXρX + pyY ρY + pzZρZ

We discuss 2 examples of Pauli channels modelled as noise.

1. The depolarizing channel: This channel refers to a qubit getting
to the completely mixed state ρ = 1

2
I with probability p, and remaining

intact with probability 1 − p. The parameter p indicates the strength of
depolarization, and it is the only parameter of this channel. The Kraus
operator elements of the channel are the following:

A1 =

√
1− 3

4
pI, A2 =

1

2

√
pX,A3 =

1

2

√
pY,A4 =

1

2

√
pZ

We see three types of depolarizing channels:

- Bit-flip errors: Initialization and measurements are usually bit flip
(X). We implement the error as follows:

ΛError =
√
pX
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- Phase-flip errors: We implement the error as follows:

ΛError =
√
pZ

- Bit-flip and Phase-flip errors: We implement the error as follows:

ΛError =
√
pY

Note that because all the operator elements can be written as a Pauli
matrix or identity multiplied with a scalar factor, this channel belongs to
the more general class of Pauli channels. We note that we will only include
Bit-Flip in our results graphs, due to the similarity in the effect of the three
of them.

2. The phase damping channel: it represents the loss of quantum
information. The Kraus operator elements of this channel are:

A1 =
√
pI =

( √
p 0

0
√
p

)
, A2 =

√
1− pZ =

( √
1− p 0
0 −

√
1− p

)
ΛError =

∑
aM aρM a =

(
1− 1

2
p
)
ρ+ 1

2
pZρZ

As can be seen from the form of the operator elements, this channel also
is a Pauli channel.

Besides these maps, we model two simple ”custom” errors. For simplicity,
we define these in terms of their direct application, δ and κ:

The custom orthogonal error: To exploit the limits of errors, we
encode errors for one qubit by considering an application of a unitary gate
that turns the state into its orthogonal state. This means that for the base
{|0〉 , |1〉} we will consider the error to turn |0〉 → |1〉 and vice versa. For
the case of the |x〉 and |y〉 gates we find their orthogonal counterpart. An
universal NOT gate does not exist, and it is for this reason that we model
the error in the following way:

κ1 = δ1 = p1 |1〉 〈1|

κ2 = δ2 = p2 |0〉 〈0|

κ3 = δ3 = p3 |z〉 〈z|

κ4 = δ4 = p4 |w〉 〈w|
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Note that taking the definition of f and g being orthogonal if their inner
product (equivalently, the value of this integral) is zero: 〈f, g〉 = 0, we dis-
cover the orthogonal states for |x〉 and |y〉 to be as follows:

• For |x〉 the orthogonal state is |z〉 = 1√
2
(|0〉 − |1〉)

• For |y〉 the orthogonal state is |w〉 = 1√
2
(|0〉 − i |1〉)

The custom rotation of states error: this second error we use it to
investigate on the possible ”rotations” of the states, we use:

δ1 = p2ρ2 + p3ρ3 + p4ρ4

δ2 = p5ρ1 + p6ρ3 + p7ρ4

δ3 = p8ρ1 + p9ρ2 + p10ρ4

δ4 = p11ρ1 + p12ρ2 + p13ρ3

and for the errors in the projectors:

κ1 = p2P2 + p3P3 + p4P4

κ2 = p5P1 + p6P3 + p7P4

κ3 = p8P1 + p9P2 + p10P4

κ4 = p11P1 + p12P2 + p13P3

Note that due to computational overhead, we only compute this for one
qubit.

Specially, for the scattered case, this becomes complicated as each κ and
δ have 4 different sets of probability distributions.

3.4 χ Fidelity Calculation

Following our implementation, we discuss our choice of formula to calcu-
late the Fidelity and its calculation for one and two qubits.

To calculate fidelity, we make a choice of the following formula [55]

F =
Tr((χ)χ†ideal)√

Tr((χideal + χfaulty)†(χideal + χfaulty))
√
Tr(χ†thχth)

(3.56)
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This decision alleviates computational costs as we can work directly with
the χ matrices, instead of with the full reconstructed map, as we saw in
section 2.4.

We also note that instead of plotting against fidelity. We plot in the
log-log scale against infidelity.
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Chapter 4

Results and beyond

In this chapter, we present and analyse the results of our selected models.
We additionally explain further some implementation details on each that
we did not mention before.

In our plots, we assumed that the probability of suffering input and mea-
surement errors is rather low, hence we only look at the case where the
presence of errors is between 0 and 10%, unless otherwise stated.

To evaluate the effect of these errors on the gate fidelity, we plot the
”probability of no errors”, against the ”Infidelity”. The probability of no
errors ranges between 0 and 1. This is the probability of the absence of the
error. The other term, ”Infidelity”, is 1 - Gate Fidelity.

We also plot in the Log scale to see more clearly how the fidelity behaves.

In our plots, we make use of 2 random sets of probabilities, the first set
contains 100 distribution of probabilities, and the second one, 1000. We will
specify when either one is used. The use of one larger set of points over the
other is dependent on the computational cost of the gate reconstruction.

We also point out that the probability of no errors is calculated as (prob-
ability of no errors in the initialization + probability of no errors in the
measurement)/2 when both errors are implemented. Also, note that in most
cases, the input and measurement errors have the same distribution. There-
fore one hides the other in the graph.
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4.1 One qubit

To model the gate reconstruction, we have worked with the qubit gates
X,Y,Z. However, we have seen a very similar effect on the three of them.
Therefore we will just illustrate the assessment of fidelity for the X gate,
except for the phase damping gate.

4.1.1 Orthogonal and Rotational Error

We use the random set of 1000 probability distributions for the orthogonal
errors and 100 for the rotational errors, due to computational cost. We note
that we use the two types of probability models for Measurement and Input
Errors as we mentioned before.

We remind the reader that in the plots, we use the probability of the
absence of error from 0 to 1. Also, our plots are in the log-log scale to
illustrate the gate fidelity against the probability of no errors appearing.

Input Error Scattered
Measurement Error Scattered
Measurement & Input Error

Input Error
Measurement Error

-0.10 -0.08 -0.06 -0.04 -0.02
probability of no errors

-20

-15

-10

-5

Infidelity
1-qubit X gate reconstruction with orthogonal error

Figure 4.1: Custom orthogonal error affecting the 1-qubit X gate fidelity for
input, measurement and both errors.
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Measurement & Input Error

Measurement Error

Input Error

Measurement Error Scattered

Input Error Scattered

-0.15 -0.10 -0.05
probability of no errors

-6

-4

-2

Infidelity
1-qubit X gate reconstruction with rotational error

Figure 4.2: Custom rotational error affecting the 1-qubit X gate fidelity for
input, measurement and both errors.
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4.1.2 Amplitude Damping Error

Measurement Error Scattered
Measurement & Input Error

Input Error Scattered

Input Error
Measurement Error
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Infidelity
1-qubit X gate reconstruction with Amplitude Damping error, γ=0.2
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Measurement Error
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Infidelity
1-qubit X gate reconstruction with Amplitude Damping error, γ=0.5

Measurement & Input Error
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Figure 4.3: Amplitude damping error affecting the 1-qubit X gate fidelity for
input, measurement and both errors. We show 3 plots for different γ values
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4.1.3 Depolarizing Error
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Figure 4.4: General Depolarizing and Bit flip error affecting the 1-qubit X
gate fidelity for input, measurement and both errors.
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4.1.4 Phase Damping Error
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Figure 4.5: Phase damping error affecting the 1-qubit X,Y,Z gate fidelity for
input, measurement and both errors.

In this case, we plot against the three Pauli gates, since we see a slight
different effect on the quality of the dynamics. We believe that this could be
due to the model used for the probabilities.
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4.2 Two qubit

In a very similar fashion to the 1-qubit case, we now we look for the cases
of 2 qubit gate Reconstruction. We apply the gates as we refered to single
qubits operations. Also, We use a less big randomisation of the errors to
reduce time cost in the calculations.

Note that here we do not compute the graph for our custom rotational
error. This is not very important as the whole purpose of introducing such
error was for us to see a more complete and diverse error modelling.

4.2.1 Orthogonal Error
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Figure 4.6: Custom orthogonal error affecting the 2-qubit XxX gate fidelity
for input, measurement and both errors.
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4.2.2 Amplitude Damping Error
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Figure 4.7: Amplitude damping error affecting the 2-qubit XxX gate fidelity
for input, measurement and both errors. We show 3 plots for different γ
values
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4.2.3 Depolarizing Error
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Figure 4.8: General depolarizing and Bit flip error affecting the 2-qubit XxX
gate fidelity for input, measurement and both errors.

As we can see the general depolarizing error translates to a a bigger
reduction in the quality of the dynamics.
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4.2.4 Phase Damping Error
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Figure 4.9: Phase damping error affecting the 2-qubit XxX, YxY, ZxZ gate
fidelity for input, measurement and both errors.
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4.3 Beyond our method

We classify the limitations to our method into two categories: computa-
tional and experimental.

4.3.1 Experimental limitations

We can think of some experimental limitations to be linked to the fact that
SQPT has theoretical limitations. Linear inversion is a very clean method
which relies on being able to calculate experimentally χ = Aijpqpexp to invert

E(ρ) =
∑d2

α,β=1 χαβAαρA
†
β . We note that 2 of our assumptions was that

the reconstructed map and the error map had to be CPTP which assures
the process is physical. However, experimentally, the pexp measured leads
to a non hermitian matrix. In standard QPT this problem is remedied by
minimizing (in some sense) the difference between the probabilities pideal and
the experimental probabilities pexp. [56]. This method is referred to as the
Least Squared method, and it consists on minimizing the difference as

min
∑

j

[
P exp
j − P ideal

j

]2
Another technique commonly implemented to deal with these experimen-

tal issues is the Maximum Likelihood.

Maximum Likelihood

The trick to deal with these unphysical matrices is that the maximum-
likelihood method leaves out the negative-eigenvalues (non-physical). The
key of the method is to reconstruct the quantum state by ρ = arg maxρ{C(ρ,X)}
for the constraint ρ ≥ 0 where C represents the likelihood of ρ generating
the set X of observed data, i.e. undergoing the process we are looking for.
It estimates P ideal

j from the measurement data by finding values for the pa-
rameter that maximise the likelihood of having obtained the measurement
outcomes.

Another type of challenges in the experiment in the number of states and
measurements one must perform. QPT requires 24N measurements to be per-
formed i.e. 12 measurements for one qubit in total. In fact, experimentally,
Quantum Tomography has been performed only up to 3 qubits [57].

An important alternative for these experimentally heavy tomography
methods, especially for the one and two qubit case, is the application of the
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Choi-Jamiolkowski (CJ) isomorphism [58] [59]. This isomorphisms relates
the QPT for N qubits to a QST of 2N qubits maximally entabled quantum
states where N qubits have undergone through the process we are trying to
reconstruct. This translates to a reduce in total measurements.

4.3.2 Computational limitations

We have performed our method for one and two qubits, beyond two qubits
there are computational limitations to perform the QPT and the fidelity as-
sessment we have discussed. One example is when we compute the matrix
Aijpq, which is of size: d22N × d22N . This therefore means that calculating χ
becomes too difficult to handle.

We can also see that computing the modelled errors described above
also become very computationally challenging for large sets of probability
distributions.
Therefore we can see that for a further number of qubits we require other
techniques. One nice option are the current advances in machine learning
applied to tomography, such as [60]
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Chapter 5

Conclusions

We can conclude that, the classical incoherent errors in the initializa-
tion and measurement have a small effect on a quantum process. In the
log-log scale, we can see that the effect of the error decays with an asymp-
totic behaviour as the probability of errors reduces to 0. This translates to
a negligible effect on the fidelity if the probability of the presence of errors
is minimal. We see that the fidelity decay depends on the classical error
applied.
Overall, the effects of the quantum errors do not seem to have a big de-
pendence on the system’s dynamics, as we have found considerably similar
distributions on the fidelity for different gate reconstructions.
We can see a similar effect on both the 1 qubit and the 2 qubits case. This is
something we expected given the single qubit model we used. We can further
deduce similar results for more qubits. Besides this, we see a comparable ef-
fect between input and measurement errors. As expected, we see a decrease
in the dynamics quality once both are introduced.

To summarise, the outcome of this study is that an effective implemen-
tation of a quantum system is considerably independent of the erroneous
applications in the measurement and input. This result is within the bounds
of the CPTP maps representing incoherent noise that we chose and the as-
sumptions that we made. Given the connection of general noise to this type
of maps, we can also expect many other errors to have a similar effect.
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