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Abstract

This thesis is concerned with Hitchin’s generalised geometry and its applications
in superstring theory and, in particular, in its low-energy limit, supergravity. We
provide a brief overview of the main mathematical structures that are spawned
by the extension of the tangent bundle over a manifold by the cotangent bundle.
We see that this generalisation results in a mathematical formalism whereby the
backgrounds of ten-dimensional supergravity and their symmetries can be neatly
embedded in the geometry, therefore offering a very natural description in terms of
this generalised framework. Motivated by the elegance of this formalism, we review
an extension that geometrises the remaining degrees of freedom of M-theory and type
II supergravity. By building covariance under the larger U-duality group of string
theory, we explore the description of type II and M-theory geometries in terms
of exceptional generalised geometry, and the integrability of exceptional complex
structures in supersymmetric compactifications of eleven-dimensional supergravity.
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Chapter 1

Introduction

The objective of this dissertation is to describe a geometrical framework within which
many facets of string theory and supergravity find a natural and elegant description:
generalised geometry, and its generalisation to exceptional geometries.

Many of humanity’s most profound ideas – from Newton’s mechanics to Ein-
stein’s general relativity – have been developed at the interface between mathemat-
ics and physics. Like a well-choreographed dance, new discoveries and conjectures
in physics lead to the birth of new areas of mathematics and to a refinement of
existing ones; conversely, the conception of new mathematical ideas and structures,
regardless of how abstract they might initially appear, can lead to a deeper under-
standing and appreciation of physical theories, or even to full paradigm shifts in the
way we interpret and describe reality.

String theory has revealed itself to be a fertile ground for the common develop-
ment of physics and mathematics, and Hitchin’s generalised geometry [1–4] is, in
some sense, only one of the latest steps in this eternal dance.

More concretely, we begin in chapter 2 of this thesis by introducing a number of
notions from (ordinary) complex differential geometry. In particular, we introduce
various G-structures whose generalised counterparts play important roles in the later
sections of the thesis, as well as two geometries of fundamental importance: Kähler
and Calabi-Yau geometries.

In chapter 3, we present an overview of Hitchin’s generalised geometry; this
is a formalism whereby the tangent bundle T over a d-dimensional manifold M

is extended to the sum T ⊕ T ∗ of the tangent and cotangent bundles. This new
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Chapter 1. Introduction

space is endowed with a natural action of SO(d, d), whose discrete version is the
T-duality symmetry group. We give a brief description of the geometry of this
new bundle and present a generalisation of some of the mathematical structures
discussed in the previous chapter, including metrics, brackets, G-structures and
their integrability, geometries, and spinors. Particular emphasis is given on the
integrability of the structures presented, as this will turn out to be related to the
description of supersymmetric backgrounds. Furthermore, we discuss a particular
patching which allows the geometry to fully capture the gerbe structure of the gauge
fields. Ultimately, the objective of chapter 3 is to set up the mathematical stage for
the string theory discussions of the following two chapters.

We open chapter 4 by introducing string theory compactifications. We can then
begin to embed various notions from string theory and supergravity into the for-
malism of generalised geometry. For instance, we find that the metric and the
B-field naturally combine into a generalised metric. The perturbative charges of
the string – namely, its momentum and winding number – can be assembled into
an SO(d, d) vector. After introducing T-dualities, together with the Buscher proce-
dure, we review how the parameters associated with the symmetries of the Neveu-
Schwarz-Neveu-Schwarz sector of string theory – namely, diffeomorphisms and B-
gauge transformations – naturally inhabit the generalised tangent space. Returning
to type II supergravity compactifications, we show how the imposition of super-
symmetry leads to equations of motion whose implications on the geometry of the
target space are best described in terms of generalised structures. We first explore
the fluxless case, and then sequentially turn on Neveu-Schwarz-Neveu-Schwarz and
Ramond-Ramond fluxes.

In type II string theory, SO(d, d) is only a small part of the group of U-dualities,
conjectured by Hull and Townsend to be the unified symmetry group of string the-
ory [5]. This motivates a generalisation of Hitchin’s generalised geometry, with the
exceptional group Ed+1 taking the place of SO(d, d). This extension is reviewed in
chapter 5, and it endows the formalism with a natural action on the gauge fields
of the Ramond-Ramond sector. In particular, we review type IIA and M-theory
geometries, and characterise how the former arise as a reduction of the latter. Fol-
lowing in the footsteps of the previous chapters, we describe how a geometrisation of
the gauge symmetries of eleven-dimensional supergravity can be achieved by adorn-
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ing the exceptional generalised tangent bundle with a connective structure. We
conclude by sketching how, in analogy with ordinary geometry, the compactifica-
tions of supersymmetric flux backgrounds of eleven-dimensional supergravity can be
described in terms of exceptional complex structures [6, 7].
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Chapter 2

Complex differential geometry

In this chapter, we provide a brief and incomplete overview of the facets of (complex)
differential geometry that reappear, perhaps in a generalised form, in the subsequent
chapters. In the interest of time, however, we assume some extent of familiarity with
fibre bundle theory; for a concise and foundational review, see for instance [8].

2.1 G-structures

Let us begin by laying out the basic notation that we will employ in this thesis. We
denote the tangent and cotangent bundles over a base manifold M as T and T ∗,
respectively. The space of sections of a bundle E is Γ(E), so that, for instance, a
vector field is an element of Γ(T ), while an r-form field is an element of Γ(ΛrT ∗).

Definition. A G-structure, where G ⊆ GL(d), is a principal G-subbundle
PG →M of the frame bundle1 F , i.e. PG ⊆ F .

The presence of a G-structure on a d-dimensional Riemannian manifold implies
a reduction of the structure group of the frame bundle from O(d) to G ⊂ O(d) [9].

1Recall that a frambundle F →M is the disjoint union

F =
∐
p∈M

{p, Fp}

of the set Fp of all frames at a point p ∈M .

13



Chapter 2. Complex differential geometry

Here, we will adopt the more practical working definition2 that a G-structure is
given by a set {τi} of globally non-vanishing tensors τi which are invariant under
the action of a Lie group G, i.e.

∩i stab(τi) = G,

where stab(τi) = {g ∈ GL(d) : g · τi = τi}, and we used the natural action of the
general linear group on a tensor.

For instance, a Riemannian metric g ∈ Γ(S2T ∗) defines a notion of orthogonality;
O(d) is the group that preserves orthogonality, and so a metric defines an O(d)

structure. A volume form vol ∈ Γ(ΛdT ∗), on the other hand, introduces a notion of
scale on the manifold. For any g ∈ GL(d), we have that

g · vol = det(g)vol,

and so vol defines an SL(n) structure. We will present more relevant examples –
namely, complex, symplectic, Kähler, and Calabi-Yau structures – in the next few
sections.

The definition above is a purely algebraic statement. We now explore the possi-
bility of attaching differential conditions to G-structures.

Definition. A connection ∇ on T is compatible with a G-structure defined
by a set {τi} of tensors if [10]

∇τi = 0.

A rationale behind the study of compatible connections is that they respect the
decomposition of a tensor bundle E = R1 ⊕ R2 ⊕ . . . into representations of G, for
if λ ∈ Γ(R1), where the Ri are G-submodules, then ∇λ ∈ Γ(R1) as well [11].

Compatible connections always exist [11]. A stronger constraint is the following.

Definition. A G-structure is integrable if there exists a torsion-free compat-

2Note that not all G-structures can be described in this way [9].
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2.2. Almost complex and symplectic structures

ible connection.

As we will see, this last statement translates into (a set of) differential constraints
on the defining tensor(s) τi. This can be easily seen in a simple example where we
take the τi’s to be 1-forms with components ω(i)

µ in a coordinate basis; we then have,
in the same basis,

∂[µω
(i)
ν] = ∇[µω

(i)
ν] + Γλ

[µν]ω
(i)
λ .

For a compatible connection, ∇µω
(i)
ν = 0. Furthermore, in the absence of torsion,

Γλ
[µν] = 0. We thus find a differential constraint of the form ∂[µω

(i)
ν] = 0.

Later, we will find differential conditions relating to the integrability of various
structures emerge in the form of the Killing spinor equations arising in supersym-
metric compactifications.

2.2 Almost complex and symplectic structures

In the following, we consider a manifold M with dimR(M) = d, where d is even, and
use indices i, j ∈ {1, . . . , d}.

Definition. An almost complex structure J ∈ End(T ) is a (real) endomor-
phism of the tangent bundle T given by

J : T → T such that J2 = J ◦ J = −idT , (2.1)

where idT is the identity map on T .

The defining property J2 = −idT implies that, upon being equipped with an
almost complex structure J , a (complexified) tangent bundle is partitioned by the
action of J into two subbundles T 1,0 = P−T

1,0 and T 0,1 = P+T
0,1, corresponding

respectively to the ±i eigenspaces3 of J :

T ⊗ C = T 0,1 ⊕ T 1,0 = P+T
0,1 ⊕ P−T

1,0, (2.2)

3So that, for instance, a (1, 0)-vector field with components Xi satisfies Jj
iX

i = iXj .

15



Chapter 2. Complex differential geometry

where we introduced the projection operators4

P± =
1

2
(I± iJ), (2.3)

which project down to T 0,1 and T 1,0, respectively [12, 13].
The (complexified) cotangent bundle splits in an analogous fashion under the

action of J :
T ∗ ⊗ C = T ∗0,1 ⊕ T ∗1,0, (2.4)

whereby α ∈ Γ(T ∗ ⊗ C) is also a section of T ∗0,1 if and only if α(X) = 0 for all
vector fields X ∈ Γ(T 1,0), and conversely for T ∗1,0.

The integrability of an almost complex structure J is equivalent5 to the involu-
tility of the eigenbundle T 1,0 (or to that of T 0,1) under the Lie bracket:

P±[P∓X,P∓Y ] = 0 ∀ X,Y ∈ Γ(T ), (2.5)

meaning that the Lie bracket of two sections of either eigenbundle is also a section
of that same eigenbundle.

The integrability of J can also be recast into the vanishing of the Nijenhuis tensor
NJ ∈ Γ(T ⊕ Λ2T ∗),

NJ(X,Y ) = J [JX, Y ] + J [X, JY ]− [JX, JY ] + [X,Y ].

This is one of the forms in which the Newlander-Nirenberg theorem is sometimes
stated [14].

An integrable almost complex structure is referred to simply as a complex struc-
ture. Its integrability implies that the local complex coordinates {zi} may be inte-
grated, in the sense that the local one-forms {dzi} are truly their differentials [15].

The introduction of an almost complex structure reduces the structure group
from GL(d;R) to GL(d/2;C). In terms of the language of G-structures introduced
earlier, an almost complex structure is a GL(d/2;C) structure. We see that a topo-

4We can indeed show that P 2
± = P±, as expected of legitimate projection operators, as well as

P+ + P− = 1.
5This equivalence is spelt out in Frobenius’ theorem for distributions – technically, the sub-

bundles T 1,0 and T 0,1 are distributions [12].
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2.2. Almost complex and symplectic structures

logical obstruction to having such a structure is the requirement for the manifold
to be even-dimensional. At the level of representations, and for the case d = 6, the
split in eq. (2.2) corresponds to the decomposition

6→ 3⊕ 3̄

of the fundamental representation, which is that in which the tangent bundle trans-
forms.

The decomposition of the complexified cotangent bundle brought about by an
almost complex structure (see eq. (2.4)) stimulates the following, more general de-
composition for higher-degree forms [8],

ΛnT ∗ ⊗ C = Λn(T ∗1,0 ⊕ T ∗0,1)

=
⊕

p+q=n

(ΛpT ∗1,0 ⊗ ΛqT ∗0,1)

=
⊕

p+q=n

Λp,qT ∗. (2.6)

This allows us to build a local section of Λd/2,0T ∗ out of the local frame {θa} con-
sisting of d/2 independent (1, 0)-forms θa,

Ω =

d/2∧
k=1

θk.

A form which can locally be written in this fashion is referred to as a decomposable
form [12]. In turn, such a d/2-form Ω (which we emphasise need not be globally
defined – Ω can be rescaled by a complex factor via a GL(d/2;C) transformation
across patches) can be used to define a subbundle T 0,1 as a kernel, and so an almost
complex structure J ; the explicit construction is

T 0,1 = {V ∈ Γ(T ) | ıVΩ = 0}. (2.7)

We see then that the invariant form associated to an almost complex structure
is a decomposable, complex d/2-form. We can now translate the integrability of an
almost complex structure into a condition on Ω. Given vector fields X,Y ∈ Γ(T 0,1),
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Chapter 2. Complex differential geometry

from eq. (2.7) we have that

ıXΩ = ıYΩ = 0 ⇒ ıY ıXdΩ = 0,

where we used
ı[X,Y ]Ω = ıY ıXdΩ.

In the language of forms, therefore, the integrability of a complex structure translates
into

dΩ = ξ ∧ Ω (2.8)

for some one-form ξ. When ξ = 0, Ω is closed, and we will see that this implies
the holomorphical triviliaty of the canonical bundle. In the presence of a symplectic
structure, this will lead to a Calabi-Yau manifold [12, 15].

2.3 Dolbeault operators and cohomology

The decomposition in eq. (2.6) allows us to refine the grading of forms; specifically,
it develops the notion of n-forms into that of (p, q)-forms. In particular,

Definition. A complex n-form ω ∈ Γ(ΛnT ∗) ⊗ C is a (p,q)-form, where
p+ q = n, if

ω(V1, . . . , Vn) 6= 0,

where Vi ∈ Γ(T ) ⊗ C for i ∈ {1, . . . , n}, only if p of the Vi ∈ Γ(T 1,0) and the
remaining q of the Vi ∈ Γ(T 0,1) [8].

We label the space of (p, q)-form fields as Γ(Λp,qT ∗).
Now, given a (p, q)-form field η on a complex manifold,

dη ∈ Γ(Λp+1,qT ∗ ⊕ Λp,q+1T ∗)

so that we can slice the de Rham differential in two:

d = ∂ + ∂̄ (2.9)
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2.3. Dolbeault operators and cohomology

where
∂ : Γ(Λp,qT ∗)→ Γ(Λp+1,qT ∗)

increases p by one, while

∂̄ : Γ(Λp,qT ∗)→ Γ(Λp,q+1T ∗)

increases q by one. The operators ∂ and ∂̄ are known as Dolbeault operators [8].
The nilpotency of the de Rham operator, d2 = 0, then translates into

d2 = ∂2+ ∂∂̄ + ∂̄∂+ ∂̄2 = 0,

where the three underlined operators are linearly independent from each other, and
must therefore vanish individually. The nilpotency of the Dolbeault operators ad-
vocates the definition of the (p, q)-th Dolbeault cohomology group

Hp,q

∂
=

{η ∈ Γ(Λp,qT ∗) | ∂η = 0}
{η ∼ η + ∂λ | λ ∈ Γ(Λp,q−1T ∗)}

,

the complex vector space consisting of equivalence classes of ∂̄-closed (p, q)-forms
differing by up to a ∂̄-exact (p, q)-form [8].

We can decompose6 the de Rham cohomology groups Hn
d into Dolbeault ones,

Hn
d =

⊕
p+q=n

Hp,q

∂
. (2.10)

We can expand the notion of a Hodge star ? by defining ?̄ω ≡ ?ω̄, so that, on a
d-dimensional manifold, ?̄ sends (p, q)-forms to (d − p, d − q)-forms. We then have
a symmetric inner product

( · , · ) : Γ(Λp,qT ∗)× Γ(Λp,qT ∗)→ R

α, β 7→ (α, β) ≡
∫
M

α ∧ ?̄β.

6In fact, this decomposition is only possible if the ∂∂-lemma

Im ∂ ∩Ker ∂ = Im ∂ ∩Ker ∂ = Im ∂∂

holds [1, 12].
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Chapter 2. Complex differential geometry

We can now implicitly define the operators ∂† and ∂̄† by

(α, ∂β) = (∂†α, β) and (α, ∂̄β) = (∂̄†α, β),

which are adjoint to the Dolbeault operators with respect to the above inner product.
We can thus devise the following three Laplacians:

∇ = dd† + d†d = (d+ d†)2,

∇∂ = ∂∂† + ∂†∂ = (∂ + ∂†)2,

and ∇∂ = ∂∂
†
+ ∂

†
∂ = (∂ + ∂

†
)2.

In complete analogy with Hodge theory, we define ∂- and ∂-harmonic (p, q)-forms α
and β, respectively, via ∇∂α = 0 and ∇∂β = 0. We label the spaces of such forms
as Harmp,q

∂ (M) and Harmp,q

∂
(M).

The complexification of Hodge’s decomposition theorem7 proclaims the unique-
ness of the following decomposition into orthogonal spaces:

Γ(Λp,qT ∗) = Bp,q

∂
(M)⊕B†p,q

∂
(M)⊕ Harmp,q

∂
(M),

where Bp,q

∂
(M) = ∂Γ(Λp,q−1T ∗) is the space of ∂-closed (p, q)-forms, and B†p,q

∂
(M) =

∂
†
Γ(Λp,q+1T ∗) is the space of ∂-co-closed (p, q)-forms (i.e. ∂†α = 0) [8].

On a complex, d-dimensional manifold M we can define the (d + 1)2 Hodge

7Recall that this states the existence of a unique decomposition of an r-form into a closed, a co-
closed, and a harmonic r-forms on a compact, orientable Riemannian manifold without boundary.
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2.4. Kähler and Calabi-Yau geometries

numbers hp,q = dimHp,q

∂̄
(M); these can be arranged into a Hodge diamond,

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

. .
. . . .

hd,0 hd−1,1
... h1,d−1 h0,d

. . . . .
.

hd,d−2 hd−1,d−1 hd−2,d

hd,d−1 hd−1,d

hd,d

. (2.11)

Recall that the number of linearly independent n-forms, i.e. the dimension of
Harmn(M), is a topological invariant8, known as the Betti number bn. In general,
Hodge numbers are not topological invariants9; however, they play an important role
in discussions on effective theories in string compactifications, as we shall mention
later.

2.4 Kähler and Calabi-Yau geometries

We now introduce a second structure which we will encounter frequently in later
discussions.

8This is related to the existence of index theorems stating that the number of solutions of a
differential equation depends only on the topology of the manifold.

9Nonetheless, certain linear combinations of Hodge numbers are topological invariants. These
were classified by Kotschic and Schreieder in [16].
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Chapter 2. Complex differential geometry

Definition. A pre-symplectic structure ω ∈ Γ(Λ2T ∗) satisfies

ωd/2 = ω ∧ ω ∧ · · · ∧ ω︸ ︷︷ ︸
d/2 times

6= 0,

so that it is non-degenerate.

In the language of G structures, ω is an Sp(d;R) structure. The integrability of
a pre-symplectic structure consists in the closure of ω, i.e.

dω = 0.

We refer to integrable pre-symplectic structures simply as symplectic structures10.

Consider now complexifying the tangent space TPM at a point p on the manifold
M to give TpM ⊗C. We can extend a linear operator A to act on this complexified
space as [8]

A(X + iY ) = A(X) + iA(Y ),

for X,Y ∈ TpM . Similarly, by denoting Z = X+ iY ∈ TpM ⊗C and W = U + iV ∈
TpM ⊗ C, we extend the metric at a point as

gp(Z,W ) = gp(X,U)− gp(Y, V ) + i(gp(X,V ) + gp(Y, U)).

Definition. A complex manifoldM with a complex structure11 J is Hermitian
if it has a metric g such that

gp(JpX, JpY ) = gp(X,Y ) (2.12)

for all X,Y ∈ TpM , and at all points p ∈M .

10Note that the terminology used in this section is not universal. Here, we adopt that of [12],
while [17], for instance, uses the closure constraint, rather than the non-degeneracy one, to define
pre-symplectic structures.

11If J is an almost complex structure, then M is an almost Hermitian manifold.
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2.4. Kähler and Calabi-Yau geometries

In a complex basis12 {zµ}, a Hermitian metric only has mixed components, i.e.
the purely holomorphic gµν or antiholomorphic gµν components vanish, while gµν
and gµν in general do not [8]. For instance, on a manifold with U(n) holonomy, the
fundamental vector of SO(2n) decomposes into the modules n⊕n of U(n), and the
fact that gµν = gµν = 0 reflects the absence of U(n) singlets from n⊗ n and n⊗ n

for n > 2 [18].

Note that the action of J on X returns a vector that is orthogonal to X with
respect to the Hermitian metric:

gp(JpX,X) = gp(J
2
pX, JpX) = −gp(X, JpX),

from which gp(JpX,X) = 0 follows.

Furthermore, we note that any complex manifold admits a Hermitian metric –
indeed, the above definition should be interpreted as a constraint on the metric,
rather than on the manifold itself [19]. Given a general Riemannian metric h, a
Hermitian metric can always be built via

gp(X,Y ) =
1

2
(hp(X,Y ) + hp(JpX, JpY )).

In components, eq. (2.12) implies

gijJ
i
kJ

j
ℓ = gkℓ. (2.13)

It follows that
ωij ≡ gikJ

k
j (2.14)

are the components of a pre-symplectic 2-form, referred to as the Kähler form [8];

12If {
∂

∂xi
,
∂

∂yi

}
spans TPM , then {

∂

∂zi
=

1

2

(
∂

∂xi
− i ∂

∂yi

)
,
∂

∂zi
=

1

2

(
∂

∂xi
+ i

∂

∂yi

)}
is a basis for TPM ⊗ C, and similarly for T ∗

PM ⊗ C [8].
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Chapter 2. Complex differential geometry

to see this, we contract eq. (2.13) with J ℓ
m to find

ωkm = J j
ℓJ

ℓ
mωjk = −ωmk,

where we used J j
ℓJ

ℓ
m = −δjm. The Hermiticity condition in eq. (2.13) can thus be

understood as a compatibility condition between g and J to define a 2-form ω.
We can also provide a coordinate-free definition of ω as

ω(X,Y ) = g(X, JY ), (2.15)

from which antisymmetry and invariance under J follow trivially.
Note that any two of {g, ω, J} determine the third – for instance, substituting

eq. (2.14) into eq. (2.13), we find

gij = −ωikJ
k
j, (2.16)

with the compatibility condition between ω and J being

ωjkJ
j
ℓJ

k
i = ωℓi,

which may be found by substituting for gij in eq. (2.13) and contracting with Jk
i.

In a complex basis, we may write the natural two-form as

ω = −igµνdzµ ∧ dzν̄ , (2.17)

since ωµν = gµλJ
λ
ν = −igµν , where Jµ

ν = −iδµν . We see that the 2-form ω is in fact
a (1,1)-form. We can also check it is real:

ω = igµνdz̄
µ ∧ dzν = −igνµdzν ∧ dzµ = ω,

where we used gµν = gµν = gνµ and the antisymmetry of the wedge product.
We can rephrase the definition above into the language of G-structures.

Definition. A Hermitian structure on (the frame bundle of) an oriented
smooth manifold is a Riemannian structure (given by the metric g) together with a
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2.4. Kähler and Calabi-Yau geometries

complex structure (given by J), such that ω in eq. (2.15) is a non-degenerate 2-form.

The fact that a Hermitian structure is defined by a pre-symplectic structure and
a complex one implies that it is a Sp(d;R) ∩GL(d/2;C) = U(d/2) structure.

We conclude by commenting that, for Hermitian geometries, it is useful to con-
sider the (unique) metric-compatible Hermitian connection ∇̃ with connection coef-
ficients

Γµ
ρσ = gνµgσν,ρ, (2.18)

for which the complex structure is parallel [8],

∇̃J = 0.

Definition. A Hermitian manifold is Kähler if its Kähler form satisfies the
Kähler condition

dω = 0,

i.e. ω is a symplectic form.

We see that Kähler geometries lie at the intersection between complex and sym-
plectic ones. We find,

(∇Zω) (X,Y ) = ∇Z [ω(X,Y )]− ω (∇ZX,Y )− Ω (X,∇ZY )

= ∇Z [g(JX, Y )]− g (J∇ZX,Y )− g (JX,∇ZY )

= (∇Zg) (JX, Y ) + g (∇ZJX, Y )− g (J∇ZX,Y )

= g (∇ZJX − J∇ZX,Y ) = g ((∇ZJ)X,Y ) ,

where ∇ω is the form with components ∇iωjk, and ∇ is the Levi-Civita connection,
so that ∇Zg = 0 and ∇ω = dω. The closure of ω then translates into ∇J = 0,
and vice versa – on a Kähler manifold, the Hermitian and Christoffel connections
coincide [19].

The closure of ω allows for the following definition.

25



Chapter 2. Complex differential geometry

Definition. The Kähler class is the cohomology class [ω] of the Kähler form
ω.

Using the split in eq. (2.9), the Kähler condition becomes

∂ω = ∂ω = 0,

and so locally we have that
ω = ∂ω = ∂α,

for some 1-forms α and ω; therefore,

ω = −i∂∂K

for some 0-form K, referred to as the Kähler potential [18]. From eq. (2.17), we then
have that

gαβ = ∂α∂β K,

so that the Kähler potential determines the geometry. This implies that, in a patch
overlap U(i) ∩ U(j), the “gauge transformation”

K(i)(z, z) = K(i)(z, z) + f(i)(z) + f (i)(z)

for a holomorphic functions f , leaves the geometry unchanged.

It can be shown that the only non-vanishing components of the connection are

Γ ρ
µν = gρσ∂µgνσ,

and those related by conjugation. The affine connection given by the components
above implies covariant constancy of the complex structure J . Its stabiliser within
SO(d) is U(d/2), so that metrics with U(d) holonomy are Kähler metrics [18].

It also follows that the curvature tensor has non-zero components Rµνρσ, such
that

Rµ
νρσ = gµµRµνρσ = Γ µ

νσ ,ρ .
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2.4. Kähler and Calabi-Yau geometries

It follows that the Ricci tensor is Hermitian (Rαβ = Rαβ = 0), with components

Rµν = −Γ σ
µσ ,ν = −∂µ∂ν log det gγδ.

From this, we can define a Ricci form

R = −iRαβdz
α ∧ dzβ

so that
R = i∂∂ log det gγδ. (2.19)

Since ∂∂ = −d(∂ − ∂)/2, it follows that R is closed, dR = 0. We refer to
the cohomology class c1(M) = [R/2π] ∈ H2(M ;R) as the first Chern class of the
manifold [8].

Definition. A Calabi-Yau manifold is a compact Kähler manifold with van-
ishing first Chern class,

c1(M) = 0.

Calabi famously conjectured that, for a compact Kähler manifold and given a
Kähler class [ω], there exists a unique Kähler metric whose corresponding Kähler
form ω̃ lies in [ω], and such that ω̃’s Ricci form belongs in the manifold’s first Chern
class. Since the vanishing of the Ricci form is a restatement of Ricci flatness, it
follows that Calabi-Yau manifolds, for which the first Chern class vanishes, admit
a unique Ricci-flat metric for each Kähler class. The proof of the Calabi conjecture
was eventually completed by Yau in [20].

Looking at eq. (2.19), the condition of Ricci flatness, R = 0, can be restated as

log det gγδ = f + f. (2.20)

We note that, under a holomorphic coordinate transformation z → z′(z),

gαβ → g′
αβ

= gγδ
∂zγ

∂z′α
∂zδ

∂z′β
,
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Chapter 2. Complex differential geometry

so that
log det g′

γδ
= log det gγδ + log det ∂zδ

∂z′γ
+ log det ∂zδ

∂z′γ
,

where the final two terms on the right-hand side are holomorphic and antiholo-
morphic, respectively, and can be used to cancel the f and f terms in eq. (2.20).
Assuming that such a transformation has been performed, so that we can drop f

and f , we have
log det gγδ = 0,

and so
det
(

∂2K
∂zα∂zβ

)
= 1,

which is known as the Monge-Ampère equation.
On a d-dimensional compact Kähler manifold, the vanishing of the first Chern

class is equivalent to the existence of a globally defined, nowhere-vanishing holo-
morphic d/2-form Ω [19]. That is, a form such that

Ω ∧ Ω = vol,

and that is decomposable,

Ω =
F

(d/2)!
εα1...αd/2

dzα1 ∧ · · · ∧ dzαd/2

for some holomorphic function F . Combining these last two results, we find that

FF =
√

det gγδ.

Taking the logarithm of this recovers an equation of the same form as eq. (2.20);
we may then transform to a coordinate system in which F = 1 and find a Monge-
Ampère equation, so that R = 0 and therefore c1(M) = 0.

We see that a Calabi-Yau manifold naturally comes with the real Kähler 2-form ω

and a complex, non-degenerate and decomposable d/2-form Ω that are compatible
with each other – in the sense that ω ∧ Ω = 0, and that the associated metric13

13In 6 dimensions, a real 3-form ρ satisfying certain stability conditions leads to both an almost
complex structure, via

J i
p = ±H(ρ)−1εijkℓmnρpjkρℓmn,
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2.4. Kähler and Calabi-Yau geometries

is positive definite. The former defines an Sp(d) structure, while the latter an
SL(d;C) one. The structure group of Calabi-Yau manifolds therefore corresponds
to the intersection SU(d/2).

The Hodge diamond (see eq. (2.11)) for Calabi-Yau manifolds is particularly
simple. First of all, we notice that on a Kähler manifold, the closure of ω under
the de Rham operator allows us to decompose the de Rham cohomology groups Hn

d

into the Dolbeault ones Hp,q

∂
, as in eq. (2.10). The presence of a metric, and its

associated Hodge ?, leads to the isomorphisms

Hp,q

∂
' H

d/2−p,d/2−q

∂
.

Furthermore, the presence of a closed Ω engenders the additional isomorphisms

H0,q

∂
' H

d/2,q

∂
and Hp,0

∂
' H

p,d/2

∂
.

The considerations above lead to the following Hodge diamond for a six-dimensional
Calabi-Yau manifold:

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

,

which is entirely parametrised by h1,1 and h2,1 [19].
When introducing effective field theories, we will employ bases

{ra}, {r̃a}, and {αK , α̃
K} (2.21)

for H1,1

∂
, H2,2

∂
, and H3

d , respectively, where αK and α̃K are real forms. We can
choose these in such a way that they entertain the following “orthogonality” relations

and a complex, decomposable 3-form Ω with

Re(Ω) = ρ, Im(Ω) = J i
j(ıi ∧ dxj − dxj ∧ ıi)ρ/6,

where H(ρ) is the Hitchin function; we can then form a metric via eq. (2.16) [12,21].
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Chapter 2. Complex differential geometry

[22, 23], ∫
ra ∧ r̃b = δba

and ∫
αK ∧ α̃J = δJK .

Note that a basis for H0,0

∂
⊕H1,1

∂
is given simply by {r0 ≡ 1, ra}, while {vol, r̃a} is

a basis for H3,3

∂
⊕H2,2.

2.5 Torsion classes for SU(3) structures
Consider a G-invariant form η. In general, the torsion tensor T takes values in

Λ1T ∗ ⊗ Λ2T ∗, where Λ2T ∗ ' so(d) = g⊕ g⊥,

g⊥ being the orthogonal complement of g in so(d). We may then write the torsion
tensor’s components as T p

mn , where the index p labels Λ1T ∗, while m and n span
Λ2T ∗.

Consider now a connection ∇′ for which ∇′η = 0. Given the Levi-Civita connec-
tion ∇, we can drop g when acting on G-invariant forms η, as in ∇η = (∇−∇′)η.
This is in correspondence with what is referred to as the intrinsic torsion T0; it has
components in Λ1T ∗ ⊗ g⊥ [9]. The intrinsic torsion provides an obstruction to the
integrability of the G-structure, since a compatible connection is torsion-free if and
only if the G-structure has no intrinsic torsion [11].

We now specialise to the case of G = SU(3). This will turn out to be of physical
relevance later. Observing the decomposition of ∇η into SU(3)-modules allows us
to distinguish between different structures, as we will now see.

For the case of SU(3), and noting the decompositions in eq. (4.43), the space of
intrinsic torsions decomposes into SU(3) modules as [23]

(3⊕ 3̄)⊗ (1⊕ 3⊕ 3̄) = (1⊕ 1)⊕ (8⊕ 8)⊕ (6⊕ 6̄)⊕ 2(3⊕ 3̄).

We can therefore identify 5 tensors, the so-called torsion classes: a complex scalar

W1 ∈ 1⊕ 1,
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2.5. Torsion classes for SU(3) structures

a complex primitive14 (1,1)-form

W2 ∈ 8⊕ 8,

a real primitive (2, 1) + (1, 2) form

W3 ∈ 6⊕ 6̄,

a real one-form W4, and a complex (1, 0)-form W5.

On an almost complex manifold, the exterior derivative of a (p, q)-form produces
a (p + 2, q − 1)-form, a (p + 1, q)-form, a (p, q + 1)-form, and a (p − 1, q + 2)-
form, with the first and last terms not appearing in the case of the manifold being
complex. Therefore, given the (1, 1) Kähler form ω, it follows that dω is made up of
a (3, 0)-form, a (2, 1)-form, a (1, 2)-form, and a (0, 3)-form. The (3, 0) + (0, 3) part
transforms in

1⊕ 1,

while the (2, 1)-form transforms in

6⊕ 3̄,

so that the (2, 1) + (1, 2) part in total transforms in

(6⊕ 6̄)⊕ 2(3⊕ 3̄).

We conclude that dω must contain the torsion classes W1, W3, and W4. A more
careful analysis shows that

dω = −3

2
Im(W1Ω) +W4 ∧ ω +W3, (2.22)

with the primitivity condition taking the form [12]

W3 ∧ ω = 0.

14By primitive we mean that it satisfies W2ijJ
ij = 0.
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Vanishing torsion classes Geometry
W1 W2 W3 W4 W5

complex
symplectic

special Hermitian
nearly Kähler
almost Kähler

Kähler
Calabi-Yau

Table 2.1: Various geometries (final column) in terms of their defining vanishing
classes, from W1 (leftmost column) to W5. Coloured [uncoloured] cells correspond
to [non-]vanishing classes [23].

Similarly, it can be shown that, for the complex (3, 0)-form Ω,

dΩ =W1ω ∧ ω +W2 ∧ ω +W5 ∧ Ω, (2.23)

with W2 primitive in the sense that

W2 ∧ ω ∧ ω = 0.

We can now provide a useful classification of various geometries in terms of their
vanishing torsion classes. For instance, on a complex manifold, acting with d on a
(p, q)-form does not spawn (p+2, q−1)- and (p−1, q+2)-forms, and so, by looking
at eqs. (2.22) and (2.23), we conclude that15

W1 =W2 = 0.

Similarly, on a symplectic manifold dω = 0, and so from eq. (2.22) we expect

W1 =W3 =W4 = 0.

As mentioned, a Kähler manifold is both symplectic and complex, and so is charac-

15It can be shown that W1 = W2 = 0 is also a sufficient condition for the manifold to be
complex [23].
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terised by
W1 =W2 =W3 =W4 = 0.

Finally, on a Calabi-Yau both ω and Ω are closed, which implies

W1 =W2 =W3 =W4 =W5 = 0.

Table 2.1 summarises the classifications argued above, and also provides some ad-
ditional examples.

We will later see that introducing fluxes in the context of string compactifications
generates non-vanishing intrinsic torsion, with profound consequences in terms of
the geometry of the internal space.
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Chapter 3

Generalised geometry

The framework of generalised geometry is built on the replacement of the tangent
bundle T with T ⊕ T ∗, which sees the tangent and cotangent bundles take part on
an equal footing. This generalisation endows us with a framework within which
the group SO(d, d) has a natural action. This formalism elegantly covariantises the
symmetries of string theory, as we shall see in the next chapters.

3.1 Geometry of T ⊕ T ∗

A section X of T ⊕T ∗ consists of a vector field X ∈ Γ(T ) and a one-form ξ ∈ Γ(T ∗).
We may write such a “generalised vector field” as the formal sum

X = X + ξ ∈ Γ(T ⊕ T ∗),

or equivalently, using a natural matrix notation,

X =

(
X

ξ

)
∈ Γ(T ⊕ T ∗).

If the base manifold is d-dimensional, then the fibre of T⊕T ∗ is a 2d-dimensional
vector space. Furthermore, there exists a natural inner product between generalised
vectors [4],

〈X,Y〉 = 1

2
(ıXυ + ıY ξ) = XTIY,

where X = X + ξ and Y = Y + υ are sections of T ⊕ T ∗, and the natural pairing
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metric is

I =
1

2

(
0 1

1 0

)
. (3.1)

This canonical fibre metric is maximally indefinite with split signature (d, d).
Therefore, it defines an O(d, d) structure – the subgroup under whose action the
canonical metric is preserved [4]. Generalised vectors X transform under the vector
representation of O(d, d), i.e. X→ gX, where g satisfies gTIg = I.

T ⊕ T ∗ is associated to a GL(d;R) principal bundle: its transition functions are
in GL(d;R). This reflects the transition functions of the base manifold M being
diffeomorphisms. Nevertheless, the existence of the canonical bilinear form above,
as well as that of a canonical orientation, suggests that we regard T ⊕ T ∗ as having
structure group SO(d, d) [4, 6]. We will take this view throughout the following
discussion, and return to this subtlety in section 3.9.

The Lie algebra so(d, d) of the structure group SO(d, d) is composed of elements
of the form [6] (

A β

B −AT

)
,

where A ∈ End(T ), B is a map T → T ∗, and β is a map T ∗ → T . Being skew, B
and β are identified with a 2-form and a bivector, respectively, while A is a d × d
matrix16. In particular, A generates matrices of the form(

M 0

0 M−T

)
, (3.2)

where M ∈ GL(d;R). We see that this embeds the action of GL(d;R) into the
structure group of T ⊕ T ∗. On the other hand, the 2-form B generates elements

eB =

(
1 0

B 1

)
(3.3)

16Indeed, this coincides with the decomposition

so(T ⊕ T ∗) = Λ2(T ⊕ T ∗)

= End(T )⊕ Λ2T ∗ ⊕ Λ2T.
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which act on generalised vectors to give the so-called “B-transformations”

eB : X + ξ 7→ eB(X + ξ) = X + (ξ + ıXB). (3.4)

Similarly, the bivector β generates “β-transformations”, which send

X + ξ → (X + ıξβ) + ξ.

In the following, we will mostly be interested in the geometric subgroup17 of
SO(d, d),

GDiff ≡ GL(d;R)⋉ Ω2
cl, (3.5)

generated by A and closed B above, where Ω2
cl is the space of closed 2-forms [6].

We will occasionally refer to this as the generalised diffeomorphism group [12], as it
will turn out to be the gauge symmetry group of the Neveu-Schwarz-Neveu-Schwarz
sector of superstring theory.

3.2 Generalised metrics
We can further introduce a positive-definite, generalised (Riemannian) metric G on
T ⊕ T ∗ satisfying18 G2 = 1, meaning it is compatible with the natural metric I [4].
Its introduction therefore partitions the generalised tangent bundle into subbundles
C± ⊂ T ⊕ T ∗, corresponding respectively to the ±1 eigenspaces of G [24]. Con-
versely, the specification of a subbundle C+ on which I is positive-definite – and so
automatically also the specification of its complement C−, which is orthogonal to
it with respect to the natural metric, in the sense that I(C+, C−) = 0 – defines a
positive-definite metric via

G(X,Y) = I(X,Y)|C+
− I(X,Y)|C−

(3.6)

for generalised vectors X and Y [4].
Reformulating the specification of a generalised metric into the definition of

subbundles C± on which I is ±-definite makes it evident that the structure group is
17A 2-form has d(d− 1)/2 components in d dimensions.
18This makes G an almost local product structure [6].
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reduced from O(d, d) to its maximal compact subgroup19, O(d)× O(d). The latter
is indeed the (largest) subgroup which separately preserves the restrictions of I to
C±.

Note that it is common in the more physics-oriented literature to define the
generalised metric as the positive-definite metric H on T ⊕ T ∗ such that

I−1HI−1 = H−1. (3.7)

These two alternative definitions are related by20 G = I−1H, so that the compati-
bility condition in eq. (3.7) indeed corresponds to G2 = 1.

3.3 Dorfman and Courant brackets

Recall that the integrability of an (ordinary) almost complex structure is defined
with respect to the Lie bracket, which acts on the space of vector fields. In order to
carry the notion of integrability through to the realm of generalised geometry, we
must introduce new brackets on such spaces of generalised vector fields.

Given sections X = X + ξ and Y = Y + υ of the generalised tangent bundle,
where X,Y ∈ Γ(T ) and ξ, υ ∈ Γ(T ∗), we can define a generalised Lie derivative as
follows.

19Taking the coset of a group by its maximal compact subgroup has an important physical
implication. Consider two elements X = Xata and Y = Y ata of the Lie algebra g. There exists a
natural pairing, the Cartan Killing metric, on g with components gab = tr tatb, so that

g(X,Y ) = tr(XY )

= XaY Btr(tatb)
= XaY bgab.

For a non-compact G, this metric will be indefinite. However, reducing to the coset G/H, where H
is the maximal compact subgroup of G, discards the directions in the Lie algebra associated with
negative eigenvalues of gab, so that the metric induced on coset space by the Cartan Killing metric
is positive definite. If G/H appears as the target space of a σ-model, the positive-definiteness of
gab ensures that kinetic terms of the form gabdx

adxb have the right sign.
20In index notation, this relation takes the form HKJ = IKIGIJ , where the positioning of the

two indices on G follows from G being an automorphism of the generalised tangent bundle.
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Definition. The Dorfman derivative is the map

L : Γ(T ⊕ T ∗)× Γ(T ⊕ T ∗) → Γ(T ⊕ T ∗)

X,Y 7→ LXY ≡ LXY + LXυ − ıY dξ, (3.8)

where L denotes the usual Lie derivative.

We can define the action of the Dorfman derivative onto a function f via an
anchor map a : T ⊕ T ∗ → T . This in turn allows us to extend the action of the
Dorfman derivative onto any tensor bundle.

The Dorfman derivative satisfies

LX(LYZ) = LLXYZ+ LY(LXZ) (3.9)
and LX(fY) = a(X)(f)Y+ fLXY,

which makes (T ⊕ T ∗, I, a,L) a Leibniz algebroid.
With this extension to general tensor bundles, the Dorfman derivative on the

generalised metric H defined in section 3.2 can be written in a coordinate free
fashion as21

(LXH)(Y,Z) = LX(H(Y,Z))−H(LXY,Z)−H(Y,LXZ). (3.10)

We note that we may twist the Dorfman derivative by a closed 3-form H to give

LH
XY ≡ LXY+ ıY ıXH. (3.11)

The significance of this and other twisted expressions in this section will become
clear in section 3.9.

The Dorfman bracket is not antisymmetric; its symmetric part, however, is exact
[25]:

LXY+ LYX = 2dI(X,Y).

It will prove useful to define the antisymmetrisation of the Dorfman bracket.

21This is completely analogous to (LXg)(Y, Z) = X(g(Y, Z)) − g(LXY, Z) − g(Y,LXZ) for a
metric g and vector fields X, Y , and Z.
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Definition. The Courant bracket is given by

JX,YK ≡ [X,Y ] + LXυ − LY ξ −
1

2
d(ıXυ − ıY ξ) (3.12)

where [ , ] is the usual Lie bracket.

Note that the Courant bracket does not satisfy the Jacobi identity; its failure to
do so is measured by the Jacobiator

Jac(X,Y,Z) = JJX,YK,ZK + cyclic.

In particular, it can be shown (see for instance [17]) that

Jac(X,Y,Z) = dN(X,Y,Z),

where the Nijenhuis tensor on generalised vector fields is [26]

N(X,Y,Z) = 〈JX,YK,Z〉+ cyclic.

As anticipated, the Courant bracket is related to the Dorfman derivative by

JX,YK = 1

2
(LXY− LYX).

The tuple (T ⊕ T ∗, I, a, J , K) consisting of a vector bundle endowed with a non-
degenerate inner product, a skew-symmetric bracket, and a smooth bundle map,
defines a Courant algebroid [4].

We can also introduce the Courant bracket as a derived bracket22 via the operator
expression [13] JX,YK· ≡ 1

2
([{X·, d},Y·]− [{Y·, d},X·]) , (3.13)

where X· refers to the natural action of X on forms, which we will define in eq. (3.22).

22This is also in analogy with the case of the Lie bracket, which can be defined as a derived
bracket via

[{ıX , d}, ıY ] = ı[X,Y ].

This formulation has the advantage that it generalises to multivectors, with the bracket on the
right-hand side being the Schouten-Nijenhuis bracket [27].
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We briefly pause to mention that these brackets result from the specialisation
of more general structures. Formally (see for instance [27]), one can construct a
derived bracket [ , ]d such that

[a, b]d = [[a, d], b],

for a, b ∈ End(Ω•(M)) in the algebra of graded endomorphisms of the space Ω•(M)

of differential forms, where [ , ] is the graded commutator and d the usual de Rham
differential. A derived bracket built in this way can be shown to be a Loday bracket,
while its skew-symmetrisation, often labelled [ , ]−d in the mathematical literature,
is known as the Vinogradov bracket. Restricting [ , ]d to the direct sum of the
spaces of vector fields and 1-forms recovers the explicit form of the Dorfman bracket
in eq. (3.8), while restricting its skew-symmetrisation to the same space yields the
Courant bracket. Here, we adopt the terminology whereby “derived” is used for
both the genuine derived bracket, and its skew-symmetrisation [28].

For later use, we also introduce an H-twisted Courant bracket,

JX,YKH ≡ JX,YK + ıXıYH, (3.14)

where H is again a closed three-form, which we will later take to be the curvature
of B, so that locally H = dB. Unsurprisingly, this twisted Courant bracket is a
derived bracket [13]

JX,YKH · ≡ 1

2
([{X·, dH},Y·]− [{Y·, dH},X·]) , (3.15)
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with respect to the twisted differential23

dH ≡ d−H∧, (3.16)

which we note can be built out of the untwisted differential by conjugating with the
exponentiated SO(d, d)-adjoint elements corresponding to B-shifts [15, 29],

dH = eBde−B.

Indeed, eq. (3.13) maps to eq. (3.15) under the twist d→ dH .
Under a B-transformation,

JeBX, eBYKH−dB = eBJX,YKH , (3.17)

so that, using terminology that will be explained in greater detail in section 3.9,
H3(M) parametrises inequivalent twists.

One may wonder why discussions on generalised geometry often summon two
different brackets, while in the context of ordinary differential geometry, a single
bracket – the Lie bracket – suffices. To answer this, we should recall the two roles
played by the Lie bracket in ordinary geometry. Firstly, the Lie bracket appears
in the Lie algebra of diffeomorphisms: two vector fields (to which we associate two
flows) commute to give a third vector field given by their Lie bracket. Secondly, the
Lie derivative yields the infinitesimal transformation of a tensor under a diffeomor-
phism.

Upon generalising these concepts to generalised geometry, we are met with the
need to define two different brackets. The Courant bracket appears in the gauge
algebra of generalised diffeomorphisms, as we will see for instance in eq. (4.24). As

23Note that we require that H be closed under d for dH to square to zero and therefore be a
suitable differential; indeed, as an operator expression,

d2H =
1

2
{dH , dH}

=
1

2
{d, d}+ {d,H∧}+ 1

2
{H∧,H∧}

= dH∧,

where we used {d, d} = 0 and {H∧,H∧} = 0.
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3.3. Dorfman and Courant brackets

expected, this bracket is antisymmetric. On the other hand, the Dorfman bracket
takes up the second role of the usual Lie derivative; for instance, in eq. (4.25), we
will see that it is the Dorfman derivative that appears in the definition of what we
may call a “generalised isometry”.

Returning to our original rationale for introducing these generalisations of the Lie
bracket, we will see that the Courant bracket, as well as its twisted version, provide
an appropriate notion of integrability for algebraic structures built on T ⊕ T ∗.

We now turn our attention to studying the symmetries of the Courant bracket.
We define such a symmetry to be a bundle map F such that [17]

F (JX,YK) = JF (X), F (Y)K ∀ X,Y ∈ Γ(T ⊕ T ∗) (3.18)

and such that the natural pairing is preserved. This bundle automorphism can be
represented by the diagram

T ⊕ T ∗ F−→ T ⊕ T ∗

π ↓ ↓ π

M
f−→ M.

The diffeomorphisms of M , denoted Diff(M) and given by the bundle map

F = f∗ ⊕ f ∗,

form part of the symmetry group of the Courant bracket. The action of Diff(M) is
realised as that of matrix in eq. (3.2) on (sections of) the generalised tangent bundle.
This is reminiscent of the symmetries of the Lie bracket24.

24Indeed, these can also be represented by a diagram

T
F−→ T

π ↓ ↓ π

M
f−→ M,

with the condition F ([X,Y ]) = [F (X), F (Y )] defining a symmetry of the Lie bracket, for vector
fields X and Y . Here, the diffeomorphisms are given by F = f∗, and constitute the only symmetry
of the Lie bracket [17].
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However, there is now an additional symmetry: theB-transformation in eqs. (3.3)
and (3.4), with B now a closed 2-form. Indeed, under such a transformation, the
resulting change in the Courant bracket is

JX + ξ, Y + υK→ eB(JX + ξ, Y + υK) = JX + ξ, Y + υK + ı[X,Y ]B

= JX + ξ, Y + υK +
+ (dıXıY + ıXdıY − ıY dıX − ıY ıXd)B,

where we used ı[X,Y ] = [LX , ıY ], followed by Cartan’s magic formula, LX = dıX+ıXd.
The above result should be compared with the Courant bracket of the B-transformed
generalised vectors,

JeB(X + ξ), eB(Y + υ)K = JX + ξ + ıXB, Y + υ + ıYBK
= JX + ξ, Y + υK + LXıYB − LY ıXB −

1

2
d(ıXıYB − ıY ıXB)

= JX + ξ, Y + υK + (dıXıY + ıXdıY − ıY dıX)B,

where again we used Cartan’s magic formula, as well as the anticommutativity of
the interior product. We thus see that

eB(JX + ξ, Y + υK) = JeB(X + ξ), eB(Y + υ)K + ıXıY dB,

where dB = 0 since B is closed – implying that the B-transform in eq. (3.4) is a
symmetry of the Courant bracket. We see, then, that the automorphism group of
the Courant algebroid [30] is precisely the geometric subgroup in eq. (3.5). Locally,
then,

GDiff ∼ GL(d;R)⋉ Ω2
ex,

where Ω2
ex is the space of exact two-forms. Note that these are precisely the trans-

formations generated by the Dorfman bracket (as evident from eq. (3.8)); this is
equivalent to the property (eq. (3.9)) that the Dorfman derivative acts as a deriva-
tion on itself.
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3.4 Generalised (almost) complex structures
We proceed on our journey of generalising the algebraic structures commonly en-
countered in complex differential geometry with the following definition.

Definition. A generalised almost complex structure J is an endomor-
phism

J : T ⊕ T ∗ → T ⊕ T ∗

which satisfies J 2 = −id and preserves the natural pairing metric, i.e.

I(JX,JY) = I(X,Y) ∀ X,Y ∈ Γ(T ⊕ T ∗). (3.19)

This last condition can be equivalently written as J TI = −IJ , and so amounts to
the statement that the canonical metric I is Hermitian with respect to J [12].

In analogy with eq. (2.3), we introduce projectors

Π± =
1

2
(1± iJ ),

which resolve the (complexified) generalised tangent bundle into

(T ⊕ T ∗)⊗ C = L⊕ L̄,

where L = Π+L and L̄ = Π−L̄ are the ±i-eigenspaces of J .
The condition that the canonical metric be Hermitian, eq. (3.19), then implies

that the subbundles L, L̄ are (maximally) isotropic [17], since

〈Π±X,Π±Y〉 = XTΠT
±IΠ±Y

=
1

4
XT (I ± iJ TI ± iIJ − J TIJ )Y

= 0.

It can be shown that, in general, a generalised almost complex structure takes
the form

J =

(
A P

L −AT

)
,
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where A is a (1, 1)-tensor, P a bivector, and L and 2-form [17].

In analogy with that of an ordinary complex structure, the integrability of a gen-
eralised almost complex structure coincides with the involutility of its eigenbundles
L, L̄ under the Courant bracket [31]:

Π∓JΠ±X,Π±YK = 0 ∀ X,Y ∈ Γ(T ⊕ T ∗). (3.20)

Again, this condition can be recast as the vanishing of the Nijenhuis tensor.

The specification of a generalised almost complex structure concurs with a reduc-
tion of the structure group from O(d, d) down to U(d/2, d/2) = O(d, d)∩GL(d,C) [4].

The formalism above elegantly encompasses complex and symplectic structures;
specifically, these correspond to the cases

JJ =

(
−J 0

0 JT

)
and Jω =

(
0 ω−1

−ω 0

)
, (3.21)

respectively, where J is a complex structure and ω a symplectic one. The L eigen-
bundles in each case are T 0,1⊕T ∗1,0 and {X− iıXω, V ∈ Γ(T )⊗C}, with associated
integrability conditions [T 1,0, T 1,0] ⊆ T 1,0 (i.e. J is itself integrable) and dω = 0 [4].
We thus see that generalised (almost) complex structures attractively interpolate
between complex structures and symplectic ones25.

Finally, we note that we can twist the notion of integrability into that of H-
integrability26; that is, a generalised almost complex structure J whose L eigenbun-
dle satisfies the involutility condition in eq. (3.20) with the usual Courant bracketJ , K replaced by its H-twisted version, J , KH , defined in eq. (3.14). For instance,
JJ in eq. (3.21) is H-integrable if H is a (2, 1) ⊕ (1, 2)-form (and if J is integrable
too) [12].

25In fact, it can be shown that, on a manifold with a complex structure, we can always take
local coordinates that are part complex, and part symplectic – in other words, the neighbourhood
around any (regular) point corresponds to the product of open sets in the complex space and in
the symplectic space. This result is known as the generalised Darboux theorem [12].

26In this case, the Darboux theorem (see footnote 25) states that regular neigbourhoods cor-
respond to the B-transform (with B not closed) of the product of complex and symplectic open
sets [4].
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3.5 Generalised Kähler geometries

We now present an important example of a generalised geometry. We begin by
recalling two results presented in the previous sections: equipping a generalised
tangent bundle with a generalised metric G reduces the structure group from O(d, d)

to O(d) × O(d), while equipping it with a generalised complex structure J breaks
O(d, d) down to U(d/2, d/2).

Consider now a generalised complex structure J1. Supplying the generalised
tangent bundle with a generalised metric G, on top of and compatible27 with J1,
provokes a further collapse of the structure group from U(d/2, d/2) to its maxi-
mal compact subgroup, U(d/2) × U(d/2), to which U(d/2, d/2) is homotopic [4].
Together, G and J1 are said to define a generalised Hermitian structure [24].

In fact, given G and J1, we automatically have a second generalised almost
complex structure J2 = GJ1. The requirement that J 2

2 = −1 is evidently met by
G2 = 1, J 2

1 = −1, and the compatibility condition GJ1 = J1G. Therefore, we see
that only two of (G,J1,J2) are independent. In particular, the requirement that
G2 = 1 translates into the requirement that J1 and J2 commute.

Imposing that both J1 and J2 be integrable yields a generalisation of the Kähler
condition.

Definition. A generalised Kähler structure is a pair of commuting gen-
eralised complex structures (J1,J2), such that G = −J1J2 is positive-definite [4].

A twisted generalised Kähler structure is one whose generalised complex struc-
tures are H-integrable.

3.6 Polyforms and generalised spinors

We take the lift from an O(d, d) structure to Spin(d, d). Note that – unlike the
lift from O(d) to Spin(d), which we recall had topological conditions attached to it,

27By compatibility we mean that the generalised complex structure and the generalised metric
commute with each other. In other words, we take the C+ eigenbundle of G to be stable under J1.
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Chapter 3. Generalised geometry

namely the manifold being a spin manifold – this new lift carries no conditions with
it28. We denote the resulting spin bundle as S; we will now argue that this can be
associated with Λ•T ∗, the bundle of polyforms φ – formal sums of differential forms
of different degree. This relies on the existence of a natural action of the generalised
vector X = X + ξ ∈ Γ(T ⊕ T ∗) on polyforms, namely

X · φ = ıXφ+ ξ ∧ φ. (3.22)

In particular, if we take a generalised coordinate vector field

X̃ =
∂

∂xn
+ dxm,

made up of a coordinate vector field and a coordinate covector field, for some fixed
indices n and m, its action on a polyform is

X̃ · φ = (Γn + Γm) φ,

where29,30

Γm = dxm ∧ and Γn = ın

satisfy

{Γm,Γn} = 0, {Γm,Γn} = δmn , and {Γm,Γn} = 0,

and so provide a representation of the Clifford(d, d) algebra in terms of forms31 [23].
This can be generalised [6] by defining a map

ΓX : Λ•T ∗ → Λ•T ∗

φ 7→ ΓX(φ) ≡ X · φ
28We are perhaps being too hasty here. It is indeed true that O(d, d) structures can always

be lifted to Spin(d, d) ones in the case of T ⊕ T ∗ – even if the underlying manifold is not a spin
manifold. However, for general bundles, this is only possible if the second Stiefel-Whitney classes
of the subbundles C± of section 3.2 are identical [4, 6]

29Note that Γm and Γn are not related to each other by the raising or lowering of an index via
some metric.

30We use the notation ın ≡ ı∂/∂xn .
31The Clifford(d) algebra for the usual spinors on T , {γm, γn} = 2gmn1, finds a representation

in γm = dxm ∧+gmnın.
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3.6. Polyforms and generalised spinors

and then noting that

{ΓX,ΓY} (φ) = ıXıY φ+ ξ ∧ ıY φ+ ıX(υ ∧ φ) + ξ ∧ υ ∧ φ +

+ ıY ıXφ+ υ ∧ ıXφ+ ıY (ξ ∧ φ) + υ ∧ ξ ∧ φ

= (ıXυ + ıY ξ)φ

= (ξ(Y ) + υ(X))φ

= 2〈X,Y〉φ

= 2I(X,Y)φ,

a Clifford algebra. In the above, we used that interior products anticommute
{ıX , ıY } = 0, as well as the graded Leibniz rule ıX(α∧ β) = ıXα∧ β+(−1)kα∧ ıXβ
for a k-form α, and the notation ıXω = Xµωµ = ω(X) for a one-form ω. This shows
that we can revisit the space Λ•T ∗ of polyforms and regard it as an irreducible mod-
ule for the Clifford algebra bundle Cl(T ⊕T ∗); generalised vectors can be seen as the
gamma matrices associated to the natural pairing metric I [12,24]. This parallelism
between the Clifford algebra and the action of generalised vectors onto polyforms
allows us to translate various geometrical structures into the language of spinors.

We proceed by embedding the Majorana and Weyl conditions on spinors into the
architecture of differential forms. The Majorana condition amounts to the limitation
to polyforms that are real. The Weyl condition, on the other hand, separates the
exterior algebra into even and odd forms. Polyforms made up of either only even or
only odd forms correspond respectively to spinors of positive and negative chirality
[12]. We label the bundles of spinors with positive or negative chirality as S±, and
those of even or odd polyforms as Λ±T ∗.

The above discussion might be suggestive of a relation S± = Λ±T ∗. In fact, a
more careful analysis shows that the action of GL(n;R) ⊂ Spin(n, n) on Λ•T ∗ is [4]

φ 7→
√
|detN | N · φ,

where N · φ is the usual action of GL(n;R) on Λ•T ∗, for N ∈ GL(n;R). Therefore,
we find

S = Λ•T ∗ ⊗
√

det T . (3.23)
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Making a choice of trivialisation32 [32], we have a non-canonical spinor-polyform
isomorphism [6]

S± ' Λ±T ∗.

The Clifford map offers a concrete realisation of the isomorphism between the
positive- and negative-chirality spinor bundles and the space of even and odd poly-
forms [33]. To see how, we write a Clifford(d, d) spinor33 Φ± as a tensor product [15]
of Clifford(d) spinors η1,2,

Φ± ∼ η1+ ⊗ η
2†
± , (3.24)

then use the Fierz identities to write

η1+ ⊗ η
2†
± =

1

8

∑
k

1

k!
η2†± γi1...ikη

1
+γ

ik...i1 ,

and finally employ the Clifford map [13]

α ≡
∑
k

1

k!
C

(k)
i1...ik

dxii ∧ . . . ∧ dxik ←→ /α ≡
∑
k

1

k!
C

(k)
i1...ik

γii...ikαβ , (3.25)

to identify Clifford(d, d) spinors with polyforms. In fact, the slash notation is often
dropped to avoid cluttering.

From now on, motivated by the parallelism described above, we will use the
terms “polyforms” and “(generalised) spinors” interchangeably.

The usual bilinear form on spinors finds its manifestation on the Clifford module
in the ΛdT ∗-valued Mukai pairing between polyforms φ1 and φ2,

(φ1, φ2) ≡ (σ(φ1) ∧ φ2)|top (3.26)

where
σ(φ) = (−1)[n/2]φ, (3.27)

[ ] takes the integer value, and |top projects the top form part. We note that the

32As we will see, this is related to the dilaton.
33The reason for the notation employed here will become apparent in the next chapter.
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above bilinear form on Λ•T ∗ is compatible with the Clifford action,

(X · φ1,X · φ2) = 〈X,X〉(φ1, φ2)

for all generalised vectors X, so that it is invariant under B-transformations [24],

(eBφ1, e
Bφ2) = (φ1, φ2).

We now introduce another facet of the relationship between spinors and geomet-
rical structures. First, let us give the following definitions.

Definition. The null space of a complex spinor φ ∈ (Λ•T ∗M) ⊗ C is the
subbundle34

Lϕ = {X ∈ Γ(T ⊕ T ∗)⊗ C | X · φ = 0} (3.28)

of the complexified generalised tangent bundle consisting of the annihilators X of φ.

We can refine further the above definition.

Definition. A pure spinor35 Φ is a spinor whose annihilator space LΦ is
maximal:

rank(LΦ) =
1

2
rank(T ⊕ T ∗). (3.29)

The algebraic association
LΦ = LJ (3.30)

between the null space of a pure spinor and the +i-eigenbundle LJ of J allows

34Note that this subbundle is isotropic, i.e. I(X,Y) = 0 for any two annihilators X,Y. This
can be seen via

2I(X,Y)ϕ = (XY+ YX) · ϕ = 0,

for X,Y ∈ Lϕ, using the Clifford algebra [4].
35An alternative (and equivalent) definition is that a spinor η is pure if half of the gamma

matrices annihilate it, i.e. if ηT γi1...imη = 0 for m < d/2 [34]. In six dimensions, every Weyl spinor
is pure.
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us to identify generalised almost complex structures with lines36 of pure spinors,
and viceversa. This correspondence is particularly useful, as generalised complex
structures and pure spinors arise most clearly from quite different perspectives –
those of the worldsheet and of the spacetime, respectively [22].

The B-transformation B · φ = B ∧ φ of a polyform φ ∈ Γ(Λ•T ∗) exponentiates
to

φ→ φD ≡ eBφ =

(
1 +B +

1

2
B ∧B + . . .

)
∧ φ,

where, in this context, φ is sometimes referred to as a “naked” spinor, while the
rotated φD is referred to as a “dressed” spinor [4, 15].

3.7 Generalised Calabi-Yau geometries

We now discuss a generalised geometry which will play a fundamental role in the
following discussions on string compactifications.

Definition. A generalised Calabi-Yau structure is a pure spinor Φ that is
closed, i.e. dΦ = 0, and that satisfies37 (Φ, Φ̄) 6= 0 everywhere.

Note that there is no universal consensus on the definition of a generalised Calabi-
Yau structure. To distinguish it from alternative definitions, one of which will
be presented later, the structure defined above is sometimes referred to as a weak
generalised Calabi-Yau [17], or as a generalised Calabi-Yau à la Hitchin [12].

The fact that the canonical bundle K admits a non-vanishing, global closed
section Φ ∈ Γ(K) implies that it is holomorphically trivial [4, 24]. In terms of
the generalised almost complex structure J associated with Φ, the closure of Φ is
equivalent to the integrability of J . In fact,

J integrable ⇔ dΦ = W · Φ, (3.31)

36Complex pure spinors differing only by an overall scale factor share the same annihilator
space, and so correspond to the same generalised almost complex structure. More precisely, then,
the equivalence is between a generalised almost complex structure and a complex line subbundle
K ⊂ (Λ•T ∗)⊗ C, referred to as the canonical line subbundle [4, 24].

37Φ̄ is the complex conjugate of Φ.
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3.7. Generalised Calabi-Yau geometries

for some generalised vector W. The overall factor of Φ does not enter the above
condition, and so in the presence of a globally defined pure spinor, we take W = 0

[12]. The condition above is the generalisation of eq. (2.8) for ordinary complex
structures.

To see how the correspondence in eq. (3.31) arises, we note that, for X,Y ∈ LΦ =

LJ , the action of the Courant bracket in its derived form (eq. (3.13)) becomes

JX,YK · Φ = (XY− YX) · dΦ

= (XY− YX)W · Φ

= 0.

The last equality is trivial if W = 0, but it also holds if W 6= 0, since acting with
one creator W on the Clifford vacuum Φ and then acting with two annihilators X
and Y always yields zero. From the above, then, it follows that JX,YK · Φ = 0 and
so JX,YK ∈ LΦ = LJ : the eigenbundle of J is Courant involutive, and so J is
integrable [13, 35]. This proves the correspondence in eq. (3.31).

We may twist the above statements, and in particular recast the H-twisted
integrability of a generalised almost complex structure into the condition that its
associated pure spinor satisfies dHΦ = W ·Φ. An H-twisted generalised Calabi-Yau
structure is then given by a pure spinor that satisfies (Φ, Φ̄) 6= 0, and that is closed
under dH [15].

We have seen that, on a d-dimensional manifold, a generalised almost complex
structure J entails a reduction of the structure group to U(d/2, d/2) and is associ-
ated to the canonical line bundle K ⊂ (Λ•T ∗) ⊗ C (defined in footnote 36) whose
Clifford annihilator is the LJ eigenbundle of J . The existence of this subbundle
generates the following decomposition of polyforms:

Λ•T ∗ ⊗ C =

d/2⊕
k=−d/2

Uk,

where we identify the top degree component Ud/2 with the canonical line bundle
K, and we define the other subbundles as Uk = Λd/2−kL̄J · K, so that Uk is the
ik-eigenbundle of (the Lie algebra action of) J [24]. A local section of K is a
pure spinor. As we already mentioned, if K is holomorphically trivial, it admits a
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non-vanishing global section Φ such that

(Φ, Φ̄) 6= 0.

This fixes the ambiguity in the overall factor of the pure spinor corresponding
to J ; in this case, then, we observe a further reduction of the structure group
from U(n/2, n/2) to SU(n/2, n/2) [12]. Thus, generalised Calabi-Yau structures are
SU(n/2, n/2) structures. We can see this by noting that

Φ√
|(Φ,Φ)|

is a non-vanishing section of the complexified tangent bundle

S± ⊗ C ' Λ±T ∗ ⊗
√
ΛdT ⊗ C.

Since LΦ ⊂ (T ⊕ T ∗)⊗ C is maximally isotropic, we may equivalently write

S± ⊗ C ' Λ±L∗
Φ ⊗

√
ΛdLΦ ⊗ C,

and since Φ ∈ Γ(
√
ΛdLΦ ⊗ C), then the global trivialisation of ΛdL∗

Φ obtained by
squaring Φ gives a volume form [1]. This finally implies that the structure group is
reduced further from U(n/2, n/2) to SU(n/2, n/2).

There is an alternative definition of a Calabi-Yau structure.

Definition. A generalised Calabi-Yau metric structure is a pair of pure
spinors Φ1,Φ2 ∈ Γ(Λ•T ∗ ⊗ C), such that

dΦ1 = dΦ2 = 0 and (Φ1, Φ̄1) = α(Φ2, Φ̄2) 6= 0,

for non-zero constant α, and such that their associated generalised complex struc-
tures J1 and J2 form a generalised Kähler structure [36].

From our earlier discussion, it follows that an equivalent definition of a gener-
alised Calabi-Yau metric structure is that of a generalised Kähler structure whose

54



3.8. Torsion classes for SU(3)×SU(3) structures

two generalised complex structures each have a holomorphically trivial canonical
bundle [4]. These structures are sometimes referred to as generalised Calabi-Yau
structures à la Gualtieri [12].

Finally, we may once more twist this definition into that of a twisted generalised
Calabi-Yau metric structure by twisting the differential, d→ dH .

3.8 Torsion classes for SU(3)×SU(3) structures

In section 2.5, we reviewed the torsion classes in the case of SU(3) structures. Here,
we will extend this analysis to SU(3)×SU(3) structures, which will play a crucial
role in the discussion of flux compactifications.

It turns out that the same information contained in eqs. (2.22) and (2.23) can
be displayed in the form of the covariant derivative of an invariant spinor η defining
an SU(3) structure [37],

∇mη = iqmγ7η + iqmnγ
nη,

where γ7 = −iεmnpqrsγ
mnpqrs/6!. In other words, (qm, qmn) can be mapped to (W1,

W2,W3,W4,W5), and viceversa. Similarly, for SU(3)×SU(3) structures,

∇mη
i
+ = iqimη

i
+ + iqimnγ

nηi−,

from which we can obtain [38]

dΦ+ = W 10
m γmΦ+ +W 01

m Φ+γ
m +W 30Φ̄− +W 21

mnγ
mΦ̄−γ

n

+W 12
mnγ

mΦ−γ
n +W 03Φ−, (3.32a)

and dΦ− = W 13
m γmΦ− +W 02

m Φ−γ
m +W 33Φ̄+ +W 22

mnγ
mΦ̄+γ

n

+W 11
mnγ

mΦ+γ
n +W 00Φ+. (3.32b)

Positive chirality Spin(6,6) spinors can be decomposed under Spin(6)×Spin(6) as

32+ = (4,4)⊕ (4,4),

and under SU(3) ⊂ Spin(6) we further have 4 = 1 ⊕ 3. This gives a total of 8
SU(3)×SU(3) representations. We can choose the following basis, arranged into a
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diamond:

Φ+

γmΦ+ Φ+γ
n

γmΦ̄− γmΦ+γ
n Φ−γ

m

Φ̄− γmΦ̄−γ
n γmΦ−γ

n Φ−

Φ̄−γ
m γmΦ̄+γ

n γmΦ−

Φ̄+γ
m γmΦ̄+

Φ̄+

(3.33)

where Φ+ corresponds to the (1, 1̄) module of SU(3)×SU(3), γmΦ+ to (3̄, 1̄), Φ+γ
m

to (1,3), and so on38 [33]. This retrospectively justifies the notation for the com-
ponents W ij in eq. (3.32) – the superscripts label the position within the diamond
above.

3.9 Twisting with a gerbe

Finally, we address an issue which we mentioned in multiple instances – that of
twisting. Physically, this discussion will turn out to be relevant in the case of vacua
admitting Neveu-Schwarz fluxes – or, in the present language, in the case of non-
closed B – and in fact can be generalised to account for Ramond-Ramond fluxes as
well.

If H is non-trivial, then dressed spinors39 are no longer global sections of (the
spinor bundle over) T ⊕ T ∗ [22]: B is only defined locally40, and we must allow for
gauge transformations

B(α) −B(β) = dλ(αβ)

on twofold patch intersections Uα ∩ Uβ, where λ(αβ) = −λ(βα) is a one form. This is
accompanied by the consistency condition that λ(αβ) + λ(βγ) + λ(γα) be closed, and
therefore exact, on the threefold overlap Uα ∩ Uβ ∩ Uγ. If the flux is quantised, i.e.

38By 1̄ we mean the singlet appearing in the decomposition of 4̄, as opposed to that of 4.
39More precisely, spinors transformed by a non-closed B.
40To emphasize the local nature of B, the notation “H = dB(α) on every patch Uα” is sometimes

used in place of H = dB [12].

56



3.9. Twisting with a gerbe

if H ∈ H3(M,Z) represents an integral cohomology class, then we have that

λ(αβ) + λ(βγ) + λ(γα) = g−1
(αβγ)dg(αβγ),

where the U(1)-valued transition functions g(αβγ) : Uα ∩ Uβ ∩ Uγ → S1 observe the
cocycle condition

g(βγδ)g
−1
(αγδ)g(αβδ)g

−1
(αβγ) = 1

on the overlap Uα ∩ Uβ ∩ Uγ ∩ Uδ, as well as g(αβγ) = g−1
(βαγ). We then say that B is

a connection on a gerbe, while H is the curvature of the gerbe connection [6, 7, 39].
We can now define a new bundle E over the manifold M by considering T ⊕ T ∗

and introducing the identification

X(α) = e−dλ(αβ)X(β)

on the overlap Uα ∩ Uβ, or, in components,

X(α) = X(β) and ξ(α) = ξ(β) + ıX(β)
dλ(αβ).

In other words, the generalised vectors X are in fact local sections of the twisted
bundle E given by the particular extension

0 −→ T ∗ −→ E −→ T −→ 0.

E therefore encapsulates both the topological properties of T and the connective
structure of a gerbe given by building a fibration of T ∗ over T with two-form shifts,
on top of the usual patching by diffeomorphisms. We may then write the overall
patching as

X(α) = A(αβ) ·X(β) and ξ(α) = A−T
(αβ)ξ(β) + ıA(αβ)·X(β)

dλ(αβ)

on the overlap Uα ∩ Uβ, where A(αβ) ∈ GL(d) enacts diffeomorphisms.
There is a Leibniz algebroid isomorphism between (T ⊕ T ∗,LH) and (E,L) [11].

Therefore, the untwisted and twisted pictures are equivalent: in the former, we
restrict to naked pure spinors (or spinors dressed at most with a closed B), and H

enters explicitly in the various constructions over T ⊕ T ∗, for example via twisted
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integrability, the H-twisted Courant bracket J , KH , and the twisted differential dH ;
in the latter, we consider dressed spinors on E, and work with the usual (untwisted)
notions of integrability, Courant bracket J , K, and differential d [15]. Due to their
equivalence, we will use the two pictures interchangeably.

Indeed, by performing an appropriate B-transform in each patch, we may “elim-
inate” the H field from eq. (3.17), and proceed with the newly untwisted Courant
bracket. The gerbe structure is now encoded into the generalised tangent bundle
itself.

In this new twisted tangent bundle, the fibre over a point p in the base manifold
is still Tp⊕T ∗

p . However, the twisting implies that the transition functions now also
include B-transformations. We have therefore enlarged the structure group of the
bundle to the geometric subgroup GL(d;R) ⋉ Ω2

cl in eq. (3.5) by introducing the
action of exact 2-forms. We note, however, that this is still only a part of the larger
O(d, d) group [6].
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Generalised geometry in
supergravity compactifications

4.1 Introduction to compactifications

Superstring theories exist critically only in 10 dimensions. Contending with the
observation that our spacetime geometry is 4-dimensional, it is natural to wonder
where these extra dimensions may be. A popular resolution is to compactify the
6 extra dimensions – vaguely speaking, curling them up on themselves – so that
they are effectively unobservable at low energies. Geometrically, the 10-dimensional
space is fibred over a 4-dimensional space, which we take to be our own spacetime.
Remarkably, the geometry of these extra dimensions has a profound effect on our
four-dimensional physics. The intimate interaction between our everyday world and
the hidden dimensions is an active area of research. In this chapter, we review how
the language of generalised geometry provides a natural description of these ideas.

4.1.1 Kaluza-Klein compactifications in field theory

Prior to delving into string theory, it is instructive to discuss Kaluza-Klein com-
pactifications in the context of ordinary field theory. In particular, we consider a
massless scalar field φ(y, x) propagating in a d-dimensional direct-product spacetime

Md−1 × S1,
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Chapter 4. Generalised geometry in supergravity compactifications

taking yµ, with µ ∈ {0, . . . , d − 2}, and x to be the coordinates on Md−1 and S1,
respectively, so that we have the identification x ∼ x+ 2πR, where R is the radius
of the transverse space S1. Using this periodicity in x, we can Fourier expand the
d-dimensional field as

φ(y, x) =
∞∑

k=−∞

ϕk(y)e
ikx/R.

By doing so, we generate an infinite tower of modes ϕk indexed by k (which will
turn out to be related to the momentum in the compact direction, as we will see just
below). Using this decomposition, we can expand the d-dimensional Klein-Gordon
field equation for φ,

□φ(y, x) = 0,

where □ = ∂2y + ∂2x, into41

(
∂2y −

k2

R2

)
ϕk(y) = 0,

revealing that {ϕk} is an infinite tower of massive modes (for k 6= 0), together with
a massless zero mode, ϕ0. Furthermore, the masses

m2 =
k2

R2

are quantised, since k ∈ Z. The momentum along the compact direction x is then42

px = k/R.
For energies E � 1/R, the massive modes “decouple” from the theory: in the

limit R → 0, an infinite amount of energy is required to excite any one of them,
rendering the (massless) ground state the only observable state of the theory. Thus,
at low energies, we see the emergence of (d − 1)-dimensional physics from a d-
dimensional theory [40].

We now turn to the effects of compactification on objects with non-trivial Lorentz
quantum numbers. Compared to the scalar case, there is now an additional step,

41Recall Fourier series are expansions in orthogonal bases, so from the wave equation of ϕ we
find a wave equation for ϕk for each value of k.

42Note that we use x as a superscript (and later as a subscript too) to label the component of
the d-dimensional momentum vector along the compactified direction – it is not a power.
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namely the decomposition of representations of SO(d) into ones of the lower-dimensional
SO(d − 1). Each object spawned by this decomposition can then be Kaluza-Klein
reduced to generate an infinite tower of modes standing on top of a massless ground
state.

For example, a metric gMN , where M,N ∈ {0, . . . , d − 1}, descends into the
lower-dimensional theory to give a metric gµν , a vector field gµx = gxµ, and a scalar
field gxx, all living in Md−1. For each of these, we can Fourier expand the compact
coordinate to give a Kaluza-Klein tower of excitations. Similarly, a vector field
AMdX

M , where XM = (yµ, x), produces a lower-dimensional vector field Aµdy
µ,

and a scalar field Axdx.
The metric gµν clearly inherits a (d− 1)-dimensional diffeomorphism invariance

within the non-compact space from the d-dimensional one of the full theory. How-
ever, the full theory is invariant under reparametrisations of the compact coordinate
as well,

x = x+ λ(yµ). (4.1)

This symmetry manifests itself in the lower-dimensional theory in the form of in-
variance under the gauge transformation

gµx → gµx − ∂µλ, (4.2)

which can be seen by imposing the invariance of the line element [40]

ds2 = gMNdX
MdXN = gµνdy

µdyν + gxx(dx+ gµxdy
µ)2

under eq. (4.1). We will refer to the U(1) symmetry in eq. (4.2) as the Kaluza-Klein
gauge symmetry. As this gauge symmetry is the realisation of spacetime translations
on the compactification manifold, its charge is the internal momentum k/R.

We thus reach a striking conclusion: the gauge symmetry in the lower-dimensional
theory arises as a vestige of the diffeomorphism invariance in higher dimensions; this
is how the Kaluza-Klein mechanism spawns gauge bosons in the non-compact direc-
tions out of the zero modes of the d-dimensional graviton on the compact manifold.

A similar story sees an antisymmetric tensor BMN get dissected into43 the an-

43In compactifications on n-dimensional tori, there are also n(n− 1)/2 scalars [22].
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tisymmetric tensor Bµν and the vector field Bxµ, with the invariance of the higher-
dimensional theory under

BMN → BMN + δBMN , where δBMN = ∂MζN − ∂NζM ,

carrying over to the lower-dimensional theory in the form of the invariance under
antisymmetric transformations δBµν = ∂µζν − ∂νζµ with parameter ζµ, as well as a
new U(1) gauge symmetry with field Bxµ and parameter ζx.

However, at least within the bounds of field theory, fields cannot carry charge
under this second gauge transformation. This is due to the fact that there are
no states which are charged under the 2-form field BMN in the higher-dimensional
theory [40]. In section 4.1.2, we will see that winding states in string theory are in
fact charged under this gauge field.

By assembling the reduced fields into an effective action, one can see that the
vacuum expectation value of the scalar gxx, which is related to R, has no potential.
The compactification radius, therefore, is not fixed by the equations of motion – any
background is consistent, regardless of the value of R. Such fields parameterising
flat directions of the potential are therefore massless (c.f. Goldstone bosons), and
are referred to as moduli [23, 40]. Unlike Goldstone bosons, however, degenerate
states are not mapped into each other by symmetries of the theory. In other words,
the vacuum expectation values of these moduli distinguish physically inequivalent
vacua [41]. The presence of moduli in a theory is problematic for (at least) two rea-
sons. First of all, moduli hinder the predictive power of a theory, as couplings would
be expected to depend on the unfixed vacuum expectation values [22]. Secondly,
such massless fields would lead to a long-range interaction of strength comparable
to that of gravity; this would imply deviations from the equivalence principle which
have not been observed to date [23]. Therefore, “stabilising” the moduli by gener-
ating potentials for them is an important objective for any realistic theory. As we
will mention, an attractive feature of flux compactifications is that they lead to a
stabilisation of (at least some of) the moduli.

We now discuss the compactification of d-dimensional pure gravity (a “type-0”
theory) on Md−n×T n. We take a d-dimensional metric gMN which, upon compacti-

62
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fication, yields a metric gµν , n vector fields gµm, and n(n+1)/2 scalars44 gmn, where
µ, ν ∈ {0, . . . , d− n− 1} and m,n ∈ {1, . . . , n}. Restricting to the massless sector,
i.e. the massless modes of the Kaluza-Klein towers, the theory has a GL(n;R) sym-
metry group. Considering the whole Kaluza-Klein towers, this is broken down to
the discrete GL(n;Z). As we will now see, this has a very natural origin.

By an identification of the type x ∼ x+2πqR in each of the compact directions,
where q ∈ Z, we can view T n = Rn/Zn. The natural action of GL(n;R) on Rn,
namely vi →M i

jv
j for v ∈ Rn and M ∈ GL(n;R), carries over to T n provided that

M ∈ GL(n;Z) ⊂ GL(n;R), so that the action of M preserves the equivalence classes
defining the quotient group. Just like GL(n;R) is the group of diffeomorphisms of
Rn, so GL(n;Z) is the diffeomorphism group of T n. These are often referred to as
“large” diffeomorphisms due to the fact that, unlike other diffeomorphisms, they
are not generated by the exponentiation of infinitesimal transformations. We thus
see that GL(n;Z), the symmetry group of the Kaluza-Klein reduced theory, has a
natural interpretation in terms of the diffeomorphisms on the tori.

4.1.2 Toroidal compactifications in string theory and
T-duality

We now investigate compactifications in the context of string theory. In comparison
to the field theory case explored in the previous section, we will find a much richer
structure of symmetries stemming from the extended nature of strings.

As always, we take the worldsheet fields for bosonic string theory, which we
arrange as XM = (Y µ, X), to be coordinates on spacetime, the target space, but we
now assume that the X direction is compactified. For the non-compact directions,
we have the usual identification in terms of worldsheet coordinates (σ, τ),

Y µ(σ + 2π, τ) = Y µ(σ, τ), (4.3)

where σ ∈ [0, 2π). This is also true for the compact direction (in fact, only for
non-winding modes, as we will see shortly). As in field theory, the momentum
px = k/R – here, the momentum of the centre of mass of the string state – along

44These parametrise the coset space GL(n;R)/SO(n).
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the X direction is quantised, k ∈ Z, so that

eiδXk/R = 1 for δX = 2πR.

What is new compared to the field theory case is that strings, being extended ob-
jects, can wrap around the compact direction, so that along this direction, the
identification in eq. (4.3) actually takes the form

X(σ + π, τ) = X(σ, τ) + 2πRw,

where w ∈ Z is the winding number – strings can “feel” topology to a deeper extent
than point particles can.

Again, compactification equips the lower-dimensional theory with two gauge
symmetries: the Kaluza-Klein gauge symmetry, which realises the higher-dimensional
reparametrisation invariance of the compact direction, and the gauge symmetry orig-
inating from the antisymmetric 2-form field. The two gauge bosons gµx and Bµx are,
respectively,

(αµ
−1α̃

x
−1 ± αx

−1α̃
µ
−1)|0, p〉,

where α and α̃ are the usual creation operators in bosonic string theory [41].

By introducing a complex parametrisation

z = τ + iσ, z̄ = τ − iσ, (4.4)

with the corresponding derivatives

∂ =
1

2
(∂τ − i∂σ), ∂̄ =

1

2
(∂τ + i∂σ), (4.5)

the vertex operators for the two gauge fields can be written as

V±(p) ∼
∫
d2z ζµ(∂Y

µ∂̄X ± ∂X∂̄Y µ)eipµY
µ

,

where we omitted normalisation and string coupling. We see that the vertex operator
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of the second gauge boson is a total derivative,

∂Y µ∂̄X − ∂X∂̄Y µ = ∂̄(X∂Y µ)− ∂(X∂̄Y µ).

Coupling a state to the zero-momentum vertex operators above measures its charge
under the corresponding gauge symmetries. The second vertex operator being a
total derivative, it is clear that field theory states cannot be charged under this
symmetry. In string theory, however, the total derivative above does not always
integrate to zero, since X is multi-valued for strings within the non-zero winding
sector [41].

Given the vertex operator of a tachyon with compact momentum k and winding
w,

Vtac(p) ∼
∫
d2z eipµY

µ

eipL·X(z)+ipR·X(z̄),

where
pL =

k

R
+
wR

α′ and pR =
k

R
− wR

α′ ,

the 3-point amplitude for two tachyons (with charges (k, w) and (−k,−w)) coupling
to a gauge boson is [42]

〈V±(p1)Vtac(p2)Vtac(p3)〉 ∼ (2π)d−1δd−1
(∑

i

pi
)
ζµp

µ
23(pL ± pR),

where we defined pµ23 = pµ2 − pµ3 . The gauge coupling of a tachyon under each
of the two gauge symmetries is given by taking the momentum p1 of the gauge
boson to zero [41]. We find that the charge under the Kaluza-Klein gµx gauge field
is pL + pR ∼ k/R. This matches with our earlier field-theoretical analysis. We
also see that the charge under the Bµx gauge field is pL − pR ∼ wR/α′: winding
states are charged under the gauge symmetry descending from the d-dimensional
antisymmetric tensor BMB. This is in contrast to field theory states, which we
recall could only carry the first of the U(1)× U(1) charges. We mention in passing
that, at the self-dual radius R =

√
α′, stringy effects imply that the actual gauge

symmetry is enhanced to SU(2)× SU(2) [41].
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The mass-shell condition consists in the string spectrum being

m2 =
k2

R2
+
w2R2

α′2 +
2

α′ (N + Ñ − 2).

We note that this is completely symmetric under

R↔ α′

R
, k ↔ w; (4.6)

indeed, as R → ∞, winding modes become infinitely massive and the momentum
spectrum becomes continuous, while the opposite behaviour occurs as R → 0, im-
plying a complete duality between string theory at radii R and α′/R. Specifically,
the physics at radius R is equivalent to that at radius α′/R under the interchange
of winding and momenta modes. It can be shown (for example, at the level of the
partition function) that this symmetry extends to higher genera, and therefore is a
symmetry of the full, interacting theory45.

This target space symmetry is referred to as T-duality and it is a purely stringy
phenomenon [41].

4.1.3 Narain compactification

The (pL, pR) lattice can be shown to be even with respect to the inner product with
(d, d) signature,

(pL, pR) · (p′L, p′R) = α′(piLpL,i − piRpR,i) = 2(kiw′
i + wik′i) ∈ Z,

and is also self-dual46.
Given any even, self-dual Lorentzian lattice, all other such lattices can be gener-

ated by acting with O(d, d;R) transformations on it. However, acting separately
with two different O(d;R) × O(d;R) ⊂ O(d, d;R) transformations on the same
lattice produces two physically equivalent backgrounds. Furthermore, as we saw
earlier, T-duality implies that transformations belonging in the discrete subgroup
O(d, d;Z) ⊂ O(d, d;R) consist of permutations that leave the lattice unchanged

45In fact, this is only true provided the vacuum expectation value of the dilaton is shifted by
an appropriate amount. We will briefly return to this issue in section 4.4.

46This is related to the modular invariance of the 1-loop partition function [40].
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overall. Therefore, we reach the conclusion that the moduli space, the space of
inequivalent string theories is [40]

O(d, d;R)
O(d;R)×O(d;R)×O(d, d;Z)

. (4.7)

The above coset space, modulo the T-duality identification, will turn out to
be parametrised by a Riemannian metric and a 2-form, meaning that the NSNS
background can be seen as the set of rotation parameters in the above space (again,
ignoring the O(d, d;Z) factor).

4.2 Generalised geometry and the NSNS sector

We will now see that the Riemannian metric g and the Neveu-Schwarz-Neveu-
Schwarz 2-form B ∈ Λ2T ∗ naturally merge into a generalised metric, as defined
in section 3.2. This is the first true instance in which we apply the language of
generalised geometry to describe string theory.

First of all, we note that

G0 =

(
0 g−1

g 0

)
constitutes a positive-definite metric on T ⊕ T ∗. In fact, the above metric can be
obtained from an ordinary Kähler structure, whose description we recall contains a
Riemannian structure g, a complex structure J , and a symplectic structure ω. We
gave the corresponding generalised complex structures JJ and Jω in eq. (3.21). We
find that

−JωJJ =

(
0 Jω−1

−ωJ 0

)
= G0,

where g = −ωJ is the usual metric. Given that JJ and Jω commute, and that G0 is
positive definite, we can conclude that we are in the presence of a generalised Kähler
structure, as defined in section 3.5.

In fact, the B-transform {eBJJe
−B, eBJωe

−B} of a generalised Kähler structure
{JJ ,Jω} is again a generalised Kähler structure, for B closed [4]. We can thus
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parametrise a generic generalised metric as

G = eBG0e−B (4.8)

=

(
1 0

B 1

)(
0 g−1

g 0

)(
1 0

−B 1

)

=

(
−g−1B g−1

g −Bg−1B Bg−1

)
.

As for the generalised metric H, also defined in section 3.2, we find it is given
by the 2d× 2d matrix

H = I−1G

=

(
g −Bg−1B Bg−1

−g−1B g−1

)
, (4.9)

with respect to which the norm of a generalised vector X = X + ξ is

H(X,X) = g(X,X) + g∗(ξ + ıXB, ξ + ıXB),

g∗ being the metric on T ∗ obtained by inverting g.

We have seen that the specification of a generalised metric H is equivalent to
that of a Riemannian metric g and a 2-form B. These two fields parametrise the
coset space (familiar from eq. (4.7))

O(d, d)

O(d)×O(d)
, (4.10)

which is equivalent to the statement (which we recall from section 3.2) that the
generalised metric H defines a reduction of the structure group on T ⊕ T ∗ from
O(d, d) to O(d) × O(d). Indeed, at any point on the manifold, the space of such
reductions is precisely the coset space above. In other – perhaps somewhat more
suggestive – words, we have an association

Neveu-Schwarz-Neveu-Schwarz sector ⇔ O(d)×O(d) structure.
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In the discussion above, we ignored the dilaton. We will see it is naturally
embedded into the formalism of string theory via the normalisation of the pure
spinors defining a generalised Calabi-Yau metric structure.

We end this section by mentioning the relation between generalised Kähler struc-
tures and the bihermitian geometries of Gates-Hull-Roček. The latter are defined by
data (g,H, J±), where H is a closed 3-form, the metric g is Hermitian (JT

±gJ± = g)
with respect to the complex structures J±, and

∇±J± = 0,

where the Bismut connections ∇± are given by

∇± = ∇± 1

2
g−1H,

∇ being the Levi-Civita connection [17]. In [43] it was found that, given a su-
persymmetric non-linear σ-model with N = (1, 1) worldsheet supersymmetry, the
presence of an additional left-moving supersymmetry and of an additional right-
moving one requires the target space to have a bihermitian geometry. This is then
a necessary condition for the existence of supersymmetry on spacetime given a non-
zero Neveu-Schwarz-Neveu-Schwarz flux. Remarkably, in [4], it was shown that the
Gates-Hull-Roček geometry is equivalent to the generalised Kähler geometry. In
fact, the generalised complex structures J1,2 defining the generalised Kähler geom-
etry are given in terms of the data (g,H, J±) by

J1,2 =
1

2

(
1 0

B 1

)(
J+ ± J− −

(
ω−1
+ ∓ ω−1

−
)

ω+ ∓ ω− −
(
J t
+ ± J t

−
) )(

1 0

−B 1

)
, (4.11)

where H = dB and the 2-forms ω± = gJ±. Equation (4.11) is often referred to as
the Gualtieri map [36].

In the next sections, we will encounter more instances of supersymmetry condi-
tions finding natural interpretations in the language of generalised geometry.
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4.3 Compactifications on T n and T-duality

We now return to provide a somewhat more thorough treatment of the symmetry
that is T-duality. We will see the emergence of the generalised metric H of eq. (4.9)
and the coset space of eq. (4.10). We will articulate our discussion by first introduc-
ing T-duality in the context of higher-dimensional toroidal compactifications. We
will then briefly discuss the appearance of T-duality in curved target space geome-
tries in section 4.4. In section 4.5 we will translate T-duality in the language of
generalised geometry. The objective is to provide a brief presentation of how co-
variance with respect to the symmetries of string theory is built into the formalism
of generalised geometry.

Consider a string theory compactified on Md−n × T n. It is useful to assemble
winding numbers wm and masses kn, where m,n ∈ {1, . . . , n}, into an O(n, n;Z)
vector

ZI = (wm, km), where I ∈ {1, . . . , 2n}.

It can be shown that the zero-mode Hamiltonian may be written as

H =
1

2
(p2L + p2R) =

1

2
(ZI)THIJZ

J . (4.12)

Anticipating the presence of symmetries that mix g and B, it will be useful to
define a background matrix

E = g +B ∈ O(n, n;R)
O(n;R)×O(n;R)

and embed it into O(n, n;R) by defining the action of a general element47

O =

(
a b

c d

)
∈ O(n, n;R)

onto an n× n matrix M by the fractional linear transformation

O ·M ≡ (aM + b)(cM + d)−1. (4.13)

47Here, a, b, c, and d are n×n matrices satisfying aT c = −cTa, bT d = −dT b, and aT d = 1−cT b.
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The transformation above correctly encodes that of H under O(n, n), namely

H → OTHO,

for O ∈ O(n, n).
We seek the symmetries of the spectrum in eq. (4.12). Consider a transformation

under which
Z → AZ, (4.14)

where A is a 2n × 2n matrix. In fact, for the quantisation of masses and winding
numbers to be preserved, we need A to have integer entries. For this transformation
to leave the spectrum invariant, we also require that H transform as

H → A−THA−1,

where A−T = (A−1)T . Finally, we wish that the level-matching condition,

N − Ñ = wmkm =
1

2
ZT

(
0 1

1 0

)
Z

be preserved under such a symmetry. Substituting for eq. (4.14), the requirement
for the above condition to be left intact becomes that

AT

(
0 1

1 0

)
A =

(
0 1

1 0

)
,

implying that the symmetry group is O(n, n;Z). These symmetries arrange them-
selves into three families, as follows [44]:

• the “large” gauge transformations given by discrete shifts48

B → B +Ψ,

where Ψij = −Ψji ∈ Z: Ψ is an n × n antisymmetric matrix with integer
48This transformation shifts the action by 2π

∫
Ψ, where Ψ is pulled back to the worldsheet.

Being Ψ integer-valued, this shift does not alter the path integral, and therefore corresponds to a
symmetry of the theory. We thus see that B plays the role of a theta parameter, providing nothing
more than a topological contribution to the action [44].
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entries. In terms of the embedding of the background matrix E, these trans-
formations take the form

O =

(
1 Ψ

0 1

)
∈ O(n, n;Z).

Indeed, using the prescription in eq. (4.13), we see that this choice of O gives

E →

(
1 Ψ

0 1

)
· E = E +Ψ,

which amounts to a shift in B by Ψ, since Ψ is antisymmetric and B is the
antisymmetric part of E.

• discrete changes of basis,

E → ΨEΨT , where Ψ ∈ GL(n;Z).

Embedding GL(n;Z) into O(n, n;Z) (see eq. (3.2)), this transformation is
given by

O =

(
Ψ 0

0 (ΨT )−1

)
.

Indeed, with this O, we see that

E →

(
Ψ 0

0 (ΨT )−1

)
· E = ΨE((ΨT )−1)−1 = ΨEΨT ;

• factorised dualities, with

O =

(
1− ei ei

ei 1− ei

)
, (4.15)

where (ei)mn = δimδin. These provide a generalisation of T-duality to various
axes.

In conclusion, O(n, n;Z) is the T-duality group – the symmetry group of a
bosonic string theory compactified on T n.
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4.4. T-duality in curved backgrounds

4.4 T-duality in curved backgrounds
We now consider dualities on curved target space geometries. For simplicity, we
will restrict our analysis to compact Abelian symmetries. A treatment of more
sophisticated symmetries is available, for instance, in [26, 44, 45].

Consider a σ-model on a d-dimensional manifold with target space metric gij,
2-form Bij, and dilaton φ(x). We take the action of the σ-model to be

S =
1

2π

∫
d2z(gµν(x) +Bµν(x))∂x

µ∂xν − 1

8π

∫
d2zφ(x)R(2) (4.16)

where we introduced complex coordinates (and derivatives) on the worldsheet, as in
eqs. (4.4) and (4.5).

We assume the existence of a U(1) isometry – that is, a Killing vector field X:

LXgµν = ∇νkµ +∇µkν = 0. (4.17)

For this to be a symmetry of the action S, we also require

LXH = 0, (4.18)

where H is the field strength of the B field, i.e. H = dB locally. Note that one does
not need a condition as strong as LXB = 0 – in fact, eq. (4.18) locally allows for
gauge transformations

B → B′ = B + dξ′,

so that in a general gauge we can write eq. (4.18) as

LXB − dξ = 0, (4.19)

where
ξ = −LXξ

′ = −ıXdξ′ + df (4.20)

for smooth functions f . In fact, for simplicity, we will now work in the gauge
LXB = 0. Finally, for the dilaton term in S to be left unchanged too, we also
require

Xµ∂µφ = 0.
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Chapter 4. Generalised geometry in supergravity compactifications

We now take adapted coordinates49 – that is, we split the coordinates as xµ = {θ, x̃i},
in such a way that the isometry corresponds to translations θ → θ+ε, relegating the
x̃i to the role of spectator fields (on which the background fields may still depend).
The action of eq. (4.16) reads, in this new coordinate system,

S
[
θ, x̃i

]
=

1

2π

∫
d2z
(
g00 (x̃) ∂θ∂̄θ + (g0i (x̃) +B0i (x̃)) ∂θ∂̄x̃

i

+ (gi0 (x̃) +Bi0 (x̃)) ∂x̃
i∂̄θ + (gij (x̃) +Bij (x̃)) ∂x̃

i∂̄x̃j
)

− 1

8π

∫
d2zφ (x̃)R(2).

We now gauge the isometry, making ε a function of the worldsheet coordinates, via
minimal coupling. This provokes the introduction of gauge fields A and A, with
variations

δϵA = −∂ε and δϵA = −∂ε.

This gauging yields

S
[
x̃i, A, χ

]
=

1

2π

∫
d2z
(
g00AĀ+ (g0i +B0i)A∂̄x̃

i + (gi0 +Bi0) ∂x̃
iĀ

+ (gij +Bij) ∂x̃
i∂̄x̃j

)
− 1

8π

∫
d2z(φ(x̃)R(2) + χF ).

A few explanations are in order. Firstly, the above action is given in a gauge where
θ = 0. The Lagrange multiplier χ sets, on-shell, the Abelian field strength

F = ∂A− ∂A,

to vanish, so that A and A are constrained50 to be (locally) pure gauge on-shell, i.e.
A = ∂θ and A = ∂θ. Thus, we recover the original action51 in eq. (4.16). Integrating
by parts the Lagrangian multiplier, and eliminating the gauge fields – which by now

49These coordinates may not exist globally. If this is the case, one may dualise the theory patch
by patch, and then assemble the dual background into a global one.

50We are implicitly restricting ourselves to worldsheets with trivial topology here.
51In the case of compact symmetries, the periodicity of θ is recovered by demanding that the

holonomies h =
∮
A along homology cycles be integers n. For the canonical homology cycles of

the torus, these correspond to the winding modes of χ.
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4.5. T-duality and generalised geometry

are auxiliary fields and have algebraic equations of motion – we find

Ŝ =
1

2π

∫
d2z
(
ĝµν (x̃) + B̂µν (x̃) ∂y

µ∂̄yν
)
− 1

8π

∫
d2zφ̂ (x̃)R(2),

where we introduced new coordinates yµ = {χ, x̃i}. Crucially, Ŝ is the action of a
new theory, dual to that of the original σ-model. The relationship between the two
dual models is,

ĝ00 = 1/g00, ĝ0i = B0i/g00, ĝij = gij − (gi0g0j +Bi0B0j)/g00, (4.21a)

B̂0i = g0i/g00, B̂ij = Bij − (gi0B0j +Bi0g0j)/g00, and φ̂ = φ− 1

2
log g00,

(4.21b)

where the transformation of the dilaton appears as a factor in the measure in the
integration of the gauge fields. The exact shift of the dilaton is chosen by demanding
the dual theory be conformally invariant.

Equation (4.21) implies that the geometries of the dual theories are vastly differ-
ent. In particular, it implies that the duality we described acts on the background
as a factorised duality along θ, as defined in eq. (4.15).

The approach described above is due to Buscher [46,47]. We mention in passing
that this procedure can be generalised to non-Abelian symmetries and symmetries
along fermionic directions. We can also relax the condition LXB = 0 to LXH = 0.
This leads to a simple generalisation of the Buscher rules in eq. (4.21) (see, for
instance, [45]).

4.5 T-duality and generalised geometry

Consider a bosonic background of string theory which admits an isometry generated
by a Killing vector field X. As in the previous section, in order to perform a T-
duality via the Buscher procedure, we must have that

LXg = 0, (4.22a)
and LXB − dξ = 0. (4.22b)
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Chapter 4. Generalised geometry in supergravity compactifications

Looking at eqs. (4.22a) and (4.22b), we see that the action of the symmetries of
the NS sector – diffeomorphisms and B-gauge transformations – is defined by the
specification of a vector X and a covector ξ, which of course we can combine into a
generalised vector X = X + ξ ∈ Γ(T ⊕ T ∗).

We thus see that the gauge parameters of the NS sector are sections of the
generalised tangent bundle, T ⊕T ∗ – an instance of how generalised geometry offers
a covariantisation of the symmetries of string compactifications [26].

We can also show that the Courant bracket emerges rather naturally in this
context. To see this, we denote the gauge transformation (see eq. (4.22b)) of the
B-field parametrised by the generalised vector X = X + ξ as

δXB = LXB + dξ. (4.23)

Its closure (or rather, its closure defect) with another gauge transformation parametrised
by Y = Y + υ is then

[δX, δY]B = L[X,Y ]B + d(LXυ − LY ξ),

where we used LXLY − LYLX = L[X,Y ], and Ldα = dLα for any form α. We also
dropped from the right-hand side a term containing dξ and dυ – we can do so by
gauging via eq. (4.20) with ξ′ = υ′ = 0. By comparing the right-hand side above
with eq. (4.23), we write

[δX, δY] = δ[X,Y ]+LXυ−LY ξ

= δ[X,Y ]+LXυ−LY ξ− 1
2
d(ıXυ−ıY ξ),

where we added an exact term which leaves the gauge transformation unaltered,
since d is nilpotent. We can now see that the right-hand side is the gauge transfor-
mation of the B-field parametrised by the generalised vector given by the Courant
bracket between X and Y:

[δX, δY] = δJX,YK. (4.24)

In other words, two gauge transformations of the B-field commute to give a gauge
transformation along the Courant bracket between the original gauge parameters
[26].
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4.6. Type II supergravity

Using eq. (3.10), we find that the Dorfman derivative of the generalised metric
H with respect to this generalised vector is [48]

LXH =

LXg − (LXB − dξ)g−1B −B(LXg
−1)B (LX − dξ)g−1 +B(LXg

−1)

−Bg−1(LXB − dξ)
−g−1(LXB − dξ)− (LXg

−1B) LXg
−1

 ,

so that the T-duality conditions, eqs. (4.17) and (4.19), can be reformulated as the
vanishing of the Dorfman derivative of H,

LXH = 0; (4.25)

in this sense, then, X is a generalised Killing vector of the generalised metric. We
can now write a T-duality matrix [48],

TX = 1− 2X⊗ XTη ∈ O(n, n),

so that the T-dual generalised metric Ĥ, i.e. the metric given by acting with a
T-duality transformation on H and corresponding to the dual theory defined by ĝ

and B̂, is simply given by conjugation [26],

H T-duality−−−−−→ Ĥ = T T
X HTX.

In fact, in adapted coordinates, given frame fields ei and duals ei, we can even recast
the T-duality matrix TX in the form of the factorised duality matrix in eq. (4.15).

4.6 Type II supergravity

So far, we have only dealt with a metric g, an antisymmetric (0,2)-tensor B, and
(occasionally) a dilaton φ. We will now meet the remaining fields that populate
type II supergravity. We will then compactify the theory. Actually, we will begin to
do so by setting all the new fields – in fact, even the field strength of B – to vanish.
We will then gradually re-introduce them and see how they change the resulting
constraints on the geometry.
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Chapter 4. Generalised geometry in supergravity compactifications

Type II supergravity is a 10-dimensional52 theory with N = 2 supersymme-
tries which emerges as the low-energy limit of type II string theory. Its two 16-
dimensional53 supersymmetry parameters are the Majorana-Weyl spinors ε1,2. That
these must be Majorana-Weyl spinors follows from imposing supersymmetry at the
level of the superstring action, which implies that the spinor coordinates θ1,2 – and
so their corresponding supercharges, ε1,2 = δθ1,2 – must be Majorana-Weyl. This is
in analogy with super Yang-Mills (sYM) theories54. In closed superstring theory55,
we may choose θ1,2 to have opposite or equal chirality. This leads, respectively, to
non-chiral and chiral theories. The corresponding supergravity theories are referred
to as type IIA and type IIB supergravity, respectively. It follows that ε1,2 have
opposite and equal chirality in type IIA and type IIB, respectively, so that the two
theories have N = (1, 1) and N = (2, 0) supersymmetries.

The Neveu-Schwarz-Neveu-Schwarz (NSNS) sector, consisting of those fields
given by string states with NSNS boundary conditions, contains a metric g, an
(antisymmetric) Kalb-Ramond B field with strength H, and a dilaton φ.

The matter content is made up of the fermionic doublets Ψ and λ – the grav-
itino and the dilatino, respectively. The gravitinos are of the same chirality as the
associated supersymmetry parameters. We adopt the index convention whereby
a ∈ {1, 2} labels doublets, while uppercase Roman letters, M ∈ {1, . . . , 10}, span

52Classically, we can discuss superstring theories also in 3, 4, and 6 dimensions, each of which
carries different constraints on θ1,2. In the quantum theory, however, the critical dimension of
superstring theory is 10 [49].

53In 10-dimensions, a spinor has 32 complex components. These are halved by the Weyl condi-
tion and made real by the Majorana condition, leading to Majorana-Weyl spinors having 16 real
components [49].

54In d-dimensions, SYM actions are of the form

S =

∫
ddx

(
−1

4
F 2 +

i

2
ψ̄Γ ·Dψ

)
,

where
F a
µν = ∂[µA

a
ν] + gfabcA

b
µA

c
ν

is the non-Abelian field strength of the vector potential Aµ, ψ is a spinor field, and the Yang-Mills
covariant derivative is

(Dµψ)
a = ∂µψ

a + gfabcA
b
µψ

c.

In d = 10, Aµ carries d− 2 = 8 physical modes, so that supersymmetry imposes the existence of 8
fermionic physical modes; this singles out Majorana-Weyl spinors [49].

55For open strings, θ1,2 must have the same chirality, since they are matched at the end of the
string. This leads to type I theories.

78



4.6. Type II supergravity

the 10-dimensions in which the theory lives. For instance, the metric components
are labelled gMN , while those of the gravitino doublet are Ψa

M .
The Ramond-Ramond (RR) sector consists of the p-form potentials Cp, where

p ∈ {1, 3, 5, 7, 9} for type IIA and p ∈ {0, 2, 4, 6, 8} for type IIB. These can be
assembled into the formal sums

C− = C1 + C3 + C5 + C7 + C9

for type IIA and
C+ = C0 + C2 + C4 + C6 + C8

for type IIB, which are Clifford(d, d) spinors of negative and positive chirality, re-
spectively [6]. These forms have gauge transformations [35]

Cp → Cp + dκp−1 −H ∧ κp−3

for k-forms κk, and field strengths locally given by [50]

Fp = dCp−1 −H ∧ Cp−3, (4.26)

where we ignore a subtlety56 related to F0.
We briefly pause to remark that, in the presentation above, we tacitly subscribed

to the “democratic” formalism, for which there exists a duality relation

Fp = (−1)⌊p/2⌋ ?10 F10−p, (4.27)

where b c is the floor notation, and ?d is the d-dimensional Hodge star operator [12],

?d ω =
1

k!(d− k)!
√
|g|εi1...idωid−k+1...iddyi1 ∧ · · · ∧ dyid−k

for some k-form ω. Due to this relation, F6, F7, F8, F9, and F10 are sometimes said to
inhabit the “RR?” sector. A (popular) alternative to this democratic formalism is to
only consider F0, F2, and F4 in type IIA, and F1, F3, and F5 in type IIB, and ignore

56It can be shown that the Bianchi identities imply F0 = m for some constant m, the Romans
mass [12]. Here we will focus on “Romans massless” type IIA theories, for which m = 0.
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Chapter 4. Generalised geometry in supergravity compactifications

all other form fields. The sole vestige of the duality condition in eq. (4.27) in this
second formalism is then the self-duality F5 = ?F5. In our democratic formulation,
the redundancy introduced by considering a larger set of forms is compensated by the
duality eq. (4.27); however, this must be imposed on top of the equations of motions,
which is why the corresponding action is sometimes referred to as a “pseudo-action”.

In terms of the formal sums of the field strengths

F+ = F0 + F2 + F4 + F6 + F8 + F10

in type IIA and
F− = F1 + F3 + F5 + F7 + F9

in type IIB, we can rewrite eq. (4.26) as57

F = dHC,

where the twisted de Rham operator is dH = d−H∧, as in eq. (3.16).

4.7 Fluxless supersymmetric compactifications
String theory at low energies is governed by the action of 10-dimensional supergrav-
ity,

S =

∫
M10

√
−g

[
e−2ϕ

(
R+ 4(∂φ)2 +

1

12
H2

)
− 1

4

∑
n

1

n!
(Fn)

2

]
,

whereR is the Ricci scalar of the metric g, and M10 is the ten-dimensonal spacetime.
The equations of motion that follow from extremising the action above are

Rµν −
1

4
HµλρH

λρ
ν + 2∇µ∇νφ−

1

4
e2ϕ
∑
n

1

(n− 1)!
(Fn)µλ1...λn−1

(Fn)
λ1...λn−1

ν = 0,

(4.28a)

∇λ
(
e−2ϕHµνρ

)
− 1

2

∑
n

1

(n− 2)!
(Fn)µνλ1...λn−2

(Fn−2)
λ1...λn−2 = 0,

(4.28b)
57For Romans massive type IIA theories, this reads F = dHC + F0e

−B . In the case m 6= 0,
eq. (4.26) is also modified.
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∇2φ− (∇φ)2 + 1

4
R− 1

48
H2 = 0,

(4.28c)

and dF −H ∧ F = 0.

(4.28d)

A solution to these equations is referred to as a background. In fact, we will not
attempt to solve these equations of motion. Rather, we will make a few key assump-
tions and recast eq. (4.28) into the language of generalised geometry.

Our first major assumption is that the solutions are compactified, i.e. that the
10-dimensional space takes the form of the warped product

M10 =M4(y)×W X6(x), (4.29)

where M4 is the external space, X6 is a 6-dimensional curved, compact manifold
(the internal space), and y and x are external and internal coordinates, respectively.

Solving eq. (4.28) is a daunting task. But it is also one we can evade, by con-
veniently assuming that the solutions are supersymmetric. It can be shown that
the conditions for supersymmetry – which are significantly simpler than the above
equations – in fact imply the equations of motion, so that supersymmetric back-
grounds automatically solve eq. (4.28). To be more precise, this statement is only
true if we supplement the supersymmetry conditions with the Bianchi identities for
the supergravity fluxes.

In the case of global N = 1 supersymmetry, for instance, the Hamiltonian is
given by H = Q†Q, Q being a supercharge. A supersymmetric state Φ satisfies
QΦ = 0, and so it is also a zero-energy solution to the full equations of motion,
HΦ = Q†QΦ = 0 [51].

4.7.1 A bosonic intermezzo

Consider a metric g on some d-dimensional manifold M with coordinates {yµ}.
Under a flow generated by a vector field V , the infinitesimal change in the metric’s
components is

δgµν = (LV g)µν = 2∇(µVν),
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Chapter 4. Generalised geometry in supergravity compactifications

where ∇ is the Levi-Civita covariant derivative, and Vν = gµνV
µ. Taking M to be

Minkowski, so that gµν = ηµν , the condition for V to be a Killing vector field, i.e.
for the flow to be an isometry, now reads

∂(µVν) = 0, (4.30)

and is solved either by Vµ = constant, which corresponds to spacetime translations
yµ → yµ + V µ, or by Vµ = Λµνx

ν , where Λµν = Λ[µν], which corresponds to Lorentz
transformations58 δxµ = Λµ

νx
ν = V µ, where Λµ

ν = ηµρΛρν . In a background with
multiple fields, we require

LV (field) = 0 ∀ fields.

We see that the choice of a Minkowski background breaks the symmetry group
of the theory down to the Poincaré group. Furthermore, the existence of a Killing
vector field V places topological and differential constraints on the manifold it in-
habits. For instance, on a Riemannian manifold with O(d) structure, the existence
of the globally defined, nowhere vanishing vector field V results in a reduction of the
structure group to O(d−1) – the stabiliser of V . Topologically, the existence of such
a vector field is equivalent59 to the vanishing of the Euler characteristic, χ(M) = 0,
for a compact and orientible manifold M60. For other manifolds, the existence of
such a field bears no topological implications. Furthermore, the differential condi-
tion contained in eq. (4.30) implies that the vector field must be a singlet of the
holonomy group; this produces a corresponding reduction in the holonomy group.

Having briefly discussed the topological and differential conditions originating
from the existence of a covariantly constant, globally defined, nowhere vanishing vec-
tor field, we are now ready to discuss their fermionic analogue – the supersymmetry
conditions.

58To see that Vµ = Λµνy
ν solves the Killing equation, take the partial derivative of both sides

and symmetrise.
59One of the two directions of this equivalence follows from the Poincaré–Hopf index theorem.
60see for instance [52].
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4.7.2 Type II fluxless compactifications

Let us return to type II supergravity, in all its fermionic glory. Consider a 10-
dimensional space M10 given by the warped product in eq. (4.29). The most general
10-dimensional metric g that is compatible with this compactification ansatz has
components

gMN(y, x) = e2λ(x)hµν(y) + gmn(x) (4.31)

where m,n ∈ {1, . . . , 6} are the internal indices, µ, ν ∈ {0, . . . , 3} are the external
indices, M,N = (µ,m) are the 10-d indices, λ(x) is the warp factor, and hµν and
gmn are the metrics on the external and internal spaces, respectively. Note that the
scale of the external space, namely the warp factor λ, is allowed to depend on the
compact space.

In principle, we could consider a more general ansatz than that in eqs. (4.29)
and (4.31), with off-diagonal terms in the metric (i.e. non-zero components carrying
both external and internal indices). However, these would be vectors in M4; the
search for a supergravity vacuum leads us to require maximal symmetry, which in
turn implies that any such off-diagonal term must vanish. We will therefore proceed
with our original ansatz in eqs. (4.29) and (4.31).

As discussed earlier, the metric (together with the natural volume form) gives
M10 an SO(9, 1) structure; in fact, due to the compactification ansatz in eq. (4.29),
the structure group is reduced to SO(3, 1)× SO(6). Furthermore, we assume there
exists a lift of the frame bundle – the principal SO(6) bundle associated to the
tangent bundle of X6 – to the universal cover Spin(3, 1)× Spin(6); it will be helpful
to recall the exceptional isomorphisms61 Spin(3, 1) ∼= SL(2,C) and Spin(6) ∼= SU(4).
It should be noted that that of the existence of a lift from SO(3, 1) × SO(6) to its
double cover is not a trivial assumption. Manifolds on which it is possible to define
a spin bundle are referred to as spin manifolds, and the question on the nature of
the topological conditions that allow for the existence of such a lift is an interesting
one in its own right, which we will not explore further here.

We will now impose that the vacuum in eq. (4.29) preserve (at least some)
supersymmetry, meaning that the variations of the background fields under (at least

61These accidental isomorphisms are only present for low-dimensional spin groups: Spin(n) has
no such isomorphisms for n > 6.
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some of) the supersymmetry generators vanish.

Firstly, consider a 10-dimensional spinor transforming in the 16R representa-
tion62 of SO(9, 1). This decomposes under SO(3, 1)× SO(6) as63

16R = (2,4)⊕ (2̄, 4̄).

In terms of the universal cover of this decomposition, the lack of a Spin(3, 1) singlet
implies that a non-zero spinorial vacuum expectation value would break Poincaré
invariance in the four uncompactified dimensions; this would violate the conditions
for the solution to be a vacuum, and so we must set all spinorial fields to have
vanishing vacuum expectation values.

It can be shown that the supersymmetric variations of bosonic fields obey

δϵ(bosonic field) ∼ (fermionic field),

where ε is the generator of the supersymmetry; above, we argued that fermionic fields
should have vanishing vacuum expectation value, and so we see that the bosonic
fields already satisfy the condition that the background be supersymmetric, namely
the vanishing of the supersymmetric field variations. On the other hand, the super-
symmetry variations of the gravitino and of the dilatino in the string frame can be
shown to be [23]

δψM = ∇Mε+
1

4
/HMPε+

1

16
eϕ
∑
n

/F nΓMPnε (4.32a)

and δλ =

(
/∂φ+

1

2
/HP
)
ε+

1

8
eϕ
∑
n

(−1)n(5− n)/F nPnε, (4.32b)

where
P = Γ10 and Pn = Γ

n/2
10 σ

1

62Representations of SO(9, 1) can be obtained by analytically continuing those of SO(10) [53].
63The notation used here follows from the fact that the fundamental representation 4 and its

complex conjugate 4̄ of SU(4) are the spinorial representations of SO(6). Indeed, a (real) spinor on
a 6-dimensional manifold has eight components, and so decomposes into irreducible representations
of SU(4) as 8 = 4⊕ 4̄.
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for type IIA, and

P = −σ3 and Pn =

{
σ1 for (n+ 1)/2 even
iσ2 for (n+ 1)/2 odd

for type IIB, and we recall the slash notation introduced in eq. (3.25), so that, for
instance,

/HM =
1

2
HMNPΓ

NP .

In the absence of fluxes, eq. (4.32a) greatly simplifies, to give, reinstating the
index labelling the doublet components,

δψα
M = ∇Mε

α. (4.33)

The condition for the background to be supersymmetric therefore reads

∇Mε
α = 0 (4.34)

– a Killing spinor equation.

By focussing on the spacetime component of eq. (4.34), we obtain the following
integrability condition, [51]

∇µε+
1

2
(γµγ5 ⊗ /∇λ)ε = 0 ⇒ [∇µ,∇ν ]ε =

1

2
∇mλ∇mλγµνε, (4.35)

where∇ and γµ are the covariant derivative and gamma matrices associated with the
metric h. We now note for later reference that the 10-dimensional gamma matrices
are given by [23]

ΓM = (Γµ,Γm) = (γµ ⊗ 1, γ5 ⊗ γm),

where γ5 = i
4!
εσρµνγ

σρµν , and we also define the antisymmetric product

ΓM...N = Γ[M . . .ΓN ].

The 10-dimensional covariant derivative of a spinor then takes the form

∇Mε = ∂Mε+
1

4
ωMABΓ

ABε,
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where ωMAB are the components of the spin connection and we introduced a vielbein
(in particular, a zehnbein), the flat indices being A,B [51].

We also have that [23]

[∇µ,∇ν ]ε =
1

4
Rµνρσγ

ρσε,

which – under the assumption of maximal symmetry on M4,

Rµνρσ = k(hµρhνσ − hµσhνρ)

– becomes
[∇µ,∇ν ]ε =

k

2
γµνε.

Comparing this with eq. (4.35) yields the integrability condition

∇mλ∇mλ = −k.

Recall λ is only allowed to depend on the internal coordinates, and so, taking the
internal space to be compact, it must have a maximum. ∇mλ∇mλ being constant
then implies that

k = 0 and ∇mλ = 0,

so that M4 must be Minkowski R3,1 – the other maximally symmetric solutions,
namely anti-de Sitter and de Sitter spacetimes, have non-zero scalar curvature (< 0

for AdS, > 0 for dS) [54]. We will later see that the presence of fluxes allows us to
relax this condition and therefore to discuss proper warped compactifications. For
the remainder of this section, we will take the warp factor to vanish and hµν to be
the Minkowski metric.

Under the decomposition Clifford(9, 1)→ Clifford(3, 1)×Clifford(6) that follows
from the compactification ansatz, we can separate the supersymmetry generators
into external and internal spinors as

ε1IIA = ξ1+ ⊗ η1− + ξ1− ⊗ η1+ (4.36a)
ε2IIA = ξ2+ ⊗ η2+ + ξ2− ⊗ η2− (4.36b)
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for type IIA, and

ε1,2IIB = ξ1,2+ ⊗ η
1,2
− + ξ1,2− ⊗ η

1,2
+ (4.36c)

for type IIB. The above decomposition automatically satisfies the Weyl condition
(given the ± subscripts indicate ±-chirality), and is also Majorana if we attach the
further conditions

ξ− = (ξ+)
∗ and η− = (η+)

∗.

A phenomenologically interesting question is the number of unbroken supersym-
metries which descend to the four-dimensional space. For example, in the case of
a field ψ with supersymmetric transformation δψ = ∇ε, with ε being the gauge
parameter, unbroken supersymmetric charges in the four-dimensional space corre-
spond to solutions to ∇ε = 0 in the internal space [55]. The decomposition in
eq. (4.36) identifies an N = 2 effective theory in four dimensions, with the eight su-
percharges parametrised by (ξ1, ξ2) [7]. From a phenomenological perspective, this
amount of unbroken supersymmetry is prohibitively large: the algebra is such that
left- and right-handed Fermi fields have equal gauge transformations. Realistic par-
ticle physics models therefore require N < 2; later, we will see that the introduction
of fluxes along the compact directions allows us to relate ε1,2 and thus generically
lead to minimal N = 1 in four dimensions.

Under the decomposition in eq. (4.36), the supersymmetry condition for the
gravitino field, eq. (4.34), separates into conditions on the internal and external
spaces:

∂µξ± = 0, (4.37a)
and ∇mη± = 0. (4.37b)

The integrability condition on the internal manifold X6 yields

∇mη = 0 ⇒ [∇m,∇n]η = 0 ⇒ RmnpqΓ
pqη = 0 ⇒ Rmn = 0. (4.38)

This condition then implies that the internal manifold must be Ricci-flat [51].
Equation (4.37b) is a Killing spinor equation. It establishes both topological and

differential constraints on the internal manifold X6, which we will now review.

87



Chapter 4. Generalised geometry in supergravity compactifications

The most primitive condition that follows from eq. (4.37b) is the existence of
globally defined, non-vanishing sections η1,2+ of the spinor bundle64. This is needed
in order to be able to decompose the modes of the 10-d fields into N = 2 multiplets,
and it translates into a condition on the topology of the internal manifold, as we
will now see. Firstly, let us assume that η1+ = η2+ ≡ η+, so that we only have one
internal spinor (and its complex conjugate). We will later relax this assumption and
reinstate the second internal spinor. Taking a basis in which

η+ =


0

0

0

η

 , (4.39)

we see that the subgroup of SU(4) under which η+ is invariant is made up of elements
of the form

S =

(
A 0

0 1

)
, where A ∈ SU(3) ⊂ SU(4),

meaning that the transition functions must be in SU(3) for the global nature of η+
to truly be such. We see that the introduction of a global, non-degenerate tensor
field – or in this case, the spinor field η+ – entails a reduction in the structure group,
as the different descriptions of the field in various patches must agree on the overlaps
between patches. This yields the topological condition resulting from the presence
of supersymmetry: the structure group is reduced from SU(4) to SU(3).

The fact that a global section η+ not only exists, but is also covariantly constant,
as in eq. (4.37b), imposes a further, differential condition on the internal manifold.
For it to be covariantly constant, the spinor must be a singlet of the holonomy
group, i.e. it must return to itself upon being parallely transported along any loop.
Consequently, the holonomy group also reduces from Spin(6) ' SU(4) to SU(3) –
this can be seen by retracing the steps above, namely placing η+ in the form of
eq. (4.39) by means of an SU(4) transformation, and then noting that its stabiliser
is SU(3).

Table 4.1 contains the reduced holonomy groups for various dimensions.
This reduction can also be observed at the level of representations, by demand-

64Spinor fields are sections of spinor bundles.
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dim(M) general holonomy reduced holonomy geometry

4 SO(4) ⊇ SU(2) Calabi-Yau
6 SO(6) ⊇ SU(3) Calabi-Yau
7 SO(7) ⊇ G2 Exceptional
8 SO(8) ⊇ Spin(7) Exceptional

Table 4.1: The reduction in the holonomy group on various manifolds due to the
existence of covariantly constant spinor fields.

ing that spinors remain uncharged upon being parallelly transported. Spinors with
definite chirality living on 6-dimensional spaces inhabit either the 4 or the 4 irre-
ducible representations of the general SU(4) holonomy group, neither of which are
singlets. On the other hand, a reduction of the holonomy group to the subgroup
SU(3) implies the decompositions

4 = 3⊕ 1

and
4 = 3⊕ 1

of the spinorial representations, where the newfound singlets enable the existence of
covariantly constant spinors. Furthermore, SU(3) is the largest subgroup of SU(4)

which contains such holonomy singlets [51].
We have already studied SU(3) structures and holonomies, albeit in the language

of differential forms and algebraic structures. We now recast the topological and
differential conditions following from supersymmetry into the language familiar from
chapter 3, as to connect the two formulations.

Given a covariantly constant spinor η+, we can assign it a unitary normalisation,
η†+η+ = 1, by applying the Leibnitz identity65 to eq. (4.37b). We can then build a
real 2-form ω and a complex 3-form Ω, which inherit from η+ the properties of being
globally defined and everywhere non-vanishing. Explicitly, the construction is [54]

ωmn = −iη†±γmnγη±, (4.40)

65Note that η+ † η+ is a scalar in Euclidean signature.
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where γ is the chirality operator (and so γη+ = η+), and

Ωmnp = −iη†−γmnpη+. (4.41)

By means of the Fierz identities, it can be shown that

Jm
n = gmpωpn

satisfies
Jm

nJ
n
p = −δmp .

We have found an almost complex structure [54]. Furthermore, the metric is Her-
mitian with respect to it,

Jm
nJ

p
qgmp = gnq.

In fact, we have that
∇pJ

n
m = ∇p(−2iη†+γ n

m η+);

the metric is covariantly constant, and ∇mη± = 0 is exactly the Killing spinor
equation, eq. (4.37b), so that [51]

∇pJ
n

m = 0,

which implies the vanishing of the Nijenhuis tensor, Np
mn = 0.. We see that, in

this picture, the supersymmetry conditions take the form of the integrability of the
almost complex structure J : the internal space is a complex manifold equipped
with a Hermitian metric. In terms of the forms in eqs. (4.40) and (4.41), we find
the non-degeneracy and compatibility conditions

ω ∧ ω ∧ ω ∼ Ω ∧ Ω 6= 0, (4.42a)
and ω ∧ Ω = 0, (4.42b)

with Ω also being decomposable. Furthermore, it follows that ω is closed,

dω = 0,

90



4.7. Fluxless supersymmetric compactifications

so that the internal space is Kähler [51]. In fact, Ω is also closed, dΩ = 0. These
are the differential requirements that follow from supersymmetry.

Regardless of which description we choose, we find that the internal manifold
must be Calabi-Yau. We see that the supersymmetry conditions translate into
remarkably stringent constraints on the geometry of the internal space.

We briefly digress to notice that the Calabi-Yau description in terms of ω and
Ω arises naturally at the level of representations. As mentioned earlier, the spino-
rial representation of SO(6) decomposes into SU(3) representations as 4 → 3 ⊕ 1,
where the singlet corresponds to the globally defined, nowhere vanishing spinor. The
vector, 2-form and 3-form representations of SO(6) similarly decompose into

6→ 3⊕ 3̄, (4.43a)
15→ 8⊕ 3⊕ 3̄⊕ 1, (4.43b)

and 20→ 6⊕ 6̄⊕ 3⊕ 3̄⊕ 1⊕ 1, (4.43c)

respectively. We indeed see the emergence of both 2-form and 3-form singlets; as
anticipated, these are the SU(3)-invariant ω and Ω forms defined above from η. We
also note the lack of vector – and therefore, in six dimensions, 5-form – singlets, from
which the compatibility condition in eq. (4.42b) immediately follows. Similarly, the
singlet nature of six-forms gives eq. (4.42a) [56].

4.7.3 Effective theory

We now turn to the issue of the effective description of fluxless type II compactifi-
cations at low energies. We begin by recalling that Hodge’s decomposition theorem
on compact Riemannian manifolds leads to the following isomorphism,

Harmn = Hn,

where Harmn is the space of n-forms τ such that ∆τ = 0,

∆ = dd† + d†d = (d+ d†)2
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being the operator measuring four-dimensional masses. The above isomorphisms
implies that there is a unique harmonic representative for each cohomology class,
meaning we can take the bases presented in eq. (2.21) to consist of harmonic forms
[22]. Recall that on a Calabi-Yau manifold, there exist a harmonic 0-form r0(x) ≡ 1,
the (3,0)-form Ω (and so a (0,3)-form Ω), the (3,3)- volume form, h1,1 harmonic
(1,1)- and (2,2)-forms, and finally h2,1 (2,1)- and (1,2)-forms. At low energies, we
can expand the fields living in 10-dimensions in this basis of harmonic forms.

We begin by expanding the dilaton φ as

φ(y, x) = r0(x)φ(y), (4.44)

where recall the only internal scalar r0(x) = 1. The four-dimensional field φ(y)

is a modulus, i.e. a massless scalar. The lack of harmonic one-forms implies that
the expansion of the B-field has no components with one external and one inter-
nal indices. The purely internal component is decomposed in {ra} – in fact, this
is invariant under the gauge transformations of B, since gauge fields are (rather
tautologically) only defined up to cohomology. Hence,

B(y, x) = r0(x)B(y) +Ba(y)ra(x), (4.45)

where B(y) and Ba(y) are, once again, moduli. We quote from [56] the remaining
expansions, namely that of the metric

giȷ̄(x, y) = iva(x) (ωa)iȷ̄ (y) and gij(x, y) = iz̄k(x)

(
(χ̄k)ik̄l̄ Ω

k̄l̄
j

|Ω|2

)
(y), (4.46)

and those of the Ramond-Ramond potentials,

C1(y, x) = r0(x)C
0
1(y) (4.47a)

and C3(y, x) = Ca
1 (y)ra(x) + ξK(y)αK(x)− ξ̃K(y)α̃K(x) (4.47b)

for type IIA, and

C0(y, x) = r0(x)C0(y), (4.47c)
C2(y, x) = r0(x)C2(y) + ca(y)ra(x) (4.47d)
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and C4(y, x) = V K
1 (y)αK(x) + ρa(y)r̃

a(x) (4.47e)

for type IIB.
Substituting these into the ten-dimensional actions, and integrating out the

Calabi-Yau, we find the four-dimensional effective actions [56]

Seff
IIA =

∫
R3,1

−1

2
R ? 1 +

1

2
ReNABF

A ∧ FB +
1

2
ImNABF

A ∧ ?FB

−Gabdt
a ∧ ?dt̄b − huvdqu ∧ ?dq̄v

for type IIA, and analogously for type IIB,

Seff
IIB =

∫
R3,1

−1

2
R ? 1 +

1

2
ReMKLF

K ∧ FL +
1

2
ImMKLF

K ∧ ?FL

−Gkℓdz
k ∧ ?dz̄ℓ − hpqdq̃p ∧ ?dq̃q.

Let us dissect Seff
IIA. The analysis for type IIB is analogous. Firstly,

∫
R ? 1 is

the usual gravitational term. Next, we have a gauge kinetic term featuring the field
strengths FA = (dC0

1 , dC
a
1 ). The coupling matrix N can be shown to be given by

ReN =

(
−1

3
KabcB

aBbBc 1
2
KabcB

bBc

1
2
KabcB

bBc −KabcB
c

)
,

and ImN = −K
6

(
1 + 4GabB

aBb −4GabB
b

−4GabB
b 4Gab

)
.

The main focus of our analysis, however, will be the final term, which contains
the complex scalar fields t (in type IIA) and z (in IIB), as well as the metrics Gab

and Gkℓ, which set the relative scaling of the kinetic terms. As we will see, all these
terms arise from purely geometrical considerations.

The action Seff
IIA is that of a N = 2 ungauged supergravity theory in four dimen-

sions. In such a theory, the moduli we identified in eqs. (4.44) to (4.47) fall into
N = 2 multiplets. These are collected in table 4.2. In particular, we will now focus
on the scalars in the vector multiplets of type IIA and type IIB and on the spaces
they span. The scalars contained in the hypermultiplets, on the other hand, are
related to a quaternionic manifold; we will not consider these further here.
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type IIA gravity multiplet (gµν , C
0
1)

h1,1 vector multiplets (Ca
1 , v

a, Ba)

h2,1 hypermultiplets (zk, ξk, ξ̃k)

tensor multiplet (Bµν , φ, ξ
0, ξ̃0)

type IIB gravity multiplet (gµν , V
0
1 )

h2,1 vector multiplets (V k
1 , z

k)
h1,1 hypermultiplets (va, Ba, ca, ρa)

tensor multiplet (Bµν , C2, φ, C0)

Table 4.2: The N = 2 multiplets in type IIA (above) and IIB (below) and their
moduli content.

Recall that our vacuum has a cross product structure R3,1 × X6, so that the
internal manifold X6 – whose geometry, recall, is defined by parameters ω and Ω –
is taken to be the same at every point in our Minkowski spacetime. In some sense,
we can view this as a “vacuum expectation value” for the geometry of the effective
field theory. Upon perturbing the fields from their background values, however, we
allow the internal manifold to vary across R3,1, effectively turning the scalars ω and
Ω into functions of the external coordinates, ω(y) and Ω(y). This is depicted in
fig. 4.1.

The space of possible ω, the Kähler moduli, turns out to be precisely the coho-
mology group H1,1. In terms of the usual basis {ra}, then, we can expand

ω(y) = ω0 + ta(y)ra,

where ω0 is the value of ω in the vacuum, i.e. what we previously referred to as
ω. We see the emergence of the scalars ta as parametrising the pertubation in the
geometry-defining parameter ω. These complex combinations of Kähler and B-field
deformations are sometimes referred to as complexified Kähler deformations. In
terms of the expansions of the metric and the B-field, we have that ta = Ba + iva.

The metric Gab also has a geometrical origin:

Gab =
1

4vol

∫
X6

ra ∧ ?rb,
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R3,1 R3,1

X6(ω,Ω)
X6(ω(y),Ω(y))

Figure 4.1: (Left.) A “vacuum expectation value” for the geometry, with the base
space being Minkowski, R3,1, and the same manifold X6 (represented by a grey blob),
defined by ω and Ω, at every point in the base manifold. (Right.) In this context,
a perturbation effectively implies allowing the internal manifold X6 to vary across
R3,1. The size and shape of the deformations are purely illustrative.

so that it is (related to) the intersection number associated with ra and ?rb.
A similar story develops for the scalars zk. In particular, their nature is that

of deformations of the complex structure. This is due to the fact that the complex
structure moduli, i.e. the space of possible Ω, is the cohomology group H2,1. Choos-
ing a (complex) basis {χk}, we can express perturbations about the background
value Ω0 of Ω as

Ω(y) = Ω0 + zk(y)χk.

The metric Gkℓ also has a geometrical origin [56],

Gkℓ =
−1∫
Ω ∧ Ω

∫
X6

χk ∧ χℓ.

4.8 Flux compactifications
We will now relax the assumption that the NSNS and RR fluxes vanish. That
of flux compactifications is a very active area of research: flux compactifications
are attractive because they break the amount of preserved supersymmetry in a
stable way, they provide a stabilisation mechanism for at least some of the moduli,
and could explain the hierarchy problem, amongst other interesting prospects [13].
Furthermore, following the conjecture of the AdS/CFT correspondence [57], it was
found that certain type IIB flux solutions could be dual to confining gauge theories
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– see, for instance, [58].

4.8.1 SU(3)× SU(3) structures

Prior to turning back on the fluxes, let us consider the case of two internal spinors,
η1+ and η2+ (and their complex conjugates, of course). As we have seen, each defines
an SU(3) structure, which may be characterised in terms of a real 2-form ω and a
complex 3-form Ω. Similarly, two SU(3) structures are given by two copies of (ω,Ω).
Locally,

ω1 = j + v ∧ v′, (4.48a)
ω2 = j − v ∧ v′, (4.48b)
Ω1 = k ∧ (v + iv′), (4.48c)

and Ω2 = k ∧ (v − iv′), (4.48d)

where v, v′ are real 1-forms, j is a real (1,1)-form, and k is a complex (2,0)-form .
Together, {j, k, v, v′} form a local SU(2) structure. Indeed, the two SU(3) structures
defined by η1+ and η2− intersect on an SU(2) structure on T , unless the two spinors
are parallel everywhere, in which case they give rise to a single SU(3) structure on
T [33]. Of course, these are merely the two ends of a spectrum of possibilities. We
will now briefly formalise this analysis.

The most general relation66 between the two spinors is

η2+ = cη1+ + d(v + iv′)mγ
mη1−, (4.49)

for some complex functions c, d such that |c|2 + |d|2 = 1, with c [d] vanishing if η1,2+

are perpendicular [parallel]. It is convenient to introduce a spinor χ+, normalised
such that χ†

+χ+ = 1 and orthogonal to η1+, i.e. χ†
+η

1
+ = 0. We can then write

η2+ = cosϕη1+ + sinϕχ+,

where 0 ≤ ϕ ≤ π/2 is the angle between η1+ and η2+. In the case of ϕ = 0 everywhere,

66A basis for Clifford(6) spinors is provided by {η1+, γmη1+, γmη1−, η1−}. However, since the left-
hand side of eq. (4.49) has positive chirality, only η1+ and γmη1− can be used.

96



4.8. Flux compactifications

i.e. for η1 ‖ η2, we need not define χ+, and so we have a single SU(3) structure.
If instead η1+ ⊥ η2+ everywhere, the resulting local SU(2) structure – which in fact
turns into a global SU(2) structure in this case – is referred to as “static”. The
intermediate case in which η1 and η2 are generically neither parallel nor orthogonal,
and ϕ varies along the manifold, is referred to as a “dynamic intermediate” SU(2)
structure. The case in which η1+ and η2+ are never parallel comes with more stringent
constraints – for instance, the complex vector obtained by the bilinear η1†+ γmη2− is
nowhere vanishing, and so the Euler characteristic of the manifold must vanish [38].

The SU(3) and SU(2) structures on T are particular cases of a more general
case, namely that of SU(3)×SU(3) structures on T ⊕T ∗. These have a more natural
description, one in terms of generalised objects, and in particular, Spin(6, 6) spinors.
Given Spin(6) spinors η1,2+ , recall we assembled two naked Spin(6, 6) pure spinors in
eq. (3.24) as

Φ± = e−ϕη1+ ⊗ η2±. (4.50)

In the above, we introduced the dilaton. Its introduction in terms of the norm of
the pure spinors [36] is related to the trivialisation of

√
det T in eq. (3.23) [32];

in this sense, then, the dilaton can be regarded as “defining” the polyform-spinor
isomorphism [15].

We may also dress these with B-transformations as follows,

Φ±
D ≡ eBΦ±, (4.51)

where again we remark that Φ± and Φ±
D are sections of the spinor bundle over T⊕T ∗

and of that over the twisted generalised bundle, respectively.

In particular, as we mentioned in section 3.7, each pure spinor Φ defines an
SU(3, 3) structure. For two pure spinors to define a common SU(3)×SU(3) structure,
we need to impose certain compatibility conditions between Φ+ and Φ−, namely that
they have equal normalisation, and that

dim(LΦ+ ∩ LΦ−) = 3.

Rephrasing them in terms of the Mukai pairing in eq. (3.26), the normalisation and
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compatibility conditions become

(Φ+,Φ
+
) = (Φ−,Φ

−
) (4.52a)

and (Φ+,X · Φ−) = (Φ
+
,X · Φ−) = 0, (4.52b)

the latter holding for all sections X [33]. Note that the spinors in eq. (4.51) do
satisfy these conditions, and therefore define an SU(3)×SU(3) structure.

The positive- and negative-chirality spinor bundles S± are both 32-dimensional,
giving a total of 64 dimensions. The compatibility equations in eq. (4.52) amount to
13 conditions. We can transform between structures by means of O(6, 6) transfor-
mations. Bearing in mind that each such structure is invariant under SU(3)×SU(3),
we see that the space of structures is given by

Σ =
O(6, 6)

SU(3)× SU(3)
,

which is 50-dimensional. A pair of compatible pure Spin(6, 6) spinors therefore
provides an embedding

(Φ+,Φ−) : Σ× R+ ↪−→ S+ ⊕ S−

where the R+ factor consists in rescalings of the spinors [7].

Making use of the local SU(2) structure presented in eqs. (4.48) and (4.49), we
may write the naked spinors as (momentarily dropping the factor related to the
dilaton φ)

Φ+ = +(ce−ij − idk) ∧ e−iv∧v′ (4.53a)
and Φ− = −(de−ij + ick) ∧ (v + iv′). (4.53b)

If η1 ‖ η2 at a point, then we find

Φ+ = e−ij ∧ e−iv∧v′

and Φ− = −ik ∧ (v + iv′),
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SU(3) structure SU(2) structure SU(3)×SU(3) structure

Φ+ e−iω −ik ∧ e−iv∧v′ (ce−ij − idk) ∧ e−iv∧v′

Φ− −iΩ −e−ij ∧ (v + iv′) −(de−ij + ick) ∧ (v + iv′)

where ω = j + v ∧ v′ and Ω = k ∧ (v + iv′)

Table 4.3: The pure spinors Φ± characterising SU(3) and SU(2) structures on T and
SU(3)×SU(3) structures on T ⊕ T ∗ [33, 38].

which, in light of eq. (4.48), should be taken to mean

Φ+ = e−iω and Φ− = −iΩ. (4.54)

This corresponds to the earlier case, in which two coinciding spinors define a single
SU(3) structure. They are annihilated by [38]

(ım − iωmndx
n∧)e−iω = 0 and dxm ∧ Ω = ımΩ = 0.

These correspond to the eigenbundles of the generalised almost complex structures
in eq. (3.21).

Conversely, if η1 ⊥ η2, then

Φ+ = −ik ∧ e−iv∧v′

and Φ− = −e−ij ∧ (v + iv′),

where we notice that Φ+ takes the form of −iΩ in four dimensions, and that of eiω

in two-dimensions, and vice versa for Φ−.
The results are summarised in table 4.3.

4.8.2 Vacua with Neveu-Schwarz-Neveu-Schwarz fluxes

We now consider the case of a non-vanishing NSNS flux H = dB.
As already mentioned, the conditions for the preservation of four-dimensional

N = 2 supersymmetry in the presence of a non-trivial H – but with the Ramond-
Ramond fluxes again absent, at least for now – were found in [43]; they were later
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reformulated in the language of generalised complex geometry in [59]. In the un-
twisted picture (in which we consider the untwisted generalised tangent bundle, and
explicitly twist the integrability conditions, amongst others), they read

dHΦ
+ = 0,

and dHΦ
− = 0.

Recall from section 3.7 that the H-twisted closure of two pure spinors, implied
by the equations above, defines a generalised Calabi-Yau metric structure. We may
also see this enhancement of supersymmetry at the level of the split in eq. (4.36) – in
the absence of Ramond-Ramond fluxes relating ε1 and ε2, the most general solution
is to take two different external spinors ξ1 and ξ2. This then leads to an N = 2

solution [15, 38].

We also mention the results obtained in [9, 60–63] that the equations for N = 1

supersymmetry with a non-trivial H flux are

dH(e
−ϕΦ−) = 0,

and d(e−ϕΦ+) = ie−2ϕ ? H,

where Φ+ = e−ϕe−iω and Φ− = −ie−ϕΩ – i.e. the pure spinors in eq. (4.54), with
the dilaton factor reinstated. Interestingly, the twisting of the equation of motion
of Φ+ is not of the usual form [13].

4.8.3 N = 1 vacua with Neveu-Schwarz-Neveu-Schwarz and
Ramond-Ramond fluxes

In this section, we will analyse the description ofN = 1 vacua in terms of generalised
structures. As before, we will find both algebraic and differential conditions – the
former originating from requiring an N = 2 effective theory in four dimensions,
whilst the latter from demanding an N = 1 vacuum [38].

In [38], it was found that the conditions for N = 1 supersymmetric vacua can be
given in terms of pure Clifford(6,6) spinors (see eqs. (4.51) and (4.53)) for vanishing
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cosmological constant as

dH(e
2λ−ϕΦ1) = 0, (4.57a)

and dH(e
2λ−ϕΦ2) = e2λ−ϕdλ ∧ Φ2 +

i

8
e3λ ? σ(f), (4.57b)

where f is a form on the internal manifold such that

F = f + vol4 ∧ f̃ . (4.58)

The form of f above follows from the requirement that Poincaré invariance be pre-
served on M4. The duality in eq. (4.27) appears here as

f̃ = σ(?6f).

In eq. (4.57), we used the σ map defined in eq. (3.27), and we introduced the notation

Φ1 =

{
Φ+ for type IIA
Φ− for type IIB,

and viceversa for Φ2.

There is also a condition on the norm of the pure spinors that follows fromN = 1

supersymmetry; defining |a|2 = |η+1 |2 and |b|2 = |η+2 |2, so that

|Φ±|2 = |a|2|b|2,

the condition reads [38]

d|a|2 = |b|2dλ, and d|b|2 = |a|2dλ.

Note that we can split eq. (4.57b) into real and imaginary parts as

dH(e
λ−ϕRe Φ2) = 0, (4.59a)

and dH(e
3λ−ϕIm Φ2) =

1

8
e4λ ? σ(f). (4.59b)

Firstly, we note that the existence of two compatible pure spinors Φ1 and Φ2
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defines an SU(3)×SU(3) structure on T ⊕ T ∗. This is the algebraic constraint.
As we saw, SU(3)×SU(3) structures elegantly generalise many of the structures on
T that are of physical relevance – for instance, they encompass SU(3) and SU(2)
structures.

We briefly make three remarks. Firstly, the supersymmetry conditions in eqs. (4.57a)
and (4.59) are not valid in the absence of Ramond-Ramond fluxes – or rather, for
f = 0 they do not contain information. Secondly – and we will return to this point
later – the supersymmetry conditions in eqs. (4.57a) and (4.59) are only equivalent
to the full equations of motion if they are supplemented with the Bianchi identities
and the equations of motion of the fluxes. Thirdly, as for the SU(3) case, the in-
trinsic torsion components W ij introduced in eq. (3.32) are entirely determined by
the fluxes, the warp factor and the derivatives of the dilaton [38].

From eq. (4.57a), we see that e2λ−ϕΦ1 satisfies the definition of a (twisted) gen-
eralised Calabi-Yau structure (à la Hitchin). Its closure under dH , in particular,
corresponds to the twisted integrability of its associated generalised almost complex
structure J1. On the other hand, from eq. (4.59), Φ2 fails to be closed under dH ,
in fact solely due to its imaginary part, and so its associated generalised almost
complex structure J2 is not integrable. Whilst Φ1 and Φ2 do form an SU(3)×SU(3)

structure, as described earlier, they do not meet the integrability condition expected
of a generalised Calabi-Yau metric structure. It is evident from eq. (4.59b) that it
is precisely the Ramond-Ramond fluxes that spoil the closure of Φ2 and therefore
break the integrability of J2, effectively acting as a source for the Nijenhuis tensor.

There is a nice symmetry between type IIA and type IIB: in both cases, it is the
pure spinor whose parity coincides with that of the Ramond-Ramond fluxes which
is integrable. To gain further insight into the geometry of each type, we need to
introduce a classification of pure spinors. On a 6-dimensional manifold, pure spinors
can be written as

Φ = eA ∧ tk

for A a complex 2-form, and tk a holomorphic (0 ≤ k ≤ 3)-form, such that

A6−2k ∧ tk ∧ tk 6= 0.

The “type” of Φ is k. This is related to the generalised Darboux theorem mentioned
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in section 3.4, by means of which we can locally choose k holomorphic coordinates
and 6−2k real symplectic ones, where considerations on chirality lead to k being even
in type IIA and odd in type IIB. Writing A = B− iω, we notice that a (k = 0)-type
pure spinor is (the B-transform of) e−iω, and it has non-zero norm if ω∧ω∧ω 6= 0. On
the other hand, for a (k = 3)-type pure spinor we may take, for instance, Φ = Ω for
a complex 3-form Ω, with the non-degeneracy of the norm of the spinor translating
into Ω ∧ Ω̄ 6= 0, and the spinor’s purity implying the decomposable nature of Ω.
Closure of the spinor gives dω = 0 and thus defines a symplectic geometry, as we
saw. By eq. (3.31), the integrability of the resulting complex structure implies then
that dΩ cannot be a (2,2)-form – in particular, if dΩ = 0, the canonical bundle is
holomorphically trivial – as opposed to only being topologically trivial – which we
recall characterises generalised Calabi-Yau structures.

We see, then, that type IIA supergravity leads to manifolds that are (twisted)
symplectic about regular points, with the exception of the case c = 0 (the static
SU(2) structure), for which the manifold is a complex-symplectic hybrid. Type IIB
is instead realised entirely on hybrid manifolds, which become purely complex67

at points where d = 0. In general, then, we see that N = 1 vacua guide us to
hybrid symplectic-complex manifolds. It is clear then that generalised complex
structures – which, as we remarked in chapter 3, interpolate precisely between these
two geometries – provide a natural formalism to describe flux compactifications
[22, 38].

Looking slightly ahead, we emphasize the appearance of the Ramond-Ramond
fluxes as integrability defects for Φ2. One may wonder whether these fluxes may be
included in the twisting of the differential operator instead, as was done for non-
trivial H fluxes. This would define a new notion of integrability which would apply
to Φ2 as well. This is precisely the theme of the next chapter, in which we will
present how a “geometrisation” of the RR fluxes – in other words, an extension of
the tangent bundle to incorporate the RR gauge transformations – can be achieved.

67Note that, unlike the symplectic structure, the complex one is not twisted [22].
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Chapter 5

Generalising generalised geometry

5.1 Exceptional group theory

Recall that the exceptional Lie groups E8, E7, and E6 correspond to the Dynkin
diagrams

E8 ,

E7 ,

and E6 .

We can define the exceptional groups Ed for d = 5, 4, 3 by extrapolating the Dynkin
diagrams above, so that, successively deleting roots from the right,

D5 ,

A4 ,
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and A2 ⊕ A1 ,

respectively, so that we have the identifications [51]

E5 ≡ Spin(10),
E4 ≡ SU(5),

and E3 ≡ SU(3)× SU(2).

For these, we have the following split real forms

E5(5) = Spin(5, 5),
E4(4) = SL(5;R),

and E3(3) = SL(3;R)× SL(2;R).

5.2 U-duality and exceptional generalised geome-
try

It was noticed in [64] that the Kaluza-Klein n-torus compactification of eleven-
dimensional supergravity produces an (11− n)-dimensional theory which displays a
number of symmetries; in particular, the gauge groups are the exceptional groups
described above, and summarised in table 5.1. Hull and Townsend conjectured in [5]
that a discrete version of these groups survives as a symmetry of the full M-theory.

Geometrical formalisms which offer a natural covariance under the symmetries of
a theory are very attractive for a number of reasons. Covariance under the T-duality
group68 O(d, d) was certainly a motivation for studying generalised geometry. It is
then natural to try to extend the formalism of generalised geometry to incorporate
the larger symmetry groups discussed above. In particular, we seek to extend the
O(d, d) covariance to the E7(7) covariance corresponding to U-duality. This extension
was initially proposed by Hull [6], and Pires Pacheco and Waldram [7]. In particular,
it allows us to include RR degrees of freedom within the formalism [15].

68Technically, the proper T-duality group is the discrete version, O(d, d;Z).
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n En Hn dim(En) dim(En/Hn)

8 E8(8) Spin(16)/Z2 248 128
7 E7(7) SU(8)/Z2 133 70
6 E6(6) Sp(4)/Z2 78 42
5 Spin(5, 5) (Sp(2)× Sp(2))/Z2 45 25
4 SL(5;R) SO(5) 24 14
3 SL(3;R)× SL(2,R) SO(3)× SO(2) 11 7
2 SL(2;R)× R SO(2) 4 3

Table 5.1: The U-duality groups En, their maximal compact subgroups Hn, and the
dimensionalities of En and En/Hn. Taken from [6].

5.3 Type II geometries
The perturbative charges of string theory – the momentum and winding number –
can be assembled into an SO(d, d) vector. On the other hand, the even [odd] forms
corresponding to the RR charges in type IIA [IIB] transform under the spinor rep-
resentation of SO(d, d) [6]. This prompts us to perform the following generalisation:

T ⊕ T ∗ → T ⊕ T ∗ ⊕ S±.

In fact, to accommodate the additional charges69 in d = 6, the appropriate gener-
alised bundles for type IIA and type IIB are, respectively,

E0 = T ⊕ Λ5T ⊕ Λ5T ∗ ⊕ T ∗ ⊕ S±, (5.1)

where Λ5T corresponds to the (Hodge dual of the) Kaluza-Klein monopole charge,
and Λ5T ∗ to the NS fivebrane charge70,71 [6].

The generalisation of the natural O(6, 6) action on T ⊕ T ∗ is a natural E7(7)

action on E0, under which the natural symplectic form and symmetric quartic on
E0 are left invariant.

The exceptional generalised tangent bundle in eq. (5.1) amounts to a (weighted)
decomposition of the fundamental representation 56 of E7(7) under the GL(6;R) ⊂

69The generalisation to the bundle T ⊕ T ∗ ⊕ S± only suffices for d ≤ 4 [6].
70Note that, in D = 11, these charges give Λ6T ⊕ Λ5T ∗.
71Note that Λ5T ⊕ Λ5T ∗ ' T ∗ ⊕ T for d = 6 [6].
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E7(7) subgroup consisting of the diffeomorphisms on the (exceptional) tangent space.
To see this, we now embed GL(6;R) into each of the two factors of SL(2;R) ×
O(6, 6) ⊂ E7(7).

We recall that, given M ∈ GL(6;R), we already defined the action of GL(6;R)
on the vector representation 12 of O(6, 6) in eq. (3.2). We are then left with having
to embed the GL(6;R) action into the SL(2;R) factor. We do so by defining M ∈
GL(6;R) to act on a SL(2;R) doublet via the matrix [65](

(det M)−1/2 0

0 (det M)1/2

)
.

Under this decomposition, an element of 56 can be shown to transform as a section
of the bundle72 E0 defined in eq. (5.1). We will refer to E0 as the (untwisted)
exceptional generalised tangent bundle.

Under the same GL(6,R) ⊂ E7(7) subgroup, the adjoint representation 133 of
E7(7) can be refined into

adF̃ = (T ⊗ T ∗)⊕ Λ2T ⊕ Λ2T ∗ ⊕ R⊕ Λ6T ∗ ⊕ Λ6T ⊕ Λ−T ∗ ⊕ Λ−T. (5.2)

To make contact with ordinary generalised geometry, we can decompose the
fundamental representation 56 of E7(7) under the maximal subgroup (S)O(6, 6) ×
SL(2;R) – whose discrete versions are the T - and S-duality symmetry groups of the
full string theory [5] – as

56 = (12,2) + (32,1),

so that an element X transforming in 56 decomposes into

X = (X Ai,X +),

where the fundamental O(6, 6) index A ∈ {1, . . . , 12}, the SL(2;R) index i ∈ {1, 2},
and X + is an O(6, 6) Weyl spinor [6, 65]. Similarly, for the adjoint representation
133 of E7(7),

133 = (1,3) + (66,1) + (32′,2),

72More precisely, elements of the fundamental representation of E7(7) decomposed under the
GL(6;R) subgroup transform as sections of the weighted bundle (Λ6T ∗)1/2 ⊗ E0 [65].
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so that, given a section µ of the adjoint bundle,

µ = (µi
j, µ

A
B, µ

i−), (5.3)

where i ∈ {1, 2} is a SL(2,R) doublet index, and A ∈ {1, . . . , 12} is an O(6, 6)

fundamental index.

5.3.1 Type IIA supergravity gauge fields

We are interested in the realisation of shifts in the fields of type IIA supergravity,
namely the internal B field, the internal 6-form73,74 B̃, and the formal sum C− =

C1 + C3 + C5 of RR potentials75. Incorporating these shifts implies extending the
framework of (ordinary) generalised geometry – which, as we saw, only includes
shifts in the B field – and this is indeed possible with the generalisation to E7(7).

We thus seek sections of the E7(7) adjoint bundle whose exponentiation results in
the gauge transformations described above; these can be identified with B ∈ Λ2T ∗,
B̃ ∈ Λ6T ∗, and C− ∈ Λ−T ∗ in the decomposition in eq. (5.2), respectively. In
fact, via an embedding GL(6,R) ⊂ SL(2,R)×O(6, 6) ⊂ E7(7), we can recognise the
generator of these shifts as the element in eq. (5.3) which takes the particular form

(B̃vivj,
(

0 0
B 0

)
, viC−),

where the SL(2,R) vector vi = (1, 0), and vi ≡ eijv
j [15, 65].

It can be shown that the B, B̃, and C− defined above establish the following
subalgebra within e7(7)

[B + B̃ + C−, B′ + B̃′ + C−′] = 2〈C−, C−′〉+B ∧ C−′ −B′ ∧ C−,

where the 6-form 2〈C−, C−′〉 amounts to a B̃ shift, while B ∧ C−′ − B′ ∧ C− to a
C− shift [15, 65].

73This is the internal component of the 10-dimensional dual of the B field.
74Initially, we are only interested in shifts of the internal RR fields (and of the B field); however,

in order for the gauge fields to form a closed set under the action of the U -duality group, we are
forced to consider shifts in B̃ as well [15].

75Note that C− transforms as a chiral spinor under Spin(6, 6).
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5.3.2 Exceptional twisting

Given non-zero form field strengths, only a local description of the potentials B, B̃,
and C− is possile. In particular, within an overlap Uα ∩Uβ, we must patch sections
of the exceptional generalised bundle by

X(α) = edλ
+
(αβ)edλ̃(αβ)edλ(αβ)X(β),

as to account for the supergravity gauge transformations [65]

B(α) −B(β) = dλ(αβ),

B̃(α) − B̃(β) = dλ̃(αβ) + 〈dλ+(αβ), e
−dλ(αβ)C−

(β)〉,

and C−
(α) − C

−
(β) = dλ+(αβ) + e−dλ(αβ)C−

(β).

The resulting X(α) are sections of a twisted exceptional generalised tangent bun-
dle E, and B, B̃, and C− are connections on gerbes [7].

5.3.3 SU(8)/Z2 structures and exceptional generalised met-
rics

It can be shown that the background {B, B̃, C−, g, φ} parametrises E7(7)/(SU(8)/Z2),
where SU(8)/Z2 is the maximal compact subgroup of E7(7). This is significant, be-
cause spinors transform in the fundamental representation 8 of its double cover,
SU(8) [65]. The fact that the form fields, the metric, and the dilaton parametrise
the above coset space is equivalent to the statement that they define an SU(8)/Z2

structure J on E0; this is an almost complex structure, i.e. J 2 = −1, that is
compatible with E7(7), i.e.

Ω(J X ,J Y ) = Ω(X ,Y ) and q(J X ) = q(X ),

so that J defines a subgroup SU(8)/Z2 ⊂ E7(7) [7]. In the above, Ω and q are the
symplectic form and quartic invariants defining the E7(7) structure.

In analogy with (ordinary) almost complex structures (see eq. (2.4)), the speci-
fication of an SU(8)/Z2 structure can be recast as the partitioning of the (complex-
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ified) exceptional tangent bundle into two subbundles,

E ⊗ C = L ⊕ L̄,

where the subbundle L transforms (or, more precisely, its fibres transform) in the
representation76 28 of SU(8)/Z2 [7].

Having equipped E with a symplectic structure Ω and an SU(8)/Z2 structure
J , we find an exceptional, positive-definite generalised metric G ∈ Γ(S2E∗) on E,

G(X ,X ) = Ω(X ,J X ).

A generic exceptional generalised metric can be constructed out of a specific one G0
given only by {g, φ} via

G(X ,X ) = G0(eC
−
eB̃eBX , eC

−
eB̃eBX ),

which is the “exceptionalisation” of eq. (4.8) [65].

5.4 M-geometries
The Type IIA geometry described in the previous section arises as the reduction of
an M-theory geometry [6].

Consider a (d+1)-dimensional manifoldM given by a circle bundle over the usual
d-dimensional manifold M . We label the tangent bundles on M and M as T and
T , respectively, and similarly for the cotangent bundles. Projecting circle-invariant
p-forms and p-vectors yields the isomorphisms [6]

ΛpT |U(1) ' ΛpTM ⊕ Λp−1TM and ΛpT ∗|U(1) ' ΛpT ∗
M ⊕ Λp−1T ∗

M . (5.4)

Consider the geometry on M given by eq. (5.1). We first note that, for d = 6,

S+ ' Λ+T ∗ = Λ0T ∗ ⊕ Λ2T ∗ ⊕ Λ4T ∗ ⊕ Λ6T ∗,

and Λ6T ∗ = Λ6T . Therefore, for Type IIA we may write the (untwisted) generalised
76Note that 56 = 28+ 28.
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tangent bundle as

E0 = T ⊕ Λ5T ⊕ Λ5T ∗ ⊕ T ∗ ⊕ Λ0T ∗ ⊕ Λ2T ∗ ⊕ Λ4T ∗ ⊕ Λ6T.

We now note that, following the isomorphisms in eq. (5.4), the factors on the right-
hand side above arise from the following projections:

T ⊕ Λ0T ∗ ' T |U(1) ,

Λ2T ∗ ⊕ T ∗ ' Λ2T ∗∣∣
U(1)

,

Λ5T ∗ ⊕ Λ4T ∗ ' Λ5T ∗∣∣
U(1)

,

and Λ6T ⊕ Λ5T ' Λ6T
∣∣
U(1)

.

Therefore, we see that the type IIA geometry on M studied in the previous sections
emerges as the reduction of M-geometry on M given by77 [6]

E0 = T ⊕ Λ2T ∗ ⊕ Λ5T ∗ ⊕ Λ6T . (5.5)

A section V ∈ Γ(E0) of this bundle is then the formal sum

V = v + ρ+ σ + τ, (5.6)

where v is a vector, ρ a 2-form, σ a 5-form, and τ a 6-vector [6].

5.4.1 Geometrising the gauge symmetry of 11-dimensional
supergravity

As before, we adorn the bundle with a connective structure by imposing

V(α) = edλ(αβ)+dλ̃(αβ)V(β) (5.7)

77This is often written with Λ6T replaced by the space of weighted one-forms, i.e. as

E0 = T ⊕ Λ2T ∗ ⊕ Λ5T ∗ ⊕ (T ∗ ⊗ Λ7T ∗).

This relies on the canonical vector bundle isomorphism Λ6T ' T ∗ ⊗ Λ7T , and on the further
identification between Λ7T and Λ7T ∗ enabled by the volume form, on a 7-dimensional manifold.
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on the overlap U(α)∩U(β), where we take the generator λ(αβ) to be a 2-form (the rea-
son for this should become clear by the end of this section) satisfying the consistency
condition

λ(αβ) + λ(βγ) + λ(γα) = dκ(αβγ)

on triple overlaps U(α) ∩ U(β) ∩ U(γ), for some 1-forms κ(αβγ) which in turn satisfy

κ(αβγ) + κ(βγδ) + κ(γδα) + κ(δαβ) = g−1
(αβγδ)dg(αβγδ)

on quadruple intersections U(α)∩U(β)∩U(γ)∩U(δ), where, for quantised supergravity
flux, the U(1)-valued functions g(αβγδ) obey the cocyle condition

g(αβδγ)g(βγδϵ)g(γδϵα)g(δϵαβ)g(ϵαβγ) = 1

on quintuple overlaps U(α) ∩ U(β) ∩ U(γ) ∩ U(δ) ∩ U(ϵ) [6, 66]. The 5-form λ̃(αβ) is re-
quired to satisfy similar conditions78, culminating in a cocycle condition on octupole
overlaps.

The exponentiated action of the patching in eq. (5.7) corresponds to, at the level
of the components in eq. (5.6), the transformations [66]

v(α) − v(β) = 0,

ρ(α) − ρ(β) = ıv(β)dλ(αβ),

σ(α) − σ(β) = dλ(αβ) ∧ ρ(β) +
1

2
dλ(αβ) ∧ ıv(β)dλ(αβ) + ıx(β)

dλ̃(αβ),

and τ(α) − τ(β) = idλ(αβ) ∧ σ(β) − jdλ̃(αβ) ∧ ρ(β) + jdλ(αβ) ∧ ıv(β)dλ̃(αβ)

+
1

2
jdλ(αβ) ∧ dλ(αβ) ∧ ρ(β) +

1

6
jdλ(αβ) ∧ dλ(αβ) ∧ ıv(β)dλ(αβ).

where we employ the “j-notation” of Pires-Pacheco and Waldram [7].
We have thus twisted the bundle E0 with a gerbe, to give a new bundle E .

Formally, we may define this bundle via the extensions [66]

0 −→ Λ2T ∗ −→ E ′′ −→ T −→ 0,

0 −→ Λ5T ∗ −→ E ′ −→ E ′′ −→ 0,

78In fact, λ(αβ) appears in the conditions for λ̃(αβ); this is a manifestation of the Chern-Simons
coupling [66,67].
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and 0 −→ T ∗⊗Λ7T ∗ −→ E −→ E ′ −→ 0.

The adjoint representation 133 of E7(7) can be expanded in terms of GL(7;R)
representations as

133 = 49⊕ 35⊕ 35⊕ 7⊕ 7,

so that the adjoint bundle decomposes into [7]

(T ⊗ T ∗)⊕ Λ3T ⊕ Λ3T ∗ ⊕ Λ6T ⊕ Λ6T ∗.

Hence, it is natural to include alongside the usual action of GL(7;R) that of a 3-
form A ∈ Λ3T ∗, as well as that of a 6-form Ã ∈ Λ6T ∗. These gerbe connections are
patched via [66]

A(α) − A(β) = dλ(αβ) (5.8a)

and Ã(α) − Ã(β) = dλ̃(αβ) −
1

2
dλ(αβ) ∧ A(β) (5.8b)

on U(α) ∩ U(β). This retrospectively motivates our earlier choice of λ(αβ) and λ̃(αβ)

as 2- and 5-forms, respectively.
The gauge transformations in eq. (5.8) are symmetries of 11-dimensional super-

gravity. Indeed, by varying the Lagrangian for the bosonic sector [68],

L = R ? 1− 1

2
? F ∧ F − 1

6
F ∧ F ∧ A,

where the field strength F = dA, we find the equation of motion [67]

d ? F +
1

2
F ∧ F = 0. (5.9)

or equivalently79,
?F = dÃ− 1

2
A ∧ F (5.10)

for some 6-form potential Ã, which is how the gerbe connection defined above

79Indeed, applying the exterior derivative on eq. (5.10) recovers eq. (5.9). The opposite direction
consists in reformulating eq. (5.9) as the Bianchi identity d ⋆F = − 1

2d(A∧F ), from which, locally
at least, eq. (5.10) follows.
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emerges physically. According to the doubled formalism prescription [67], we can
recast (bosonic) field equations into the constraint that the original field strength
be the Hodge dual of that of the newly-introduced double80; in this case, then, the
field strength of Ã must be

F̃ = ?F = dÃ− 1

2
A ∧ F.

The field strengths vary as

δF = dδA = d2λ = 0

and

δF̃ = dδÃ− 1

2
δ(A ∧ F )

= d2λ̃− 1

2
d2λ ∧ A+

1

2
dλ ∧ F − 1

2
dλ ∧ F

= 0

under the transformations δA = A(α)−A(β) and δÃ = Ã(α)−Ã(β) in eq. (5.8) (where
we omitted the patch labels for clarity), so that the gauge transformations generated
by closed 3-forms dλ and closed 6-forms dλ̃ are truly symmetries of the theory.

Given the infinitesimal gauge transformations δΛ and δΛ̃ by the closed 3- and
6-forms Λ and Λ̃, respectively, we find the commutators,

[δΛ, δΛ̃] = 0,

[δΛ̃, δΛ̃′ ] = 0,

and [δΛ, δΛ′ ] = δΛ∧Λ′ ,

meaning that two A-shifts commute to give an Ã-shift [67]. We see, therefore, that
the gauge symmetry group of 11-dimensional supergravity is Ω3

cl ⋉Ω6
cl, the group of

closed A- and Ã-shifts [66].
Finally, we mention in passing that, at the level of generators, the above com-

mutation relations result in a superalgebra, since, for instance, the generator of the

80Up to some subtleties involving the dilaton.
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3-form potential A is fermionic [67].

5.4.2 Exceptional Courant bracket

We advance our efforts to geometrise the symmetries of 11-dimensional supergravity
by defining, in analogy with the generalised geometry case, the exceptional Dorfman
derivative [66]

LV V ′ = Lvv
′ + (Lvρ

′ − ıv′dρ) + (Lvσ
′ − ıv′dσ − ρ′ ∧ dρ)

+ (Lvτ
′ − jσ′ ∧ dρ− jρ′ ∧ dσ)

of a section V ′ = v′ + ρ′ + σ′ + τ ′ ∈ Γ(E) with respect to another section V =

v + ρ+ σ + τ ∈ Γ(E). This new bracket incorporates both A- and Ã-shifts, on top
of the usual diffeomorphisms.

Its antisymmetrisation gives the exceptional Courant bracket [7],

JV ,V ′K = 1

2
(LV V ′ −LV ′V )

= [v, v′] + Lvω
′ − Lv′ω −

1

2
d (ivω

′ − iv′ω)

+ Lvσ
′ − Lv′σ −

1

2
d (ivσ

′ − iv′σ) +
1

2
ω ∧ dω′ − 1

2
ω′ ∧ dω

+
1

2
Lvτ

′ − 1

2
Lv′τ +

1

2
(jρ ∧ dσ′ − jσ′ ∧ dρ)− 1

2
(jρ′ ∧ dσ − jσ ∧ dρ′)

whose automorphisms correspond to Diff⋉(Ω3
cl⋉Ω6

cl) – precisely the local symmetry
group of supergravity [66].

5.5 11-dimensional supergravity compactifications

We conclude by giving a sketch of the exceptional generalised geometry description
of eleven-dimensional supergravity. Further details can be found in [7,69], on which
this section is based.

We take the eleven-dimensional manifold M11 to be the product of some external
space M4, which we take to be Minkowski R3,1, and a compact, seven-dimensional
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internal manifold X7,
M11 =M4 ×W X7.

We consider the same metric ansatz as in eq. (4.31), except now M,N ∈ {1, . . . , 11},
and m,n ∈ {1, . . . , 7}. In analogy with eq. (4.58), to comply with Poincaré invari-
ance we must take a field strength F of the form

F = F + ?7F̃ ∧ vol4,

where F and F̃ are 4- and 7-forms on the internal manifold. This split provokes a
decomposition of the equations of motion (eq. (5.9)) and the Bianchi identity which
recovers the gerbe structure of the gauge fields and therefore the patching structure
given in eq. (5.8).

Following the compactification ansatz, we can decompose an eleven-dimensional
spinor ε into [7]

ε = ξ+ ⊗ η + ξ− ⊗ η,

for a complex Spin(7) spinor η. This transforms in 8, the fundamental representation
of the SU(8) double cover of the SU(8)/Z2 structure defined by the exceptional
generalised metric G.

The internal spinor is globally non-vanishing, and so it reduces the structure
group of E from SU(8) down to SU(7). This is in analogy with our earlier discus-
sions on generalised geometry; similarly, the supersymmetry conditions associated
with flux compactifications can be described in terms of integrable SU(7) struc-
tures [69]. Thus, we see that the geometries of supersymmetric flux backgrounds
are the “exceptionalisations” (as in, the exceptional analogues) of the complex struc-
tures familiar from conventional geometry.

We now ask if the description of the SU(7) structure in terms of (G, η) can be
rephrased in terms of a single element in some representation of E7(7).

The fundamental representation, i.e. that of the exceptional generalised bundle,
decomposes under U(1)× SU(7) into four eigenbundles,

73 ⊕ 21−1 ⊕ 211 ⊕ 7−3,

where the subscript labels the U(1) charge. We see there are no SU(7) singlets. The
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adjoint representation expands into

10 ⊕ 480 ⊕ 352 ⊕ 35−2 ⊕ 7−4 ⊕ 74.

We note the appearance of an SU(7) singlet – however, this is also a singlet under
U(1), so that it actually gives rise to an R+ × U(7) structure. We proceed with
decomposing representations of increasing dimensionality, by turning to the 912-
dimensional representation often labelled K̃. It can be shown that

K̃C ∼ 17 ⊕ 73 ⊕ 355 ⊕ 1403 ⊕ 2241 ⊕ 281 ⊕ 211 ⊕ c.c.,

so that we finally witness the appearance of a true SU(7) singlet. By studying the
transformation properties of a complex element φ of this singlet, we can confirm that
it is indeed stabilised by SU(7). We see that the existence of a globally non-zero
tensor which transforms in E7(7)’s 912 representation defines an SU(7) structure on
the exceptional generalised tangent space E [7].
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Conclusion

In this dissertation, we attempted to give a brief overview of the mathematical
framework of generalised geometry, and to describe some of its applications in string
theory.

The nature of this work inevitably called for a review of several facets of ordi-
nary complex differential geometry. In particular, we emphasised the importance
of G-structures and their related integrability. Furthermore, we introduced several
geometries and provided a description of them in terms of invariant tensors, and
therefore of G-structures – for instance, we characterised a Calabi-Yau geometry in
terms of the vanishing of the intrinsic torsion of an SU(3) structure.

We described the extension of the tangent bundle T over a manifold to T⊕T ∗. We
saw that this naturally came with an O(d, d)-invariant metric, and then introduced
a generalised Riemannian metric to break down the structure group further to its
maximal compact subgroup O(d)×O(d). Generalised complex structures were then
introduced and shown to attractively interpolate between complex and symplectic
geometries. In order to define the integrability of such structures, we generalised the
Lie bracket and found the Dorfman and Courant brackets. Anticipating the need
to describe fermionic degrees of freedom, we took the lift to Spin(d, d), and intro-
duced generalised spinors. We showed the existence of a correspondence between
differential polyforms and Clifford(d, d) spinors, and between (lines of) pure spinors
and generalised almost complex structures. These associations allowed us to recast
the integrability of generalised structures into differential conditions on spinors, and
thus define certain generalised geometries, including the Calabi-Yau case, solely in
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terms of pure spinors. We ended the mathematical part of the thesis by describing
how T ⊕T ∗ could be twisted with a gerbe. This enlarged the structure group of the
bundle to the geometric subgroup GL(d;R)⋉ Ω2

cl.

The overarching theme of the dissertation, however, was the application of gen-
eralised geometry to type II superstring theory, and in particular to its low-energy
limit, type II supergravity. We gradually embedded the bosonic content of the
theory into the formalism of generalised geometry. We saw how the metric and
Kalb-Ramond enter the framework in the form of a generalised metric, thus ap-
pearing on equal footing. The inclusion of the dilaton in terms of the isomorphism
between generalised spinors and polyforms was more subtle. The gauge symmetry
of the theory was captured by twisting the generalised tangent bundle itself, so that
its transition functions featured the B-gauge transformations alongside the usual
diffeomorphisms. Alternatively, we found that the twisting could appear explicitly
at the level of the integrability structures.

T-duality was presented as one of the main points of contact with generalised
geometry. The perturbative charges of string theory were shown to form an SO(d, d)

vector; the isometry required by a T-duality via the Buscher procedure was shown
to be naturally described in terms of a section of the generalised tangent bundle,
which could be interpreted as a generalised Killing vector for the generalised metric.

We then turned to compactifications of type II supergravity. The further as-
sumption of supersymmetry greatly simplified the equations of motion. We derived
the conditions imposed by supersymmetry on the geometries of the two manifolds:
namely, in the case of fluxless compactifications, a Minkowski external space fi-
bred by a Calabi-Yau internal space. We remarked the geometrical nature of the
deformations in the effective theory, before moving on to consider the case with
Neveu-Schwarz-Neveu-Schwarz and Ramond-Ramond fluxes. We found that these
flux compactifications admitted an elegant and concise description in terms of gen-
eralised geometries, and specifically (twisted) generalised Calabi-Yau metric struc-
tures, with the Ramond-Ramond fluxes acting as integrability defects for one of the
pure spinors.

It was precisely the nature of the Ramond-Ramond fluxes as integrability de-
fects that motivated the discussion of exceptional generalised geometry. This was
presented as an extension of the framework of generalised geometry aimed at ge-
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ometrising the action of the U-duality group. We described the form of the twisting
of the tangent bundle, as well the exceptionalisation of the structures of generalised
geometry. Finally, we sketched the description of 11-dimensional supergravity flux
compactifications in terms of exceptional complex structures and their integrability.

Generalised geometry is a relatively recent area of physics, and so it is also an ac-
tive field of research. Current efforts include extending the formalism of exceptional
generalised geometry to encompass AdS flux backgrounds, and using the AdS/CFT
correspondence to probe superconformal field theories [70].

We also mention a field that is closely related to generalised geometry, namely
that of double field theory, devised by Hull and Zwiebach [71–73]. This formalism
builds on string field theory by introducing dual coordinates associated with the
winding modes. The doubling of spacetime itself naturally leads to a doubling
of the corresponding tangent space, and could therefore provide a clearer physical
interpretation of generalised geometry.
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